
Design of a Primitive Nanofactory
Chris Phoenix
Director of Research, Center for Responsible Nanotechnology http://CRNano.org

Abstract:

Molecular manufacturing requires more than mechanochemistry. A single nanoscale
fabricator cannot build macro-scale products. This paper describes the mechanisms,
structures, and processes of a prototypical macro-scale, programmable nanofactory
composed of many small fabricators. Power requirements, control of mechanochemistry,
reliability in the face of radiation damage, convergent assembly processes and joint
mechanisms, and product design are discussed in detail, establishing that the design
should be capable of duplicating itself. Nanofactory parameters are derived from
plausible fabricator parameters. The pre-design of a nanofactory and many products
appears to be within today's capabilities. Bootstrapping issues are discussed briefly,
indicating that nanofactory development might occur quite soon after fabricator
development. Given an assembler, a nanofactory appears feasible and worthwhile, and
should be accounted for in assembler policy discussions.

Contents:
1. Introduction
2. Background
 2.1. Mechanochemistry
 2.2. Mechanochemical fabricator designs
 2.3. Parts assembly, scaling, and product integration
 2.4. Nanofactory overview
3. Components and Innovations
 3.1. A Thermodynamically Efficient Stepping Drive
 Figure 1: Pin Drive
 3.2. Joining Product Blocks
 3.2.1. The Expanding Ridge Joint
 Figure 2: Expanding Ridge Joint
 3.2.2. Functional joints
4. Nanofactory Architecture
 4.1. Mechanochemical functionality
 Figure 3: Workstation Grids
 4.2. The reliable basic production module
 Figure 4: Production Module
 4.3. Gathering stages
 Figure 5: Convergent Assembly Fractal Stages
 4.4. Casing and final assembly stage
 Figure 6: Nanofactory Layout
 4.5. Issues in bootstrapping
 4.6. Improving the design

5. Product design
 5.1. Levels of design
 5.1.1. Nanoparts
 5.1.2. Nanomachines
 5.1.3. Nanoblocks
 5.1.4. Patterns and Regions
 5.1.5. Folds
 5.1.6. Networks
 5.2. Simulation and testing
 5.2.1. Design and simulation
 5.2.2. Testing and debugging a nanofactory-built product
6. Control of the nanofactory
 6.1. Nanocomputer architecture and requirements
 6.2. Placing the nanoblocks
 6.3. Specifying the nanoblocks
7. Product Performance
 7.1. Strength, stiffness, and shape
 7.2. Appearance
 7.3. Complexity
 7.4. Design
 7.5. Powering the product
 7.6. Computation
8. Nanofactory calculations
 8.1. File size and data distribution
 8.2. Fabricator control, energy, and cooling
 8.3. Physical arrangement and mass
 8.4. Product cycle, duplication, and bootstrapping time
 8.5. Radiation and failure
 8.6. Cost and difficulty of manufacture
9. Conclusion and discussion
Appendix A. Calculations in software
Appendix B. Projections from the Merkle assembler
 B.1. Mechanochemical baseline
 B.2. Chemistry, electronics, and mechanics
 B.3. Mechanochemical error rate
References

1. Introduction

The utility of a new technology depends on many factors, including the difficulty of
development and the ease and cost of use. Most technologies require significant
additional work to form useful products. Previous theoretical work in molecular
nanotechnology has provided only incomplete and fragmentary answers to the question of
how molecular nanotechnologic devices can be used in practice. Although it appears that
fabrication systems can be built on a nanometer scale (Drexler, 1992), small devices will
be difficult to use directly in many applications. Several designs have been proposed in
more or less detail (Drexler, 1986, 1992; Bishop, 1996; Merkle, 1997a; Hall, 1999;

Freitas and Merkle, in press) for parallel control of many small fabricators to make a large
product. Other proposals (Hall, 1993) combine many small products to create a large
product. However, each of these proposals has provided insufficient detail to allow
estimation of their practical difficulty and utility.

This paper builds on previous proposals to describe an architecture for combining large
numbers of programmable mechanochemical fabricators into a manufacturing system, or
nanofactory, capable of producing a wide range of human-scale products. The proposed
system is described in sufficient detail to allow estimation of nanofactory mass, volume,
power requirements, reliability, fabrication time, and product capability and cost, as
simple functions of the properties of the mechanochemical fabricator component.
Bootstrapping a human-scale system from a sub-micron system is also discussed.
Discussion of product design issues and nanofactory manufacturing capability
demonstrates that the nanofactory should be able to efficiently fabricate duplicates of
itself as well as larger versions. This proposal differs from previous proposals in that,
with the exception of mechanochemical component fabrication, design of the nanofactory
should be within the reach of present-day engineering; physical structures and functional
requirements are described in sufficient detail that remaining problems should be within
the capability of current engineering practice to solve. In particular, the design considers
all transport and manipulation requirements for raw materials and product components, as
well as control, power, and cooling issues.

This exploration can provide a basis for estimating the practical value and difficulty of
developing a nanofactory. As noted in (Merkle, 1999), even a primitive sub-micron
mechanochemical fabricator may produce valuable products. The question at hand is
whether, once such a device is developed, it is feasible and worthwhile to adapt such
devices into a nanofactory. Since no complete designs, or even complete parameter sets,
exist for a mechanochemical fabricator, this question cannot be answered fully at this
time. However, the results of the present paper can be applied to a wide range of
hypothetical fabricator parameters. As fabricator designs are proposed in increasing
detail, these results will become increasingly useful in predicting the capabilities of a
nanofactory based on such designs. Issues of product design and manufacture are
examined in order to establish that the nanofactory is capable of fabricating duplicates
and larger versions of itself. The time required to bootstrap a human-scale factory from a
nano-scale fabricator cannot be estimated with any certainty, since bootstrapping will
require time for debugging and redesign as well as for fabrication of larger versions.
However, the minimum time required for fabrication can be estimated, and the design
developed here is simple enough that debugging and redesign may be fairly simple and
rapid.

The paper is arranged in several sections. Section 2 surveys previous work toward
manufacturing systems relying on mechanochemistry and producing human-scale
products. Section 3 describes two innovations required for efficient operation of the
nanofactory architecture. Section 4 describes the nanofactory architecture, including a
highly reliable production module incorporating several thousand mechanochemical
fabricators and a scalable convergent assembly and transport architecture for integrating
large numbers of production modules. Section 5 covers issues of product design to

establish that the nanofactory is designable and buildable by itself. Section 6 discusses
computer control of the nanofactory. Section 7 covers product performance. Section 8
provides calculations relating nanofactory performance and characteristics to fabricator
performance and characteristics. Section 9 summarizes the paper. Appendix A is a
computer program that implements repetitive calculations for probability, size of
components, and pressure in cooling channels. Appendix B is a brief discussion of the
suitability of a proposed fabricator design (Merkle, 1999) for the nanofactory architecture.

2. Background

In order to create useful products with molecular manufacturing, several steps are
required. Large products cannot be built by a single small fabricator. Even at a million
atoms per second, building a gram of product would take more than a billion years.
Building a large product requires a system implementing several steps. First, molecules
must be reacted under positional control by fabricators to form parts. Second, the parts
must be combined into nanosystems. Third, the nanosystems must be combined into
products, either by physical attachment or by distributed control. Many authors have
considered one or more of these steps, but none has described a complete factory system.

2.1. Mechanochemistry

As used in this paper, mechanochemistry refers to the process of inducing covalent bond
formation or breaking under controlled conditions by mechanical motion. As discussed
in (Drexler, 1992, chap. 8 & 9), mechanochemistry performed in a well-controlled
environment appears sufficient to fabricate small devices from covalently bonded carbon
(diamondoid). Merkle (1997d, 1998) describes additional reactions that could be used to
build diamondoid products--a complete hydrocarbon "metabolism" capable of refreshing
the molecular deposition tools, and Merkle and Freitas (2003) have analyzed a specific
diamond mechanosynthesis tool in detail.. The present design assumes that some such
chemistry is possible in practice, and will have been characterized to some extent in the
process of building a working fabricator. Diamondoid fabrication chemistry need not be
completely understood--a basic set of a few reliable deposition reactions, with motions
parameterized to account for edges and other discontinuities, should be sufficient to build
bulk diamond.

In order to focus on nanofactory architecture, the present work does not consider
mechanochemical operations in detail. Instead, the design assumes the existence of a
small programmable mechanochemical fabricator. To simplify architectural
considerations, the fabricator is assumed to be self-contained: it must be capable within a
small volume of performing all mechanical motions necessary to fabricate parts from
feedstock and assemble them into small devices of complexity comparable to itself.

2.2. Mechanochemical fabricator designs

Several proposed devices appear to be capable of performing reliable mechanochemical
operations with sufficient flexibility for self-duplication. These include the robot arm
described by Drexler (1992, sec. 13.4), the double tripod described by Merkle (1997c),
the molecular mill described by Drexler (1992, sec. 13.3), and the "parts synthesizer"
described by Hall (1999). Additionally, biological or hybrid systems have been proposed
(Bradbury, 2003) in which organic synthesis is used to build relatively large chemical
components. Each of these systems is attractive for various reasons.

The robot arm requires several different mechanical components, including small gears,
triply-threaded toroidal worm drives, and several types of cylindrical sliding interfaces.
Each of these components may require significant atom-level design. In addition, the
robot arm requires a control system involving rotational motion on several drive rods.
Nanometer-scale clutches have not been designed in detail. In order to provide results
relevant to early fabricator and nanofactory development, this paper does not assume that
devices of such complexity can be built. Hall's parts synthesizer requires separate
assembly robots to deliver chemicals, and the power/control mechanism is not specified.

Systems relying on many biologically-based feedstock molecules require separate
synthesis and assembly areas, which may have quite different environmental
requirements. In addition, they may require nontrivial transport mechanisms to prevent
premature reaction of the feedstock molecules. Finally, such systems do not appear to
permit the fabrication of diamondoid structures.

The molecular mill is an attractive concept for several reasons. It does not require
explicit control of each mechanochemical operation, thus greatly increasing efficiency
over the other three proposals. Operations can also be quite fast, since merely moving a
belt a short distance is sufficient to accomplish a mechanochemical operation. However,
each reactive encounter mechanism, or station, in a molecular mill performs only one
mechanochemical operation. Although each station is efficient, in the sense of processing
a mass equal to its own in a short time and with little energy wasted, a large number of
stations would be required to fabricate all the parts needed to build a nanofactory, let
alone the desired range of products. This number has not been quantified. Additional
design would be required to explain how a number of stations performing different
mechanochemical operations and using different parts can produce all the required parts
for self-replication given that only one chemical operation is performed at each station.
Although this does not contradict the possibility of a self-replicating set of mills, it
indicates that the set may be large and difficult to design. In addition, the set may grow
unpredictably when required to produce additional parts for the non-fabricator portions of
the nanofactory, and may need significant modification if the design of a part must be
changed. Accordingly, a mill solution is not used in this paper. However, it should be
noted that a combination of a mill making small blocks and a double tripod capable of
both joining blocks seamlessly (Drexler, 1992, sec. 9.7.3) and performing detailed
mechanochemistry may be fast, flexible, and relatively easy to design, and would be
preferable to the simple robotic manipulator implicitly assumed for this baseline design.

The current design effort is based loosely on a double-tripod "assembler" discussed by
Merkle (1999). Merkle's assembler is self-contained, simple to control, and
approximately the right size for a basic factory or product building block. Every effort
has been made to avoid depending on any specific property of Merkle's design. However,
the claimed feasibility of this design serves as inspiration for the present effort to
integrate designs with comparable functionality into a monolithic nanofactory.

2.3. Parts assembly, scaling, and product integration

Several nanotech manufacturing designs have been proposed that could be used to build
large products. For example, Bishop (1996) describes an "Overtool" composed of
multiple "active cells" and "gantry cells" which can both do mechanochemistry and
encompass and manipulate a large product. This design is incomplete, lacking
description of control algorithms and internal communications. Hall (1999) describes a
system of robots and framework components that can in theory scale to large size and
then make large products. However, feedstock delivery and system control are not
specified, and products it can fabricate are not described. Drexler (1992, chap. 14)
describes a system in a fair amount of detail, including estimates of volume, mass, and
replication time. However, this description does not include the assembly operations
used, robotics required, or control of those robotics. Additionally, the system uses
molecular mills, which have not been studied in detail, and the physical layout of the
system is specified only in general terms. This work, though seminal and inspiring, does
not permit detailed estimation of the technological sophistication required to design such
a system. Merkle (1997a) described a variant of that system, including fabrication time
and the suggestion of assembling products from large sub-blocks. However, he did not
calculate the power requirements, describe the internal control mechanisms, or discuss
product design issues or the feasibility of self-replication in any detail.

Large-scale cooperative designs are not well understood today, and directing them may be
expected to be difficult. Hall (1993) describes a "utility fog" composed of many small
identical robots. Such a system would be relatively simple to manufacture, requiring no
large-scale assembly. Hall suggests that the fog could use any of several fairly simple
algorithms to simulate solid objects. However, he also does not consider how to power
the product/object, and the control algorithms are not worked out in detail. Also, his fog
is quite weak for its mass, at least compared to a more strongly fastened diamondoid
product.

The purpose of the nanofactory is to build strong, functionally rich, monolithic, human-
scale products that are easy to design and use. Several innovations described in this paper
allow a nanofactory design to be presented in detail for the first time. The nanofactory
itself is intended to be in the set of possible products. The paper focuses on early
development and on demonstrably feasible designs, so does not include some obvious but
currently speculative techniques for improving performance. The design is deliberately
simple, especially in minimizing the amount of mechanochemical design needed in
addition to the preexisting fabricator. The major design effort focuses on mechanical and
digital design, physical layout, and fault tolerance.

Mechanical design methodology has achieved great competence in the transformation of
mechanical motion and force. Many devices have been developed to accomplish this,
such as cams and followers, rack and pinion drives, planetary and differential gears, and
pantographs. Drexler (1992, chap. 10) demonstrated that many of these devices can be
translated directly to nanometer scale. However, many of Drexler's designs use a
specialized arrangement of surface atoms, and sometimes of internal atoms. Such devices
would require individual chemical design. To avoid the unknown but potentially large
effort involved in developing new chemical synthesis for new mechanical structures, the
present design does not generally assume the use of mechanical features smaller than ~1
nm. Such a design is referred to as "bulk diamond", meaning that simply specifying a
suitable volumetric design to be filled with diamond lattice is sufficient to specify a part
with the required mechanical function.

Although a wide range of sensing and feedback technologies have been developed at the
macro scale, some of them do not work at the nanometer scale (e.g. optics and
electromagnets; see Drexler, 1992, sec. 2.4), and others may require excessive volume or
complexity. In general, this design effort avoids sensing in favor of predictability and
reliability. Digital logic is useful for performing repetitive functions, doing precise
calculations, and selecting among alternatives using well-specified criteria. Software
systems that interact with mechanical systems may be hampered by sensor data that are
not well specified. Accordingly, this design does not make much use of feedback, or
require software to deal with "fuzzy" situations. Almost all aspects of nanofactory
operation are deterministic; this mirrors the (theoretically) deterministic nature of the
mechanochemical technique (Drexler, 1992, sec. 6.3). Because the factory layout is
extremely repetitive and strictly hierarchical, issues in controlling a large number of
fabricators and robots can be reduced to controlling a single fabricator or robot, plus
simple iteration.

As previously noted, this paper builds on work which demonstrates that a nanofactory is
conceptually feasible. The design presented here is sufficiently detailed that the
feasibility of each part of it can be assessed. However, it is sufficiently general that it can
accommodate a variety of mechanochemical systems. Where design principles are well
understood, details are not supplied. For example, the use of a gantry crane is specified in
order to demonstrate the existence of robotics capable of doing the job required, and to
allow approximate calculation of the mass of those components. The drive mechanism of
the gantry crane is not specified; however, given a design tolerance of 1 nm and the
presumed feasibility of motors as small as 50 nm in diameter (see Section 8.2), it is clear
that such a mechanism can be designed in a wide range of sizes; at the present level of
design, it is not necessary to examine work on industrial robotics.

The extreme conservatism that is appropriate for a feasibility demonstration is less
appropriate for a preliminary engineering study. For example, it is conservative to
assume that each individual part will require individual design at the atomic scale.
However, it is reasonable to assume that in the case of a rod with bumps regularly spaced
on it, the rod can be extended and bumps can be added or removed without requiring
detailed redesign. Thus the use of mechanical digital logic designs (Drexler, 1992, chap.
12) is assumed to require a mechanochemical design effort for only a fixed and relatively

small number of parts. Likewise, the quantitative sections of this paper choose typical or
reasonable values instead of extreme or pessimistic values.

2.4. Nanofactory overview

The nanofactory system described here incorporates a large number of fabricators under
computer control. In a single product cycle, each fabricator produces one nanoblock,
approximately the same size as the fabricator. The blocks are then joined together, eight
sub-blocks making one block twice as big. This process is repeated until eight large
blocks are produced, and finally joined in an arrangement that is not necessarily cubical.
The output of multiple product cycles may be combined to produce large products. The
production system is arranged in a three-dimensional hierarchical branching structure (see
Section 4.3) which allows the sub-block assembly to be done by machinery of appropriate
size. Eight factories of a given size can be combined to form one larger factory; the 64
blocks produced are joined into eight blocks twice as big. The design is easily scalable to
tabletop size, with a ~1 meter factory producing eight ~5 cm blocks per product cycle.
As discussed in Section 8.4, depending on the capabilities of the mechanochemical
fabricator, the time required for a product cycle will be conveniently measured in hours.
The blocks need not be solid cubes, and their interior may be quite complex. As
discussed in Section 5.1.5, products can be unfolded after manufacture, greatly increasing
the range of possible product structures and allowing products to be much larger than the
nanofactory that produced them.

The exact size of the nanoblock is unimportant. For this design, a 200-nm cube is
convenient: it is large enough to contain a simple 8086-equivalent CPU, a microwatt
worth of electrostatic motors/generators, a shaft carrying 0.4 watts (Freitas, 1999, sec.
6.4.3.4), or the Merkle assembler (1999), but small enough to be fabricated quickly and to
survive background radiation for a useful period of time. As discussed in Section 6, the
partitioning of the product into nanoblocks, and the use of relatively large sub-blocks at
each step, allows the use of relatively simple robotics and control algorithms in the
nanofactory. As discussed in Section 5, such division also simplifies product design
without imposing many practical limits on product complexity. (W. Ware points out that
a combination of tetrahedra and truncated tetrahedra is also space-filling, and that this
may be more compatible with the tetrahedral diamond matrix.)

At the smallest scale, the organization of the factory changes to allow simpler distribution
of feedstock, cooling, power, and control, and simpler error handling. A production
module consists of one computer and a few thousand fabricators. It produces a few
blocks, a few microns in size, by combining a few thousand nanoblocks. These
rectilinear production modules incorporate a few block assembly stages. They are
combined into the smallest factories, which are also rectilinear--and so on to any size
desired. At each stage, product blocks are delivered through the center of the smallest
face, allowing compact stacking of multiple modules or stages. The stages are stacked on
either side of a gathering/assembly tube which contains simple robotics to join the
incoming product blocks into larger blocks and deliver them out the end of the tube. Two
stacks of stages, plus the tube in between, constitute the next higher level stage.

The nanofactory design is highly repetitive: each input (sub-factory, or substage) to a
stage is identical. Thus only one design is required for each level, regardless of the
number of substages at that level. Since each stage joins eight blocks to form one block
with twice the linear dimension, 19 sizes of stage (4 internal to the production module)
are required to progress from a 200-nm nanoblock to a 10.5-cm product. (One additional
stage, a simplified gathering stage, is used to transition from production modules to
gathering/assembly stages.) Most of these stages perform identical block-joining
operations. The design of one stage may be used with minor modification for several
similar stage sizes.

A nanofactory built with primitive fabricators and control systems may use a lot of
power. It will be cooled by a fluid with suspended encapsulated ice particles (Drexler,
1992, sec. 11.5). Thus the temperature of the nanofactory will be a uniform 0 C (273 K).
This is significant for the energy used by digital logic (Section 8.2) and for aligning and
joining large blocks (Section 3.2.1).

The control architecture of the nanofactory, like the physical arrangement, is strictly
hierarchical. Instructions can be distributed from central computers directly to the
computers that directly control the fabricators. All error detection and correction takes
place either within a single nanocomputer or within a production module controlled by a
single nanocomputer, and error reporting and compensation are not required beyond the
production module. There is no need for communication between any two computers at
the same level; a simple tree architecture can be used to send all required data (Section
8.1). Exotic or complex control algorithms, networking architectures, and operating
systems are not required.

The size, mass, energy requirement, and duplication time of this nanofactory design
depend heavily on the properties of the fabricator. Sections 8.2, 8.3, and 8.4 quantify
these relations. With the assumptions made in those sections, a tabletop nanofactory
(1x1x1/2 meters) might weigh 10 kg or less, produce 4 kg of diamondoid (~10.5 cm
cube) in 3 hours, and require as little as fifteen hours to produce a duplicate nanofactory.

3. Components and Innovations

To provide a workable design for a simple first-generation nanofactory made from
primitive fabricators, several innovations are described. The linear ratchet drive proposed
by Drexler (1992, sec. 16.3.2) is extremely inefficient. Section 3.1 describes a
thermodynamically efficient stepping drive that is applicable to all stepping actuators.
The problem of how to join small components into a large product has been greatly
simplified by designing a mechanical fastening system, described in Section 3.2.1. It has
only two moving parts, requires no insertion force or actuation, preserves much of the
strength of the unbroken material, is easy to grip and handle, and is tolerant of alignment
errors. With the addition of one actuator, the joint can be made reversible to aid in
product unfolding (Section 5.1.5). Section 3.2.2 describes a variety of press-fit
connections for conveying power, signal, and fluid between nanoblocks.

The fabricator used in the nanofactory is unspecified; the nanofactory design is
sufficiently general that a wide variety of possible fabricator designs can be incorporated.
The reader may find it helpful to study Merkle's "assembler" (1999) (Appendix B) as a
prototype. The only requirements are that the fabricator must be capable of producing a
variety of products of size and complexity equal to itself from soluble feedstock
molecules, and that it use digital deterministic control, which implies that the
mechanochemical processes must be highly reliable. Since only a few reactions will be
sufficient to make a wide variety of molecular shapes, and since error detection and
correction will be difficult if not impossible in early broadcast-architecture assemblers,
these requirements do not greatly reduce the generality of the present design. (Unreliable
operations can be retried multiple times even in a deterministic system; see for example
Drexler, 1992, sec. 13.3.1c).

3.1. A Thermodynamically Efficient Stepping Drive

Figure 1: Pin Drive

A mechanical device driven by a sequence of simple digital commands will have an
internal state that changes with each command, and must be maintained without error or
slippage. Thermal noise injects constant vibration into the system, requiring strong
latching mechanisms. A simple latching mechanism is a ratchet with a strong spring, as

proposed by Drexler and used by Merkle. A stepping drive can be built from two
ratchets, and early assembler designs that are controlled by simple external signals may
make extensive use of such drives. Such a mechanism is extremely inefficient, since the
energy used to compress the spring (at least 100 kT [Boltzmann's constant times ambient
temperature] to overpower room-temperature thermal noise) is lost each time the ratchet
moves to the next tooth. However, when a fabricator is connected to a digital logic
system, the fabricator no longer needs internal state-maintenance mechanisms, and the
device can be made far more efficient. (Digital logic, including gates and registers, can
be made thermodynamically efficient.)

An efficient drive with functional characteristics similar to the ratchet drive is the pin
drive. (See Figure 1.) In this design, pins are inserted into equally spaced holes (or
notches) in the moving bar to assure its position at all times. The latching pin moves in
and out but not sideways, and is used to hold the bar still. The driving pin moves in and
out, and also is moved sideways by a bar actuator over a distance equal to the spacing of
the holes. The pins are similar in structure and function to the rods in Drexler's rod logic
design. To move the bar one step, the bar actuator is moved to one end of its range,
pulling the driving pin into alignment with a hole. The driving pin is inserted. The
latching pin is withdrawn. Then the bar actuator is moved to the other end of its range,
bringing the next hole into alignment with the latching pin, which is then inserted.
Finally, the driving pin is withdrawn and then moved back to its original position.
Smaller step sizes may be obtained by additional offset pins, or by a second vernier drive,
similar to the vernier ratchet drive described by Drexler (1992, sec. 16.3.2), with slightly
different hole spacing and bar actuator range of motion from the main drive. Larger step
sizes may be obtained by moving the bar actuator a larger distance in each cycle.

Although the pin drive requires one more actuator than the ratchet drive--two pins and a
bar actuator, instead of two ratchet pawl pullers--it has the advantage that it can move by
measured steps in either direction, whereas the two-ratchet drive can only move stepwise
in one direction and must retract in a single motion by lifting both ratchets. (If both pins
are lifted simultaneously, the bar can be moved without restriction by a weak return
actuator, allowing the same rapid return motion as the ratchet drive. Note that without
careful design, verifying the complete return of the bar will require energy on the order of
100 kT.) Similar redesign can be applied to any stepping drive mechanism. As long as
the position of the moving member is initially known, it can be moved stepwise, held
stiffly against thermal noise at every point, and locked in place in its new position, all
without irreversible state transitions.

While the pins are moving, the bar is stationary and the pins may be moved reversibly.
As the bar actuator is moved, the force encountered may vary. Nevertheless, stiffly
imposed motion will be efficient in most cases. As long as the force profile of the motion
does not vary more rapidly per distance than the stiffness of the drive mechanism, and
does not vary substantially between forward and backward motion (e.g. due to an
irreversible state transition), it does not matter how much force is required to move the
bar at each point because the energy will be recovered when the motion is reversed. This
energy recovery requirement implies that the drive mechanism must be able to recover
energy from being driven by the bar; such designs are not difficult, and include Drexler's

electrostatic motor/generator (1992, sec. 11.7). The same argument applies to other types
of actuators driven by other digital control mechanisms: as long as the force profile is
reversible and is less steep than the stiffness of the drive mechanism, the energy that is
put into the system is recoverable. Note that rapid motion causes the force profile to
deviate from reversibility due to various energy dissipation mechanisms. (The author
thanks Eric Drexler for clarifying discussion of thermodynamic reversibility.)

3.2. Joining Product Blocks

There are several possible ways to join two mechanochemically fabricated objects. Van
der Waals force is an attractive force that develops between any two nearby objects. For
a few unterminated surfaces, covalent chemical bond formation can in theory be used to
make a seamless joint. A wide variety of mechanical joints can be used. Section 3.2.1
describes a particularly useful strong mechanical joint, and Section 3.2.2 describes
several press-fit joints for power, control, and fluid connections between blocks.

At very small separations, two objects experience an attractive force called van der Waals
force: simply bring them close together, and they stick. For two flat diamond surfaces,
the force is approximately 1 nanonewton per square nanometer, or 10,000 atm of pressure
(Freitas, 1999, sec. 9.3.2). This is reasonably high, although it provides only a fraction of
the strength and stiffness of chemical bonds. The van der Waals force is the simplest
method of joining, it is reversible, and it should provide sufficient strength to keep even
kg-scale products from falling apart under their own weight. This type of joint is
convenient and can be used for weak joining of structures that must later be separated.

A diamond surface that is not passivated with an outer layer of hydrogen will be very
reactive. Unterminated diamondoid surfaces forced together should form covalent
bonds. According to Drexler, two (110) surfaces of tetrahedral diamond or two (100)
surfaces of hexagonal diamond should bond to each other on contact, forming a seamless
joint (Drexler, 1992, secs. 8.6, 9.7.3, and 14.2.1). Sinnott et al. (1997) report the results
of simulations that show bond formation, though not seamless joining. For other
diamond surfaces, or in the case of too-rapid joining, a somewhat weaker joint may form
with a lower bond density. Also, it is currently unknown how much pressure would be
required to initiate the process. Crushing buckyballs to diamond requires 20 GPa, but
Drexler states (personal communication, January 24, 2003) that a covalent joint should
"zipper" itself if started at an edge or corner, that neon atoms should be able to escape the
closing gap and would not interfere with the joining, and that argon is even better in this
regard. If the joint were comparable in structure to amorphous diamond currently made
for MEMS, it would have a tensile strength of only 8 GPa (Sullivan, 2002); this is
significantly less than diamond's tensile strength of 60 GPa (measured) to over 100 GPa
(calculated, depending on crystal orientation) (Telling et al., 2000). An additional
problem is that radiation damage or stray molecules may cause local surface
reconstruction or contamination that may hold surfaces apart and prevent a joint from
forming. This type of joint is usually not reversible, though in theory a carefully designed

edge might allow predictable crack formation. Since seamless covalent joints have not
yet been demonstrated, the present nanofactory design does not use this method.

3.2.1. The Expanding Ridge Joint

Figure 2: Expanding Ridge Joint

Each mating block face is covered with small "ridges" that are roughly triangular in cross
section. See Figure 2. All exposed surfaces are non-reactive (e.g. hydrogen-passivated
diamond). The ridges on each face interlock with the ridges on the opposing face. As the
joint is pressed together, the ridges split and expand sideways. The exposed surfaces of
the ridges are not smooth, but are shaped to grip the opposing ridge, with scallops deep
enough to form overhangs when viewed perpendicular to the block face. A scallop is
chosen instead of a sawtooth or ratchet profile in order to avoid crack formation at sharp
concave angles. Scallops also make assembly motions smoother, and allow the un-
powered assembly described below. The expansion of the ridge opens a space in its
center, which is then filled by a shim which sits above the almost-closed gap between the
two halves of the ridge. Once the shim is in place, the volume of the joint cannot easily
be compressed, and the surfaces of the ridges cannot easily slide past each other; pulling
apart the joint would require compressing a solid mass of diamond by several percent or

breaking at least half of the ridges simultaneously. If the ridges all run in the same
direction, the joint may be able to slide freely. Crossed ridges will produce a joint that is
quite stiff against shear.

The triangular shape of the ridges has several advantages. First, the area of the base of
the triangles (almost the entire area of the block surface) is structurally solid. (By
contrast, a square ridge would waste at least half of the structural strength of the blocks
being joined, because the block area adjacent to the tops of the ridges would not
contribute to the joint.) Second, at small scales, van der Waals forces make handling of
components difficult because the components stick to any manipulator. With triangular
ridges and narrow ridge tops, the contact area of the surface is much lower, reducing the
van der Waals force. Third, a manipulator can easily be aligned with the ridges. Small
blocks can be picked up by simple contact with a V-channeled manipulator that presents
sufficient surface area to form a van der Waals bond of the desired strength, and the
manipulator will automatically be pulled into alignment. A more complex mating pattern
could fasten on several ridges at once. If the ridges are placed at varying angles or
spacings, a well designed manipulator/ridge interface can guarantee that a misaligned
manipulator cannot form a firm grip. Likewise, a well designed ridge/ridge interface can
guarantee that misaligned blocks will not join incorrectly.

There are at least three ways of mounting the ridge so that a small attractive force
between mating ridges will be sufficient to cause the ridge to spread. The first possibility
is to join the ridge to the nanoblock with dovetail joints, permitting it to slide sideways
with very low friction. A simple dovetail joint costs somewhat more than half of the
possible joint strength; a stairstepped dovetail joint (which is similar to a completed ridge
joint) would recover much of the strength at the cost of additional volume and
complexity. The second possibility is to use a mounting that is strong in tension but
flexible in shear, such as thin columns of diamond or buckytubes. The third possibility,
for use in linear stacks of many nanoblocks, is to build a solid structure extending from
the base of the ridge all the way through the block to the ridge on the opposing face. Both
ridges would move in tandem, and be locked in place when the shims were dropped on
each side. This might require a mechanism for retaining all participating shims until all
joints are pressed together.

The simplest version of the expanding ridge joint requires no actuation to form the joint
other than moving the faces together. As the faces are brought together, just before the
final closure, each row of scallops brushes past the inverse row on the opposing ridge. As
the interlocking ridges from each surface interpenetrate, the bulges of the scallops brush
past each other, close enough to be attracted by van der Waals force. This pulls the
halves of the ridge apart. The attraction between passing scallops when the faces nearly
touch must be stronger than the intra-ridge attraction, to ensure ridge spreading during the
last phase of joint insertion, as the final rows of scallops pass each other. This is ensured
by the use of small spacers to control the van der Waals force holding the intra-ridge gap
closed. (The spreading will become increasingly favorable as the faces approach, and the
operation will happen slowly enough to allow equilibration, so thermal noise will not
cause the joint to fail to close.) However, the intra-ridge attraction (between halves of the
same ridge) must be strong enough in the initial position to prevent premature operation

due to thermal noise. The half-ridges must require a certain energy, say 100 kT, to pull
them apart far enough for the shim to be inserted; the displacement which absorbs this
energy cannot be greater than the depth of the scallop. Note that the required energy is
not dependent on any spatial parameter; it is related only to temperature. However, the
attractive force is approximately proportional to surface area, so this condition can be
satisfied by a sufficiently long ridge joint. In other words, regardless of the actual inter-
scallop force, an intra-ridge gap can be chosen that will allow the ridge halves to be
separated; and regardless of the gap, a sufficiently long ridge will be resistant to
premature separation.

Due to the complicated geometry of the scallops, exact calculation of the attractive force
between mating ridge halves is beyond the scope of this paper. An inaccurate calculation
is given to permit crude estimation of minimum ridge length. The formula for attraction
between cylinders (Drexler, 1992, Fig. 3.10f) will be applied, treating each scallop as a
0.5-nm radius cylinder separated by 0.3 nm. (This is inaccurate because it ignores the
attractive contribution from the material behind the cylinders, and because the formula's
derivation assumes that cylinder radius is much greater than cylinder separation.) The
inter-scallop potential energy is calculated as 61 zJ per linear nanometer of scallop
contact, which corresponds to 2 nm^2 of surface between the two halves of the ridge. To
reduce the intra-ridge potential energy to 50 zJ per scallop-nm or 25 zJ per nm^2, the
spacing must be at least 0.6 nm (ignoring the attractive contribution from the spacer)
according to the formula in (Drexler, 1992, Fig. 3.10d) which slightly overestimates the
attractive force since the ridge is not infinitely thick.

When the gap between the half-ridges is fully open, the shim (which includes a hollow to
accommodate the spacer) is pulled into the gap and held there reliably by van der Waals
force. The shim will insert when the ridges have moved apart by a distance equal to the
depth of the scallop undercut, in this example 1 nm. With a 1-nm deep scallop and a 0.6
nm initial gap (thus a 1.6-nm wide shim), the difference in potential energy between 0.6
nm and 1.6 nm spacing is 21.5 zJ/nm^2. To prevent premature insertion, the intra-ridge
potential energy of attraction must differ by 100 kT (260 zJ at 0 C) between closed and
open positions. This requires 12 nm^2 of intra-ridge gap. If the ridge is 8 nm high (with
4 scallops), then it need only be 1.5 nm long.

The joint may be stiffened by compressing the joint volume. In this case, extra force may
be used to insert the shim into the gap. (This also allows the gap to be somewhat
narrower, reducing non-structural volume.) A simple design for an electrostatic actuator
adds only one moving part. The shim is blanketed between insulated capacitor plates,
one of which is flexible. Charging the capacitor makes the plates pull together, expelling
the shim like a watermelon seed. The electricity to power the actuator can be delivered
through contact with small embedded conductors at the proper time during the convergent
assembly process. The tip of the shim can be tapered to help spread the ridge halves.
Once the shim is expelled, the capacitor plates will adhere to each other by van der Waals
force, forming a reliable barrier to hold the shim in the joint even if the capacitor is
discharged.

Tension on the joint will tend to expand the entire joint volume sideways. This can be
constrained by surrounding each joint (not each ridge) with a diamond collar sufficient to
resist the sideways force generated by a single ridge. The ridge joint is somewhat less
stiff in tension or compression than solid diamond would be, but should be almost as
strong: failure requires either significant compression of a large volume of diamond, or
the simultaneous failure of many covalent bonds. Effectively, the entire joint volume
except for the depth of the scallops and the width of the shim contributes to the tensile
strength, and the entire joint volume except for the shim contributes to the compressive
strength. Shear strength and stiffness depend on the orientation and attachment of the
ridges, but can be made quite high perpendicular to the ridge line. Torsional and bending
strength and stiffness can also be made quite high.

The width of the shim is unrelated to the size of the ridge, being equal to the depth of the
scallop's undercut plus the intra-ridge van der Waals gap. A reasonable lower bound for
component size is a ridge composed of four scallops 1 nm deep and offset by 1/2 nm
horizontally and 2 nm vertically. The height of the ridge is 8 nm, and the footprint of a
half-ridge is 3.5 nm (accommodating 0.5 nm of motion to mate with the opposing half-
ridge), of which 2 nm contributes structural strength. The 1.6-nm wide shim adds an
additional 0.8 nm of non-structural overhead to each half-ridge; the total joint tensile
strength is approximately 47% of solid diamond. (Shallower scallops will improve this
number up to a point; scallops that are too shallow can fail by slipping past each other.)
For reliable operation the ridge must be at least 1.5 nm long. The smallest joint consists
of one half-ridge on each side, only one of which (and its shim) needs to move; the rest of
the joint including the mating half-ridge can be solid diamond. A single joint can
potentially have a footprint smaller than 3x6 nm. Larger ridges can have more scallops,
with the size of each scallop (and thus of the shim) staying constant. For example, a half-
ridge 20 nm high with 10 scallops has a footprint of 6.5 nm (plus 0.8 nm for its share of
the shim) of which 5 nm is structural, for 68% of diamond strength. Covering a 200-nm
block with 8-nm-high ridges on each side requires 8% of the block volume (ignoring
block edges and corners). However, in a high-strength application that requires ridge
joint coverage of the full surface, the block must be nearly solid diamond anyway.

Because the strength of the joint decreases only slightly with smaller size (the decrease is
a function of the minimum shim, scallop, and van der Waals gap size), small ridges are
mechanically adequate for joining blocks at any scale. Minimum ridge size is determined
by the mechanochemical fabrication process. The only limitations on block size are the
precision of the block-handling machinery and the possibility of unequal expansion of the
faces due to temperature differences. With 200 nm nanoblocks, ridges built in a single
block can be up to 100 nm in height, with tops 50 nm apart. (Note that the blocks will
overlap by the height of the ridge. The change in effective block width during assembly
presents issues for the assembly process that are straightforward but beyond the scope of
this paper.) An assembly tolerance of 0.05 micron is somewhat beyond today's standards;
current state of the art for automated pick and place assembly for optical components
appears to be around 0.5 micron (Blaze Network Products, 2003). However, today's pick
and place systems use hardware made with a manufacturing tolerance comparable to its
performance. In contrast, the dimensional precision of the nanofactory's hardware will be
approximately one atomic diameter or less, regardless of scale. At large scales, single

ridges can be assembled from multiple nanoblocks, allowing ridge spacing of multiple
microns; this is sufficient even for today's robotics.

Differences in fabrication processes, assembly processes, and internal structure may cause
different blocks to be at different temperatures. The resulting thermal expansion can
cause a misalignment of the ridges. The volumetric thermal expansion coefficient of
diamond is 3.5x10^-6/K (Freitas, 1999, Appendix A); the linear coefficient is one-third
that, or 1.2x10^-6/K. A temperature difference of 1 K thus causes a 200 nm block to
expand by a small fraction of an angstrom, while a 10.5-cm surface will expand by 126
nm. Because diamond is an excellent conductor of heat, passive equilibration may be
sufficient. As long as the displacement is not greater than the ridge spacing, or the ridge
pattern does not permit improper joining, the blocks may be pressed together slowly,
allowing the temperature to equalize. Even a rarefied internal atmosphere will also
facilitate temperature equalization between nearby faces, though this process may be slow
depending on block mass, and the process will be somewhat slower with argon than with
neon. Note that the nanofactory is cooled by phase transition (see Section 8.2), so the
cooling fluid will have the same temperature throughout the factory, minimizing potential
product temperature differences. Active compensation might involve sensing the
temperature at various points on the surfaces and applying heat to the cooler surface via
embedded resistive heaters; this will only be necessary for the few large-scale joints that
take place near the end of the assembly process, and the heating process can be initiated
in advance to avoid delay. Embedded mechanical (bi-material) thermostats can allow
each region to reach a preset temperature without individual attention.

Because the joints require no external manipulation or assembly force, they can be used
to fasten non-bonded parts that are only loosely connected to the main nanoblock. For
example, a structural beam one micron long and 50 nm wide can be constructed in five
sections. Each section will be terminated in ridge joints, and laid across a nanoblock in a
position that will place the section ends next to each other during block assembly; van der
Waals force will hold the section in place during block manipulation. When the
nanoblocks are assembled, the ridge joints of the beam will join at the same time as the
rest of the joints, with no additional effort. This allows the inclusion of long, thin
components in product designs. Likewise, single nanoblocks can be made in separate
pieces joined by van der Waals force. This allows a block to be pulled apart during the
unfolding process, forming multiple walls with large spaces between them. This can be
useful to save mass where only thin walls are needed. If a block is split into as many as
10 walls or 100 columns, the 20-nm width is sufficient for multiple full-sized ridge joints
on each part. This capability is assumed for interior nanofactory structure.

Joints can be formed after the product is released from the factory, as long as
contaminants have been excluded from the joint space. The factory can manufacture a
larger containing balloon for product unfolding, or the joints can be protected individually
by a variety of covering mechanisms. A product can be created in a very compact form,
then unfold like a pop-up book or like flat-packed cardboard boxes. Components can be
built in pieces, with lightweight pantographic trusswork to bring the ends together as the
product expands; once the ends touch, the strong joint will form. A component can also
be made in a "broken" state, with mating surfaces held together on one edge with a small

hinge at any desired angle, and the open end protected by a bellows if necessary. When
the component is straightened, the mating surfaces will form the desired strong
connection. A weak and reversible joint can be formed by preventing the shims from
entering the gaps between the ridges. This allows blocks to be loosely connected, then
disconnected, and finally reconnected tightly in the same or different configuration. This
may be useful if the unfolding process requires a structure to be produced in its final
conformation, then flexed, and finally fastened rigidly.

3.2.2. Functional joints

A product may contain embedded wires, pipes, rotating rods, nanocomputer logic rods,
and polyyne control cables. All of these may need to make a connection between
adjacent nanoblocks. These connections are generally simple, and cost less than 50% of
the performance that would be possible with a seamless design.

Embedded wires can be run up to a flat face, and electrical contact made by tunneling.
Contact can be maintained in the case of joint strain by the use of springy interfaces.
According to measured values for a sample of HOPG (highly ordered pyrolitic graphite),
(GE Advanced Ceramics, 2002) graphite is about 5000 times more conductive in-plane
than cross-plane (and the in-plane value is 1/50 as good as a typical metal). The
separation of graphite planes is 0.335 nm, about 1/600 of the 200-nm nanoblock width.
This implies that a graphite-graphite tunneling surface of 8 nm^2 per nm^2 of graphite
wire, spaced every 200 nm, would only double the total resistance. To save nanoblock
surface area, the tunneling surface can consist of interlocking corrugations. Because
diamond is an excellent insulator, high voltages may be used to compensate for the
resistance of graphite. Some buckytubes may be better conductors.

Control cables and control rods will be built into each nanoblock when it is
manufactured, and extend only to its edges. Tension and/or compression must be
transferred between blocks. Nanocomputer logic rods have ends ~1 nm^2 which can be
butted together. The nanocomputer design uses tensional force of 2 nN (Drexler, 1992,
sec. 12.3.3.b) but this can be traded for displacement or compressive force without
sacrificing reliability. Alternatively, the joint area can be increased by a few nm^2 to
allow a few nN of tensile force to be transmitted through van der Waals attraction.
Crossing between blocks may require adding extra logic gates to transform and condition
the signal; this logic can all be reversible at some cost of time. Such interfaces will not
add significantly to the power requirements or design complexity of a nanocomputer.

Polyyne (carbon chains with alternating single and triple bonds) control cables can be
terminated with a small diamondoid plate flush with the nanoblock surface. When the
blocks are joined, the plates will stick by van der Waals force. Each two atoms of
polyyne spans a length of 0.2569 nm and has a compliance of 0.00185 m/N (Casing an
Assembler, "Control cables"). A 1-nm diamond cube contains 176 carbon atoms. A van
der Waals interface has a stiffness of >30 N/m per nm^2 (Drexler, 1992, sec. 9.7.1), or a
compliance of <0.0334 m/N. Two hundred nm of polyyne contains 1557 carbon atoms
and has a compliance of 1.44 m/N, while 198 nm of polyyne interrupted by two 1-nm

diamond cubes interfaced by van der Waals force contains 1893 carbon atoms and has a
compliance of 1.47 m/N; the interface increases cable mass by 22% and compliance by
2% (ignoring the hydrogen termination and internal compliance of the diamond cubes)
and may introduce resonances into extremely high-speed operations. The main drawback
of the interface is its strength; the tensile strength of a polyyne rod is >6 nN, but the
strength of the interface is ~1 nN. Increasing the interface area allows a stronger and
stiffer joint, and for joint areas above a few square nanometers a ridge joint can be used at
some cost of mass.

Power can be transmitted by means of thin rotating rods, embedded in the nanoblocks
like the control cables and logic rods. Mating convolutions on rod ends will allow the
transmission of torque between ends that are simply pressed together. If the rod is driven
near maximum torque, the interface may need to be somewhat larger than the cross
section of the rod. The bursting speed of a disc decreases in proportion with its radius,
while the area increases as the square of the radius; thus a 2x increase in interface area
will cause a 1.4x reduction in speed. In this simple example, power transmission is
derated by 40%; however, other mechanical linkages such as a thin belt connecting offset
and overlapping rods may permit full speed while delivering full torque. (The belt can be
placed around one rod during nanoblock manufacture and held open by any of a variety of
methods. The other rod can be tapered to slip inside the belt during block assembly.
Interlocking (gear-toothed) rod surfaces will also work but may require significant
overlap for reliable torque transmission.) Rods and shafts larger than a few nm can be
joined by ridge joints. Ridge joints may also serve as a means of chocking the shafts to
ensure proper alignment, and then unlocking them during convergent assembly: the shims
can be inserted only when the joint is fully closed, and the motion of their insertion can
be used to remove a mechanical chock. Small rods can be controlled by adjacent ridge
joints, and large shafts by facial joints with internal shims.

Bearing surfaces for rotating shafts small enough to be embedded in nanoblocks can be
built into each nanoblock during construction. Variations in rod diameter will prevent the
rods slipping out of the block prior to convergent assembly. Large rods pose a special
problem for convergent assembly, since they cannot be strongly and permanently fastened
to a support or bearing structure. However, for products up to 10 cm size, a tight-fitting
bearing surface between a rod and a housing can provide the necessary adhesion by van
der Waals force alone. Rotational freedom can be constrained by small retractable
chocks. Graphite pads covering the matching surfaces of the blocks constituting the shaft
and the blocks constituting the housing can provide a bearing surface even for slightly
rough curved surfaces. However, the boundaries between the pads will be aligned on the
moving and bearing surface, and this can create a significant force. (Twisting one of the
surfaces relative to the other would break the alignment, but this will not be possible for
cylindrical bearings.) Order-of-magnitude calculations can be made by treating the
boundary gaps as regions of wider spacing between the surfaces, calculating the
difference in van der Waals energy between aligned and unaligned regions, and dividing
that by the width of the gap to find a force. Approximating the boundary as a trench 1 nm
wide and 0.1 nm deep and the pad spacing as 0.2 nm, and applying the formula from
(Drexler, 1992, Fig. 3.10d), indicates an energy difference of 81 zJ per nm^2 in favor of
the aligned state, or an average force of 81 pN per linear nm of trench. One mm^2 of flat

sliding surface will contain 5x10^9 nm of trench crossing the direction of motion,
creating a force of ~0.4 N. However, the stiffness of 1 mm^2 of graphite bearing surface
is ~3x10^13 N/m, so for many macroscopic applications, bearings may be made small
enough that the "roughness" is not a significant problem. A cylindrical bearing surface
cuts across two nanoblock planes and only a fraction of the area contributes to stiffness;
these factors increase the number of trenches (and thus the "roughness" force) for a given
bearing stiffness by approximately a factor of 4.

Pipes are simply voids in the diamond nanoblocks that are butted together when the
blocks are assembled. A flat, uncompressed interface between nitrogen-terminated
diamond (111) surfaces is adequate to exclude helium (Drexler, 1992, sec. 11.4.2a). If
this type of interface proves inadequate in practice (perhaps due to joint flexure, or
unavailability of nitrogen termination chemistry), a conical extension of the pipe wall
wrapped in one or more layers of graphite to provide a compressive seal and extending
into a conical depression in the other block should suffice. Pipes too large to be
contained inside a nanoblock can be sealed by diamond or graphite curtain walls, placed
along each seam, to separate the interior of the pipe from the mechanical joint area. If the
nanofactory is filled with inert gas, pipes will also be filled with the gas when they are
manufactured. If this is a problem, one possible solution is to place a collapsed graphite
tube inside the pipe, terminating the tube ends at the nanoblock faces with a diamond
mating collar thin enough to be flexible. When the blocks are assembled, the collars
join. When first used, the graphite tube will expand and conform to the walls of the pipe
while displaced gas can be vented through small channels.

4. Nanofactory Architecture

A nanofactory, as conceived here, is a single device containing many mechanochemical
fabricators and larger-scale manipulator systems. The mechanochemical fabricators
produce nanoblocks and the manipulator systems join them into a product. The
mechanochemical working space of a nanofactory must contain no stray reactive
molecules. The factory must contain computers to control the machinery; space and
mechanisms for convergent assembly; structures for distributing power, chemicals, and
cooling fluid; mechanochemical fabricators with space for them to work; and additional
space for joining blocks into larger blocks and transporting them through the factory.

The nanofactory is built hierarchically, using only a few scalable designs. At the lowest
level, a few thousand fabricators are arranged in a planar grid. Their products are picked
up and assembled into increasingly large blocks by a series of increasingly large robotic
manipulators. This plus a control computer constitutes a basic, reliable production
module. The production modules are stacked three-dimensionally into gathering stages,
which assemble blocks and pass them to higher-level gathering stages. Finally, the entire
factory is enclosed in a suitable casing, with a mechanism to output product without
contaminating the workspace.

In Merkle's convergent assembly architecture (1999) it is suggested that each convergent
assembly stage has four inputs, each supplying two blocks to make one output block.

However, this means that each input to the preceding stage must supply four blocks to
make those two, and so on. This is feasible if blocks can be manufactured extremely
quickly, or (as in Merkle's design) fed through a relatively small number of ports
efficiently. The current design, using large nanoblocks requiring minutes or hours to
fabricate, uses only one block from each fabricator per product cycle. This implies that
each stage will receive all its blocks in parallel. In general, then, each stage must have
either eight (non-redundant) or nine or ten (redundant) inputs. (The first gathering stage
has only four inputs, to compensate for the eighteen inputs of the final stage in the
production module; see below.)

4.1. Mechanochemical functionality

Figure 3: Workstation Grids

Once a self-contained, digitally controlled mechanochemical fabrication system has been
developed, the fabricator design can be copied directly from it. Early systems will
presumably use a simple, stiff robot, such as a double tripod (Merkle, 1997c) or Stewart
platform. As noted in Section 8.2, any inefficient ratchet or other state-keeping systems
in the fabricator can be replaced with thermodynamically efficient stepping drives. Even
with this improvement, the primitive method of mechanochemistry will cost some
efficiency relative to the "mill" type designs analyzed by Drexler (1992, sec. 13.3) and
used in his nanofactory design (1992, sec. 14.4). Because placing each atom or molecule
requires a large and complicated motion of the tripod system, the nanofactory will suffer
some penalty in both speed and energy use; these penalties are substantial but not
crippling. Mills are not included in this preliminary design because they may require
significant additional mechanical and mechanochemical design.

Fabricators will be fastened together edgewise to form the planar array, which divides the
coolant volume from the working volume. Cooling fluid with dissolved feedstock
circulates past one side; the products (nanoblocks) are fabricated and released on the
opposite side, which is open to the nanofactory's clean working volume. A square of nine
fabricators (one redundant) forms a stage. Product blocks are picked up by a three degree
of freedom gantry crane manipulator and assembled into a 0.4-micron block. Likewise, a
square of nine of these stages forms the next stage. This continues through several levels;
in the current design, four levels is chosen for suitable redundancy and convenient
control.

4.2. The reliable basic production module

Figure 4: Production Module

A production module fabricates two 3.2 micron product blocks out of up to 8,192
nanoblocks, using a fabricator to produce each nanoblock. The module is extremely
reliable in the face of radiation damage, and is controlled by an integrated nanocomputer.
The overall shape of the module is a rectangular solid ~16x16x12 microns. The
fabricators are placed on two opposite sides, delivering their product nanoblocks to the
interior. The nanocomputer occupies a third side, surrounding the product exit port. The
remaining three sides may be closed by thin walls, but need not be closed at all where two
production modules are placed side by side in the nanofactory. The interior is sparsely
filled with gantry crane manipulators to assemble the nanoblocks into larger blocks. The
gantry crane mechanisms, even at the smallest scale, can be implemented as bulk
diamond machines--the smallest blocks are 200 nm on a side, and bulk diamond parts can
be designed far smaller than that, so not much material or volume will be wasted due to
inefficient design constraints. With the ridge joints, the blocks can be assembled simply
by bringing them into contact (Section 3.2.1). Rotation of blocks will not be necessary
because each block (or partial block) can be manufactured in the same orientation it will
take in the final product (before unfolding). The design of the ridge joints provides a
rough surface that can be gripped with as much force as necessary to accelerate the cubes
and (depending on scale) overcome gravity.

The physical layout is similar in some respects to Merkle's architecture for convergent
assembly (Merkle, 1999). Substage outputs are be grouped on one wall of an assembly
chamber, forming the inputs to the stage; substages are placed side by side, and stages are
stacked on top of substages. See Figure 4. As in Merkle's design, the output from a stage
is twice the width of each input; unlike Merkle's design, each input port delivers only one
block per product cycle instead of two. The design is not quite scalable, since the width
of the assembly stage is three times the width of the sub-stage, while the width of the
block that is produced is only two times the input block size. The ninth substage is
redundant, used in case of failure of another substage. Four levels of redundancy are
probably sufficiently redundant for a nanofactory of the size contemplated here.
Otherwise, more redundancy can be added in a fifth stage, or by extending a gathering
stage; see Section 8.5 for calculations.

The module's top and bottom surface are completely covered with 9^4 = 81^2 = 6561
mechanochemical fabricators each. To provide space for moving sub-blocks around a
growing assembly, each stage is 3.1 times as high as the sub-block it receives. Two of
these assemblages are sandwiched together, sharing a single 3.2-micron assembly stage,
to make one production module that produces two 3.2-micron blocks per product cycle.
The design can be compacted somewhat if multiple convergent assembly stages can be
combined; such optimization is beyond the scope of this paper. The CPUs, memory,
DMA controllers, and motors are placed on the face that contains the output port, forming
a single layer and extending the width by 0.2 micron. Controlling a column of 81
fabricators requires perhaps a few billion bits per second and <100 pW (Section 8.2),
which fits through an interface requiring only a few nm^2. Only 4096 fabricators per side
are used at any time; the rest are redundant, to be used in the event of radiation damage.
See Section 8.5 for further discussion of this design. Powering the entire set of 8192

fabricators plus the computer requires 8 nW, far smaller than the 500 nW capacity of a
single electrostatic motor.

4.3. Gathering stages

Figure 5: Convergent Assembly Fractal Stages

The production module is scaled to tabletop or larger size with a simple, repeatable
architecture. Each gathering stage fits neatly into a rectangular solid, with the substages
arranged in two rows on either side of a central assembly and transport tube. The
substages, themselves rectangular solids (including the production module), fit together
with no wasted space in each row. Space is wasted between the rows, adjacent to the
central tube. Gaps are left for feedstock/cooling channels adjacent to certain faces of the
production modules. Wherever no gap exists between substages, no walls are necessary.
As the modules are stacked, the cooling channels line up; the overall arrangement is a
quasi-fractal working volume interpenetrated by a non-fractal cooling channel volume.
Power and signals are routed through the walls of the transport tubes, since the end of
every transport tube touches the side of the next-larger tube. Power can be distributed
through rotating rods or conductive graphite or buckytube inclusions (wires) in the
structural diamondoid blocks. Control signals can be sent mechanically through polyyne
rods, or electrically through wires. The current design does not require fractal
distribution of liquids, since feedstock is dissolved in the cooling fluid. Inspection of
Figure 5 shows that some coolant channels will be blocked by assembly tubes in stages
with numbers divisible by 3; this requires a gap between the sub-stages and the tube that
is a fraction of the cooling gap width, which is not included in the present calculations. It

may be desirable to prevent fluid from flowing into large voids adjacent to the delivery
tubes, to prevent excessively slow flows that could allow suspended particles to settle
out. More detailed design is beyond the scope of this paper.

The factory does not require a hierarchical network of computers, since the computation
is done either at the top level or at the level of individual production modules (see Section
6). Once the blocks are fabricated, a fraction of the production module computers can be
used to run the convergent assembly robotics. If hierarchical computers are needed, the
computers can be built into the tube walls. Amplification will be needed to distribute the
top-level signal to each of the production modules. This can be implemented in each
stage, and can be combined with a mechanism to send a unique, hard-coded position
indicator to each production module. By knowing which branch the signal takes at each
stage, the module's computer can easily determine the position of its output in the final
product.

A tabletop factory might produce a 10.5-cm product; this is 2^15 times larger in linear
dimension than the 3.2 micron output of a production module, so product assembly
requires 14 further assembly stages where each stage assembles 64 sub-blocks to produce
eight product blocks. See Figure 5, and Section 8.3 for dimensions. A final stage,
external to the factory, is described in the next section; it assembles eight 5.25-cm sub-
blocks (per product cycle) to produce the final product. Note that the first stage in the
Figure is not an assembly stage, but serves only to gather 8 sub-blocks for delivery to the
next stage, since each production module makes only two blocks per product cycle. Each
assembly stage gathers 64 sub-blocks from substages, assembles them within the
assembly/delivery tube, and delivers the 8 assembled blocks to the superstage. With the
current size parameters, in some of the smaller stages, a minimum-volume arrangement
leaves the tubes perhaps too short for simultaneous assembly of 8 blocks. Four blocks
may have to be assembled and passed on to the next stage, and then the other four
assembled; this adds only fractionally to the total product cycle time. The Stage 1
delivery tube is fractionally larger than the 3.2-micron product it carries. The other
assembly/delivery tubes are large enough to allow moving sub-blocks to fit past the
product block under construction.

4.4. Casing and final assembly stage

Figure 6: Nanofactory Layout

The nanofactory must maintain its structure against atmospheric pressure, internal
pressure differences, its own weight, and the weight of its products. Loads can be more
efficiently carried in tension than in compression, since tension members do not have to
resist buckling. Low-pressure internal volumes (the fabrication and assembly space) are
kept from collapse by cables/braces stretched across the higher pressure volumes (the
cooling channels); see Figure 6. The whole thing is suspended from a rigid exterior
shell. For flexibility, the chosen design includes a capability to do final assembly and
unfolding in a protected volume external to the factory itself, which can be of arbitrary
size.

The overall nanofactory shape is a rectangular solid. The exterior shell consists of six flat
panels enclosing the necessary volume. Each panel provides support to anchor the
interior and prevent the working volume from collapsing under atmospheric pressure.
(Cooling fluid pressure will be contained by the tension members crossing the cooling
gaps, and will not put additional force on the external casing.) This is equivalent to a 1-
atm pressure difference between the inside and outside of each exterior panel, imposing a
bending force. In addition, the panels support each other, experiencing a crushing force
at each edge. The panels are hollow and pressurized. Internal tension members, set at a
slight angle, keep them rigid and flat. Since the working volume contains the lowest
pressure in the nanofactory, no pressure bracing needs to be installed inside that volume;
the cables only intrude on the cooling channels. With many small cables supporting
them, interior walls can be very thin. See Sections 8.2 and 8.3 for a discussion of
structural mass and coolant and panel pressure. Sufficiently numerous and thin cables
(no thicker than the walls) cannot tear the walls; since the cables can be as thin as a
buckytube, details of attachment need not be considered.

In the final gathering stage, multiple blocks (up to 8 per product cycle) are pressed
together to form the final product. The product must be delivered without allowing
contaminants into the factory. One way to do this is to produce a rectangular solid
extruded through a sliding seal, as in the "replicating brick" approach of Merkle (Drexler,
1992). This constrains product configuration, requires that all faces be smooth, and does
not provide a protected environment for post-assembly unfolding. An alternative design,
permitting much greater flexibility in product shape, is to enclose the final stage in a
balloon, the neck of which forms a sliding seal with the factory. A new balloon is
installed for each product, pushing the old one (with previous product) out and preventing
contamination. The mechanism of the final assembly stage must be extended for some
distance outside the factory during final product assembly, but still requires only three
degrees of freedom. Once the product is assembled and optionally unfolded, the
assembly mechanism is retracted and a new balloon is installed.

Most of the nanofactory mechanism is maintained at low or zero pressure to reduce drag
on moving parts. To allow balloon inflation, the final convergent assembly tube is used
as an airlock, pressurizing it with pure neon or argon after all 64 sub-blocks have been
delivered. If low pressure in the factory is tolerable, the airlock need not be scavenged
completely before the end of the next product cycle, and mechanical pumping will be
sufficient. If even a few atoms of noble gas cannot be tolerated in the factory or included
in interior voids of the product, the airlock can be scavenged by use of a cryogenic
surface; since neon and argon do not adsorb at room temperature, "bake out" is
unnecessary and the airlock can be completely emptied of gas in a relatively short time.
The design of the assembly mechanism, airlock mechanism, and balloon installation is
straightforward.

4.5. Issues in bootstrapping

Initial stages of bootstrapping will benefit from an ability to directly observe and connect
with individual fabricators. (Direct contact is not a given for all designs; for example,

Merkle's assembler floats in a solvent, which limits both the complexity and the
bandwidth of communication with it.) Interfacing with a single 200-nm fabricator will
require some delicate lab techniques, which may not be worth the effort, but are discussed
here to illustrate the feasibility of control at that scale. This section describes how a
single 200-nm fabricator can be supplied with power and feedstock in a dry environment
suitable for immobilizing and imaging the fabricator.

Several imaging technologies may be useful. Electron microscopes have a very fine
resolution and form images rapidly, but use multi-keV electrons. Single-wall nanotubes
can be imaged in an electron microscope without apparent damage, but high-energy
electrons may penetrate a single graphite layer and either do chemical damage to sensitive
bonds or charge insulating surfaces, which could cause undesirable electrostatic forces
that would probably interfere with operation. Vapor deposition of metal on the outer
surface of the fabricator before imaging may alleviate this problem. Scanning probe
microscopy may be useful for imaging the probes as they are aligned with the fabricator.
Non-contact AFM (atomic force microscopy) can avoid displacing the probes due to
contact forces. Optical interferometric methods may be useful for feedback on at least
one dimension of alignment. Finally, two-part fluorescent systems (e.g. absorber and
fluorescer, or absorber/fluorescer and quencher), with one part attached to the fabricator
and the other attached to the probe, may be useful for final alignment (Drexler, 1992, sec.
16.3.6c). The number of probes to be attached is small--only four for the first several
bootstrapping steps.

The moving-plate electrostatic actuator described in (Drexler, 1992, sec. 11.6.4) requires
a plate area of only 150 nm^2 and provides 1000 zJ per actuation. A 100 MHz cycle time
requires 100 pW. The actuator is powered by 5 volts, requiring a current of 20 pA. This
current is far lower than the 0.1 mA that has been measured in a single buckytube (Ipe
Nanotube Primer, 2001), so buckytubes can be used to deliver power for initial
bootstrapping stages. A manipulation system like the Zyvex three-probe SEM
manipulator (MinFeng et al, 1998) can place buckytubes with 6-nm precision on separate
pads on the fabricator. A ground connection can be made through the surface the
fabricator rests on. This can supply power for several actuators, which can control any
number of internal systems if one of the actuators is used to drive a simple mechanical
selector.

If the fabricator is in a dry environment, feedstock must be delivered via a closed system.
Hollow glass needles can be drawn as fine as 30 nm (Intracel LTD, 2001) which is small
enough to interface directly with a single fabricator. Two needles are needed to maintain
a flow of fresh solvent past the molecular intake port; this accommodates designs that
reject waste molecules as well as designs that use varying amounts of multiple chemicals
during the fabrication process. A housing over the molecular interface with two 40-nm
holes partially closed by 10-nm graphite sheets should allow a leak-proof, though not
strong, interface to the needle tips. The tips can be positioned using the same kind of
manipulator used to position the buckytubes, and held in place during the fabrication
operation.

A single fabricator has space inside its casing to make two duplicates with separate
shells. Instead, it could fasten the two together, side by side, and combine the shells.
This would give roughly four times the internal working volume for the same area of
shell, and the two fabricator stages could each produce two 200-nm blocks. A single
additional ratchet would select whether the actuation was to be delivered to one or the
other fabricator, or both together. (Either the electricity or the resulting mechanical
motion could be switched.) Most of the time, both fabricators could be working in
synchrony, so the same control signals could be routed to both of them; duplication time
would not be greatly increased.

Since the two fabricators are placed side by side, their products would also be adjacent.
When fabrication was finished, each double tripod would have sufficient range of motion
to grab its finished product and move it into contact with the other. A single 1 nm^2
contact area would apply 1 nN of force. The weight of even a 10-micron cube, containing
125,000 nanoblocks, is 0.035 nN, allowing over 10 gravities of acceleration. With small
step sizes, torsion from off-center moving force can be relaxed after each step; since only
a single motion of a few nm is needed, this will not significantly affect duplication time.

As the device grows, more different kinds of blocks will be required, but more electrical
control channels can be added. Blocks containing convergent assembly manipulators will
be mostly empty space, so will not require much fabrication time to complete if they must
be built one at a time. An internal CPU will not be required until the stage where it is a
small fraction of the overall device mass. Once the device is sufficiently large that at
least six control channels can be attached, the manufacture of the CPU and RAM can
proceed in parallel with the manufacture of the fabricator blocks without affecting
duplication time.

There are many suitable physical layouts for the medium-scale devices. For example,
mechanochemical modules could form plates to line the top and bottom of a wide
workspace, with the plates separated by 800 nm. Each module would make two
nanoblocks, extending them vertically into the workspace until they touched the
nanoblocks from the opposite side. The resulting product would be four nanoblocks
thick; each face of the nanoblocks would be either strongly fastened to its neighbor or
weakly held by van der Waals forces. When the product was completed, the tripods
working in concert would pass it out one side of the factory which would open onto a
balloon large enough for the product to unfold into a flat factory of twice the area. A
slightly more advanced design stacks several of these flat factories and includes a 1 DOF
(degree of freedom) manipulator extending into the balloon to push together (and thus
join) the product slabs after they have been extruded; this allows more complex
unfolding. The maximum workable size of this design is limited by radiation damage. A
factory of 16,000 fabricators (a suitable size for one nanocomputer to control, with the
program downloaded in stages to save memory) may have a 1% chance of suffering a
disabling hit to a single fabricator in a single day (see Section 8.5).

4.6. Improving the design

The mechanical format of the nanofactory can be improved by reducing the empty
volume. Since block assembly does not require much time, then if manipulators can
handle two or more block sizes the factory size can be reduced by converting some of the
assembly/delivery tubes into delivery-only tubes of ~1/3 the width, and implementing
multiple assembly stages in the other tubes. Stages may also be re-used in the production
modules, making them flatter.

The current design is extremely wasteful of power. It is also limited in the speed at which
it can work. The inclusion of "mills" for early-stage chemical processing (Drexler, 1992,
sec. 13.3) can save orders of magnitude of power and significant time. A mill does not
require any computation to perform an operation. Additionally, a mill can more easily
recover energy from exothermic reactions, and even from the final stages of endothermic
reactions. With mills preparing small diamond cubes or hexagonal carbon chains that can
be covalently bonded to each other (Drexler, 1992, sec. 8.6.5b), a hybrid mill/manipulator
system could produce bulk diamond far more quickly and efficiently. Because mills
require both mechanical and chemical design, they have not been included in the current
nanofactory design.

The inclusion of atoms other than carbon and hydrogen allows flexibility of design. In
particular, Kaehler brackets (1990) would allow more precise designs of surfaces and
orientations. To some extent, mechanochemistry can be developed by simulation in
advance of fabricator availability.

Even without using additional chemistry, stepwise actuation can be made more efficient
and faster. Current design requires a separate operation for every step, and each operation
requires computation and time. A non-stepping mechanism might be an improvement.
For example, a set of stops could be included in the path of a sliding bar. A chosen stop
would be extended, all other stops disengaged, and a linear actuator used to move the bar
rapidly until the stop is contacted. The force profile of the actuator is problematic. For
efficiency, its force must be weak over most of the displacement, but for resistance to
thermal noise, it must apply a strong force at the end of the cycle. (A combination of a
weak actuator and a slow but strong latching pin may also be efficient.) An alternative is
to use several drive mechanisms with varying step sizes, some of them large, or to design
the pin drive so that in a single cycle it can move either one or several steps.

Many other mechanical and chemical improvements will be obvious. The development
of improved nanofactory models may be expected to proceed quickly, and manufacturing
performance will also increase quickly. Performance of products will increase somewhat
as a result of continued research and development. By several measures, products
produced by the current nanofactory design are already within an order of magnitude of
theoretical limits. It should be noted that no part of the current design requires such
levels of performance.

5. Product design

This section discusses the design of nanofactory products, including design constraints
imposed by the use of nanoblocks, in sufficient detail to encompass nanofactory design.
Section 5.1 discusses various levels of design. The design process is simple enough that
a CAD (computer aided design) program to support each of these levels will be fairly
straightforward, so is not addressed here. However, since the decoding of a product
specification may use significant energy, the design strategy is developed in sufficient
detail to permit rough calculations of the energy cost of internal nanofactory control
(Section 8.2). Capabilities developed in order to design a nanofactory may also be useful
in designing other products. The discussion of general product design may be useful in
forecasting the economic value of a nanofactory of this type, although such forecasts are
beyond the scope of this paper. Section 5.2 contains a brief discussion of simulation and
testing.

5.1. Levels of design

Even a microscopic product may contain trillions of atoms. It is clear that direct human
effort cannot specify each atom separately. The solution adopted here is re-use of
components for multi-scaled designs: a few components at one scale can be combined in
many ways to make many larger-scale systems. The nanofactory can be designed using
six levels. First, mechanochemistry creates nanoparts. The parts are combined into
nanomachines, which are fitted into nanoblocks. Combinations of nanoblocks specify
patterns which are used to fill regions. Finally, folds are built into the product to allow it
to unfold and rearrange into more complex shapes and larger volumes. Each of these
levels can be designed almost independently of the others, and each can be efficiently
encoded into a product specification file and decoded to control the nanofactory.
Additional methods of design, which may be useful but are not required for the
nanofactory, are covered briefly in Section 5.1.6.

5.1.1. Nanoparts

A certain level of mechanochemistry research will have been accomplished in the course
of creating the fabricator. This will probably include the ability to build diamond lattice
in a variety of shapes. Since diamond lattice is repetitive, the motions required to
fabricate it are almost certainly also repetitive. Simple bulk diamond parts may be
specified by volume, requiring very little information to encode an arbitrary number of
atoms. (J. Soreff points out that the position of atoms may be distorted by proximity to
an edge, though this will probably require only predictable displacements of
mechanochemical motions.) Likewise, buckytubes may be specified by chirality and
length. Parts with complicated surfaces, or that involve an interface between diamond
lattice and some other molecular structure, may require a listing of individual atom
positions or even of individual fabrication motions. It is unknown what percentage of the
fabricator will be bulk diamond. However, non-fabricator components of the nanofactory

can generally be built out of some combination of bulk diamond and reused fabricator
parts.

One of the most complex components of the nanofactory will be the nanocomputers. A
nanocomputer of Drexler's design (1992, chap. 12) consists of only a few types of parts,
including logic rods with varying combinations of knobs, a few kinds of springs, cams, a
motor/flywheel, and a housing. Although the computer may contain thousands of
different rod configurations, all rod designs can be synthesized from knobbed and
knobless segments; each additional rod thus requires only a few bits to specify knob
positions. Assembly of the parts into the nanocomputer will also be repetitive, as much
of the circuitry consists of regular arrangements of rods in programmable logic arrays.
Translating from a digital logic specification to a mechanical hardware arrangement is
straightforward.

Mechanical devices large enough to be specified with bulk diamond construction are also
large enough that their strength and stiffness can be treated with classical approximations
(Drexler, 1992, chap. 9). Although other effects such as electron tunneling between
conductors may be significant, a purely mechanical design can usually ignore them. The
main difference between nanoscale mechanical design and macroscale design will be
surface effects including van der Waals force.

Nanopart designs may be parameterized. For example, instead of a different part
specification for each length of buckytube, a single specification can be given with a start,
a finish, and a middle component that can be repeated as desired. The nanocomputer
logic rods are another parameterized part. It should be possible to specify complex
volumes of diamond in terms of geometric description. As discussed in Section 6, the
choice of whether to parameterize a part or to specify its variants separately will depend
on a tradeoff between processing power and memory space.

5.1.2. Nanomachines

Once fabricated, nanoparts are assembled by the fabrication system (e.g. double tripod)
into sub-components such as programmable logic arrays and actuators, and eventually
into nanomachines such as computers and double tripods. Industrial robots perform
similar tasks today. Van der Waals force allows weak joining, and the ridge joint
(Section 3.2.1) allows strong joining for parts over a few nanometers in size. In general,
the assembly process will not require techniques analogous to welding, gluing, or the use
of small fasteners such as threaded bolts (Hall, 1999).

The level of nanomachines is not strictly necessary; parts could be assembled directly into
nanoblocks. However, the use of this level of specification causes no loss of capability
and is convenient since human designers think in terms of machines. A nanomachine
specification, then, includes some sequence of nanoparts and sub-components together
with a sequence of assembly operations that assemble the sub-components. Sub-
components may be considered as nanomachines in their own right; this saves space in

the product description file, as one sequence of parts and operations can be included in
several machines by reference.

5.1.3. Nanoblocks

During a product cycle, fabricators in the nanofactory make a single nanoblock each.
Unlike nanoparts and nanomachines, the size and shape of nanoblocks is more or less
fixed. A nanoblock is small enough to be made rapidly, but large enough to contain
useful functionality. What varies is the contents of the block and the surface connections
to adjacent blocks. Within some limits (to allow handling by the convergent assembly
mechanism), partial nanoblocks can also be built; this is useful in making smoother
surfaces.

In the current nanofactory design, a nanoblock is a 200-nm cube. If a typical diamondoid
part occupies a 10 nanometer cube (which has space for ~176,000 diamond-lattice atoms)
then 8,000 parts can fit inside each nanoblock. For comparison, a typical 4-cylinder
automobile engine has ~450 parts (Whitney et al., 1998). As in the nanocomputer design
(Section 6.1), where the CPU occupies one cube and memory is placed in adjacent cubes,
designs can often be broken along convenient planes and placed in adjacent cubes,
communicating through pipes, small control rods, electrical wires, or larger mechanical
interfaces.

The simplest nanoblock is inert--solid structural diamond, with full structural ridge joint
coverage at one or more faces. Another class of nanoblock is filled with digital
mechanical logic; several nanoblock designs are needed to implement a nanocomputer. A
third class of nanoblock could be filled with actuators; a nanoblock full of electrostatic
motors could convert a microwatt, and the same block would function as an electrical
generator without modification. Any nanoblock design could contain some volume for
miscellaneous functionality such as a few gates of digital logic, a fan-out of a control
cable with signal amplification, or simply passing a signal through; reserved volumes that
are continuous between various block faces would be especially useful. A fourth class of
block would contain just enough diamond for rigidity of faces and support of interior
structure; this would be used mainly to contain predefined nanomachines in novel
arrangements, or to support convergent assembly operations. Miscellaneous functionality
could be specified by direct design, or by semi-automated design using macros and
automatic placement and routing. (In constrained volumes automatic placement would be
more difficult.) Predefined blocks and block classes could be extensively tested. Spatial
separation of functional units, either within or between nanoblocks, will reduce
unexpected interactions. Thus, most if not all nanoblocks in a product will be pre-
designed (or contain predesigned components arranged according to design rules), easy to
specify, pre-tested, and highly reliable.

5.1.4. Patterns and Regions

A 10.5-cm cube contains 144 quadrillion nanoblocks; the designer cannot specify each
one by hand. Much of the design will be repetitive, and patterns and regions allow the
specification of repetitive patterns of nanoblocks. A pattern is a shape that is composed
of multiple nanoblocks. A region is a semi-arbitrary volume that can be filled by
patterns. Such specification allows large volumes to be filled with very little
specification data. (In the simplest case, one nanoblock specification and one number can
define a cube of any size.)

The simplest pattern consists of a single nanoblock type, with faces compatible with
stacking. More complicated patterns may specify repeated or tiled arrays of different
nanoblocks; these may be used to implement (for example) a material with embedded
strain sensors. Patterns may be one-, two-, or three-dimensional, and may be designed to
stack either with themselves or with other patterns. Pattern specification can be
recursive: patterns can include smaller patterns or regions. In the design of the
nanofactory, each convergent assembly stage can be represented as a single pattern,
consisting of eight copies of the sub-stage pattern, plus the walls, braces, and assembly
tube required to connect them.

Patterns of nanoblocks can be tiled to form virtual materials occupying regions. For
example, a structural material could have a nanocomputer per cubic millimeter,
connected into a 3D grid, and strain sensors embedded in various nanoblocks. A design
for a single display pixel could be tiled to form a raster display of any desired size. A
useful CAD program will allow such materials to be designed, and then used to fill
specified volumes; by this method, large, simple products can be specified with very little
design effort and small file sizes. (In any case, the size of the specification depends on
the complexity, and not the size, of the region.) A more sophisticated program would
allow the algorithmic specification of complicated volumes, such as fractal trusses. The
nanoblock width of 200 nm is 100 times less than a typical human cell (Freitas, 1999,
table 8.17); for most human purposes, a material specified in terms of whole nanoblocks
would appear smooth, but partial blocks could be made as long as the convergent
assembly mechanism was still able to grip them as needed. Some machinery such as
large cylindrical bearings will be improved by partial nanoblocks; lining the bearing
surface of each block with graphite sheets will smooth out any rough edges left by bulk
diamond fabrication. (See Section 3.2.2). For convenience in packing products more
compactly, a simple extension of the concept allows two different patterns to specify
different fractions of a nanoblock's contents; this allows patterns to interpenetrate or to
stack tightly, and can be used to specify small parts attached to nanoblocks during
fabrication but removed during unfolding.

Although the volume of nanotech-built machinery is far smaller than the conventional
machinery required to perform a comparable function, some provision for redundancy
will be required above the nanoblock level. For example, generating 1 W of mechanical
power requires perhaps two thousand cubic microns of electrostatic motors, which may
receive a damaging radiation hit every few days (see Section 8.5). The process of
combining functional modules into larger modules that are tolerant of radiation will be a

common design pattern. The larger modules can then be combined into a second-order
virtual material, if desired.

During convergent assembly, the product is assembled from sub-blocks into larger
blocks. Thus a 10.5-cm product is assembled from 5.25-cm blocks, which are assembled
from 2.635-cm blocks, and so on. However, the boundaries of patterns, and of regions,
need not correspond to the assembly boundaries. With ridge joints, nanoblocks can be
assembled simply by moving them into contact. This implies that any pattern should be
able to be split along any assembly boundary, or conversely, that assembly boundaries can
fall anywhere in any pattern. In practice, two difficulties arise which may require some
accommodation of the assembly method, depending on the product.

Spaces within a pattern or around a region may be left empty of nanoblocks. A void may
cause an assembly failure because of a thin or unattached piece adjacent to an assembly
boundary. Voids do not pose severe problems for the nanofactory design. The
nanofactory, as fabricated, will not include large voids, since it will be unfolded after
fabrication (see section 5.1.5). In product designs requiring voids, the voids may be filled
with a scaffold of mostly-empty nanoblocks that can fold out of the way after
construction.

Another difficulty is that assembly of large blocks may not allow sufficient precision to
use ridge joints only a few nm in size; it is not yet known whether two isothermal cm-
scale diamond faces can be aligned within a few nm across their entire surface. Patterns
and regions may have to be defined to accommodate larger joining structures, either
alignment pins as suggested in (Drexler, 1992, sec. 14.2.1b) or larger ridges. The
nanofactory structure is simple and repetitive; if larger joint mechanisms are necessary for
the final few joints, they can be inserted into the design at many points. The design can
be stretched as necessary so that the large joining mechanisms fall in permissible places.

5.1.5. Folds

The requirement that each sub-block must be a cube (or a partial cube) with joinable faces
at each step of the convergent assembly process imposes some limitations on the
product's structure. Long, narrow, freestanding shapes cannot be fabricated directly.
However, such shapes can be fabricated in pieces. As discussed in Section 3.2.2, a shape
with a cross section smaller than a nanoblock may be fabricated in 200-nm pieces, with
each piece capped by ridge joints and attached (by van der Waals force) to supporting
nanoblocks, and assembled as the nanoblocks are pressed together. The shape can then
be moved into place after assembly. An unfastened ridge joint would be fabricated on the
end of the shape and on the place where the shape was to attach. After the product was
fully assembled, during the unfolding stage, the shapes would be moved into place by
internal mechanisms (for example, pantographic trusses), and join on contact. Likewise,
floppy structures can be built folded for extra rigidity and compactness, and unfolded and
moved into place during the unfolding stage.

The nanofactory will be manufactured in a collapsed state and then unfolded. The
nanofactory consists of filled nanoblocks (computer components and fabricators), walls,
bracing cables, and convergent assembly robotics of various sizes. The fabricator arrays
are all co-planar. The interior of the production module is empty except for the first four
stages of convergent assembly robotics. Gantry crane robotics are basically linear, and
can be folded more or less flat. The nanocomputer face of the production module can be
folded in half. Similar manipulations are carried out for all factory components, allowing
them to lie flat in a "crushed" configuration. Note that a solid wall can be "crushed"
without strain, since it is manufactured in the crushed position and the mating faces of the
"crease" do not meet until unfolding is almost complete.

To visualize the initial collapsed configuration and the unfolding process, it may help to
imagine crushing a finished nanofactory. The factory is crushed perpendicular to the
plane of the fabricator arrays. The robotics inside the production module fold up, as do
the bracing cables spanning the cooling channels. The wall of computers, which is
perpendicular to the crushing direction, folds in half. As the crushing continues, the
convergent assembly tubes running parallel to the crush plane fold along their length, and
perpendicular tubes split along the edges and fold accordion-fashion. The robotic
equipment contained in the tubes was made of hollow girders or thin pieces designed to
be easily crushable; it folds flat. The large unused volumes of the factory adjacent to the
assembly tubes are filled with a 3D network of tension bracing and/or a network of tubes
to carry fluid across the gap. This structure detaches from all but one or two of the walls
and collapses in on itself. When the factory is as flat as possible, it is then crushed from
the sides. The production modules are already as compact as they can get. The tubes that
were accordioned now buckle, and the structures in the adjacent voids compress further.
The tubes and other structures form layers only a few nanoblocks thick over blocks of
mostly solid fabricators and computers. During the unfolding, this hypothetical process is
reversed. Since functional connections are all press-fit, and ridge joints require only to be
pushed together, connections can be formed during the unfolding process as blocks come
into contact. As long as the unfolding mechanism is capable of aligning the joints
properly (note that guides can be used for final alignment), the nanoblock joining process
during the unfolding stage is as simple, flexible, and reliable as during the convergent
assembly stage.

Thus each production module and assembly tube will be constructed in a collapsed
configuration, and unfolded/expanded after construction. Note that convergent assembly
boundaries do not have to be aligned with tube, substage, or module boundaries; a
subcube may contain part of a module and part of a tube, to be joined with the
corresponding parts during a later convergent assembly stage. As constructed, some wall
junctions will be hinged together, and some will be initially open but will join as the
factory expands. As discussed in (Drexler, 1992, sec. 11.4.2), unbonded diamond
surfaces pressed together can exclude even helium. Larger nanofactory structure--large
assembly tubes, cross-bracing for voids, and exterior panels--can also be constructed in a
collapsed state. Interior cross-bracing for large pressurized volumes must run in three
orthogonal directions, attached to six walls. During construction, it will be fastened to
two opposite walls which are collapsed together, with the other four walls folded away
from it. As the walls are pulled apart, the bracing expands, placing ridge joints attached

to it in the right position to meet the other four walls as they move into position. More
bracing will be required in wider voids, which will be adjacent to larger tubes with bigger
robotic components. Any remaining gaps can be filled with hollow nanoblocks to
facilitate assembly handling. If the nanoblock volume is slightly larger than the fabricator
volume, then the adjacent module components (the bracing on one side of the fabricator
wall and the robotics on the other side) can be compacted into the same nanoblock as the
fabricator; this would allow a collapsed production module to be only two nanoblocks
thick. Alternatively, the adjacent module components might be constructed to one side of
the fabricator planes, and inserted and joined during the unfolding process.

For many products, the unfolding stage can be quite simple, or even unnecessary if the
finished size is smaller than the factory's volume capacity. However, the process may be
arbitrarily complex if the parts require substantial rearrangement in order to form the
finished product. This is not a severe limitation on most products, since unfolding
complexity can usually be traded for larger manufactured volume.

5.1.6. Networks

Many products require functionality to be distributed throughout their volume.
Functional parts, such as small pipes and wires, may have to be routed through many
nanoblocks with unrelated function. The nanofactory contains only simple networks.
Only power and signal need to be distributed, they will be distributed in a single
hierarchical fractal network, and this network can be designed into the walls of the
convergent assembly tubes. (Feedstock is distributed along with cooling fluid in the non-
fractal cooling channels.)

In products, it may sometimes be necessary for several functional networks to
interpenetrate the same volume. Identical networks can be offset by a certain
displacement to avoid collision; however, networks may be of different scale, topology,
or even character--one may be fractal and another gridded. As long as the containing
volume and cross-sectional area are much larger than the volume and area required for
network functionality, and the network specification contains rules for bending channels,
the problem will probably be locally solvable. Once a nanofactory exists, the amount of
computing power required to verify the existence of a solution in every crossing point in a
design will not be expensive. A class of nanoblocks may be defined with volumes
reserved for networking connections to be filled in by the CAD software. (W. Ware
suggests, by analogy with FPGA's, the use of nanoblocks whose function is
"programmed" by a set of actuators to make or break various mechanical or electrical
connections.)

5.2. Simulation and testing

Any design must be simulated to see whether it will work. The simulation effort may
range from a quick intuitive check to a months-long intensive effort to fully characterize
the product's behavior. The effort expended depends on several factors, including the

ability of the designers to avoid design mistakes, the degree of reliability required for the
final product, and the cost of adding an extra iteration to the product design cycle if the
simulation fails to find a problem. Unless the product (including embedded software) and
the construction process are completely error-free, the product will need to be tested and
debugged. The design and construction process described here provides several
advantages which should greatly reduce the effort of both simulation and testing.

5.2.1. Design and simulation

A product is created in stages. First, the parts are fabricated. Then they are assembled
into nanoblocks. Blocks undergo convergent assembly, and sometimes subsequent
unfolding, to create the products. In theory, errors can occur at any of these stages, and
simulation may be useful to find the errors. Even if it is made correctly, the behavior of
the product may not be as desired; simulations of product functionality may mitigate the
costs of such bugs. This section discusses the utility of simulation at each stage,
concluding that the design of many products will not require formal simulation at any
stage, and it may not even be helpful for some products.

Digital hardware design provides an example of the effects of design cycle time and cost
on simulation effort. An ASIC (application-specific integrated circuit) is a kind of chip
that can contain very complex and fast circuitry; it is custom-designed for each product.
Once simulation is completed, an ASIC may take several months and thousands of dollars
to construct, and it may be useless if it does not work perfectly. A team of ASIC
designers will frequently spend months simulating their design before beginning
production. An FPGA (field programmable gate array) is similar to an ASIC in
complexity, but is general-purpose and programmable: its design is specified by a file that
is loaded each time the power is turned on. Changing the functionality of an FPGA
requires only a few seconds. As a result, an FPGA designer may not do any formal
simulations at all, preferring to simulate mentally during the design process, find
problems during testing, and fix the problems in a subsequent design/compile/load/test
cycle.

Simulation of the behavior of individual atoms requires specialized, computation-
intensive techniques. These techniques are rapidly being developed, but their correct use
still requires specialized training, and it is probably safe to say that most product
designers will not find quantum chemistry intuitive. Nanoparts, and some nanomachines,
will have to be simulated extensively to ensure that they will not break under unexpected
use, and to develop a suitable mechanochemical manufacturing process. This will have
the effect of keeping the number of different nanomachines small. However, a variety of
different nanoblocks can be built from only a few nanomachines. Only a relatively small
palette of nanoblock classes, implementing a few basic functions, will be required to
build a large range of products. Even for components smaller than a nanoblock,
simulation may be simplified by the use of simple, well-understood mechanical structures
such as diamond lattice: diamond shapes larger than a few nanometers should have
properties nearly equivalent to those of bulk diamond (Drexler, 1992, Sec. 9.4). To the

extent that simulation is necessary to test a nanomachine assembly sequence, a simple
rigid-body simulator will usually be sufficient.

Although few or no additional mechanochemical techniques will be necessary to
bootstrap a nanofactory from a working fabricator or to build a wide variety of products,
the performance of the nanofactory and of some of the products can be increased as new
chemistry is developed. Much of the new chemistry will be localized, and simulable in
standard chemical packages. However, at least one useful class of device, bearings with
strained shapes and lattice dislocations, will probably require both chemical and
mechanical simulation. This is beyond the scope of this paper and requires further study.
Several classes of bearings have already been analyzed (e.g. Drexler, 1992, chap. 10;
Merkle, 1993) although mechanochemical fabrication sequences have not been proposed.
A proposed molecular planetary gear has already been tested in simulation (Cagin et al.,
1998).

A well-designed nanoblock will have a simple, well-understood function. Once a
nanoblock has been designed, simulated, and tested, higher-level design and simulation
systems can work with its simple functional characteristics (including volume and
surface) instead of its complex chemical construction. Humans will be able to
comprehend the function of basic nanoblocks, so will be able to design simple products
without requiring formal simulation to verify correct functioning. With a working set of
predesigned nanoblocks (including standard inter-block connection arrangements),
product designers will not need to design new nanoblocks for most new products. As
with standard libraries in programming languages, designers will become comfortable
with available functionality, and will be discouraged from developing new low-level
functionality by the difficulty of learning to use it, as well as the difficulty of designing
it. Many of the tools required to design the initial set of nanoblocks will be developed in
the course of developing the fabricator device, and thus be available for preliminary
product design even before the nanofactory is bootstrapped, but product designers will
work more efficiently if they don't have to design new nanoblocks. For the initial
nanofactory, it should be possible to have different groups engaged in developing the
nanoblocks and integrating them into the nanofactory design.

The mechanical aspects of the convergent assembly process usually will not need to be
simulated in detail. The block faces, including ridge joints and functional joints, must
mate properly, and at least one other face must allow adequate gripping for the required
assembly manipulation. Verifying these conditions requires only static analysis, not
simulation. A very flimsy block may sag or twist enough to misalign the joint ridges, or
may include loosely connected pieces that could jam the alignment due to vibration or
other unexpected force. Conservative design rules and static analysis can avoid such
problems; simulation can allow less solid design. The order in which blocks are joined
will not be important, since blocks are joined simply by pushing them directly together,
and the rectilinear planar faces will align to produce flat faces in the resulting two- or
four-block intermediate shapes.

The process of unfolding the product may benefit from rigid-body simulation. For
relatively simple designs, lack of simulation usually will not be a problem. The simulator

may need to account for van der Waals forces to ensure that part separation occurs
properly.

As discussed in Section 8.4, construction of nanoblocks and of products made from
nanoblocks may be quite rapid. If a prototype can be produced in a day or less,
simulation of products may not be a large part of the design cycle; as in software (or
FPGAs), good design methodology will enable the construction of quite complicated
systems, and simulation or formal proof of correctness usually will not be worth the
effort. This is a mixed blessing: we may anticipate that nanotech products with
complexity equivalent to modern software applications will contain comparable levels of
bugs. However, it should be noted that most of the physical products in use today are far
less complex than modern software applications.

Any complex product will probably need to be tested and debugged at a high level, and
both of these tasks may be easier in simulation than in the actual product. Simulators that
can handle mechanics, electrostatics, and surface forces have already been developed for
MEMS applications (Algor, Inc., 2003). Simulators and emulators for digital logic have
been in use for decades. A desirable feature would be a generalized ability to formally
specify a desired behavior for a nanoblock or other subpart, test the specification by
simulating that part, and then use the same specification in a higher-level simulation.

5.2.2. Testing and debugging a nanofactory-built product

Failure of a design may occur at several stages from many causes. Once a failure is
understood, correcting it will usually not be difficult since the design and construction
processes are fairly simple at every stage. However, determining what went wrong may
not be easy; inspection of internal components may be extremely difficult. A similar
problem is faced by software engineers, who have developed a wide variety of specialized
tools to access and interpret the more or less opaque binary data of a running program. It
seems likely that specialized tools will also be needed for testing complex nanodevices.

Any product needs to be tested after it is built, to find errors in design or construction.
The high reliability of the manufacturing processes will minimize the number of
construction errors, and the simplicity of function of the component nanoblocks will
reduce the number of design errors. In general, a product will fail because of problems
analogous to software bugs. If not weeded out in the design stage, these can usually only
be found by testing the functionality of the product as a whole. Nanotech can neither help
nor hinder this process, except by allowing a large fraction of the product to be devoted to
small integrated diagnostic devices. Errors in the nanotech-built structure will be few,
and many of them will be deducible from the function, just as a software engineer can
diagnose a design error in a computer chip by observing its outputs. With the active
components being a small fraction of most large products, there will be ample space for
isolating components from each other, preventing unexpected physical interactions.

A computer chip may contain millions of transistors, and a computer program may
contain millions of instructions; both of these are far more complex, more sensitive to

propagating errors, and more opaque to debugging efforts, than any mechanical design is
likely to be (with the exception of designs intended to perform as computers, which can
be handled with adaptations of today's hardware and software design methods).
Diagnostics are extremely useful in software to verify the correct functioning of small
pieces of the code. Diagnostic testing of individual pieces of hardware design, including
statistical testing by fabricating large numbers of copies, will surely be useful.

Direct inspection may be helpful in some cases. A means of selectively withdrawing
shims from ridge joints would allow the product to be split open for inspection along any
200-nm plane in any of three orientations. Parts too small to be seen optically could be
studied with an electron microscope or scanning probe microscope. One company claims
to be developing an optical device capable of producing 3D images with resolution <10
nm (Olson, 2002), but as of this writing the company is not yet publishing details or
demonstrating product. Finally, most human-scale products will consist largely of empty
space which can be filled with monitoring equipment in experimental product versions.

6. Control of the nanofactory

The number of fabricators, and the number of operations that must be performed by each
fabricator, indicate that the product specification file cannot possibly contain a list of all
the actions to be done; repetition or compression will be required. The product
specification system described in Section 5.1 allows relatively complicated products,
including the nanofactory itself, to be described with compact specification. This section
describes the process of decoding the specification file and driving the fabricators and
other robotics to produce the product. A preliminary estimate of the size of the
nanofactory specification file is made in Section 8.1, and a preliminary estimate of the
energy cost of control is given in Section 8.2.

6.1. Nanocomputer architecture and requirements

A useful mechanical nanocomputer can be built using a few simple logic elements.
Drexler has given a detailed description of simple mechanical logic components
sufficient to build a general-purpose CPU (Drexler, 1992, chap. 12). Such a CPU could
be developed and tested in simulation. Drexler's figures for input power per
computational element, volume per computational element, and rate of computation are
used here, but a simpler design is used for the computer. Drexler describes a 32-bit CPU
occupying a space 400 nm on a side, eight times the volume of a nanoblock, and using 60
nW. However, this design includes a million interlocks (roughly equivalent to
transistors), comparable to the 80486 architecture. An earlier 16-bit CPU with similar
instruction set, the 8086, required only 29,000 transistors (Halfhill, 1993). Such a CPU
could fit into a 123-nm cube and would require 2 nW at the same 1 GHz clock cycle as
Drexler's design. The large increase in cycles per watt does not imply a corresponding
increase in computation per watt; the 8086 does not include a floating point coprocessor
and has a less powerful instruction set as well as a smaller native word size and no
pipeline. The 8086 executes about 0.07 instructions per cycle, so the equivalent

nanocomputer would use ~30,000 zJ per instruction. In Drexler's design, energy
buffering depends on a 390-nm diameter flywheel, and a 200-nm nanoblock can only
accommodate half that diameter. Energy storage scales as r^4, so the flywheel can only
store 6% of the energy (for the same 20-nm thickness). The chosen CPU size requires
only 3% of the buffering, so this is not a problem for the chosen parameters, but a design
depending on smaller nanoblocks would require a significantly thicker flywheel (which
could be placed in an adjacent nanoblock).

Data passing between adjacent nanoblocks can be done via a mechanical pincushion; a
block face has room for thousands of 1-nm logic-rod interfaces. The stiffness of a van
der Waals interface is equivalent to 30 nm of diamond (Drexler, 1992, sec. 9.7.1),
probably acceptable for this application. Both strength and stiffness can be improved at
only slight cost in mass by making the interface area larger than the cross-section of the
rod. Coprocessors, memory, or specialized hardware can thus be added to the basic CPU
without having to fit into the same nanoblock. For long-distance signaling, sheathed
polyyne rods are adequate for distances of a few microns (Freitas, 1999, sec. 7.2.5.4);
longer distances can use thicker rods and slower speeds, or electrical signals.

RAM requires up to 40 nm^3 per bit, and error detection requires 9 bits per byte, so a
200-nm nanoblock can hold at least 20,000 bytes. Mass storage devices are not assumed
for the lowest-level (production module) computers due to the intensive use of DMA
(direct memory access) to control the fabricators. A gigabyte of RAM would require
50,000 nanoblocks (~7 micron cube, within range of polyyne signaling). A modest 20
megabytes would require 1,000 nanoblocks, which can be arranged in a single layer ~7
microns across; if this is insufficient in practice, additional layers can be added without
concern for energy use or cooling since the RAM is static and requires very low power.

The large amount of RAM used by the chosen architecture requires a means of dealing
with radiation-induced errors. Correction of a single bit error can be done by adding 8
bits for every 64, and requires decoding circuitry that may slow access but will not add
significantly to the volume (Kozierok, 2001). Depending on the spacing of damage from
a single radiation hit, it may be necessary to physically separate the bits so that one event
will not damage more than one bit. Within a single nanoblock, 72 bits can be separated
by 40 nm; greater separation requires splitting single memory entries among multiple
nanoblocks, which complicates the design of DMA controllers. Although multiple hits to
the same RAM block are possible, multiple hits to the same memory word are extremely
unlikely (<10^-14 per year; see Section 8.5) because each word involves only ~3000
cubic nanometers of machinery. In designs for high-radiation environments, massive
reliable parallelism, or extreme lifetimes, the contents of the memory word can be moved
to a different location when the first hit is detected. (Detection requires timely reading of
each memory word, at slight additional power cost.) The requirement to separate the bits
may require additional motion (and thus power dissipation) to read a word. This can be
compensated by slowing the access speed--a cache will probably be in use anyway--or
arranging multiple consecutive words to be accessed with the same motions.

CPUs contain a large amount of heterogeneous circuitry, so adding error correcting
circuitry may not be straightforward. The simplest solution is to run three CPUs in

parallel, reading from a single memory interface, and compare their outputs. This allows
detection of errors even after one CPU is damaged. For longer lifetime, more CPUs
could be added, but only a fixed number would need to be running at any one time.
When a failure was detected, the state of a good CPU could be copied into an idle CPU
(similar to saving and restoring state during an interrupt), the failing CPU shut down, and
the new CPU started. The chance of a second failure happening before the state could be
copied is remote but possibly significant in highly parallel designs. Of greater concern is
the possibility that a single radiation event could damage two CPUs. Such a failure
would almost certainly be detected, but it might not be possible to tell which CPUs were
damaged unless four were running. A more efficient design that can be used with write-
only I/O hardware (Section 8.2) uses only two running CPUs, so errors can be detected
immediately but not corrected. Instead, the program is divided into checkpoints, and the
runtime is tracked. When an error is detected, the program is re-loaded into backup
CPUs from the last checkpoint, and the I/O of the CPU is disabled until it reaches the
point at which the error occurred. This solution will be used for the production module
CPUs, requiring ~60,000 zJ per instruction.

6.2. Placing the nanoblocks

The specification file describes regions filled with repetitive patterns. Each pattern
specifies individual nanoblocks. A product with only a few regions, and only a few
simple patterns, will require very few bytes to specify each one of the nanoblocks in the
product. Some kinds of nanoblocks may be parameterized according to their place in the
pattern, but this adds only a few numbers for each block in the pattern specification.
Since small patterns can be tiled and otherwise combined to fill large regions, individual
product nanoblocks need no individual specification. The size of the specification file is
completely unaffected by the number of nanoblocks in the product--it only depends on the
number of distinct nanoblocks and the complexity of their arrangement.

Decoding this part of the specification is easy. The product volume is divided into
regions, and any sub-volume is specified by sub-patterns and sub-regions down to the
individual nanoblocks. Any point in the product corresponds to a single nanoblock, and
each fabricator in the factory corresponds to a single position in the product and is used to
build a single nanoblock. (This relationship may change due to radiation damage, but
only within a single production module under control of a single computer.) The process
is fully parallelizable: decoding any position does not require information about any other
position. The volume specification is broadcast to all production modules, in order of
size from the largest region to the smallest pattern. To determine which nanoblock is to
be made by a particular fabricator, the module's computer selects the appropriate region,
sub-pattern, sub-region, and so on, according to the location of the fabricator's
nanoblock. Each selection is simply a solid geometry calculation.

Since the boundaries of the regions are not limited by the boundaries of the product
blocks and sub-blocks, a region may cover a large number of production modules. Also,
since a nanoblock design may be used throughout the product, the design may have to be
sent to a large number of production modules. For some products, it may be worth

keeping track of which parts of the nanofactory a given nanoblock design should be sent
to. However, this would require additional algorithms and a hierarchy of additional
computers in the nanofactory, so is not used here; all details of the design are broadcast to
every production module. After the pattern and region information has been broadcast,
the nanoblock information is broadcast.

6.3. Specifying the nanoblocks

The number of distinct nanoblocks is far smaller than the total number of nanoblocks in
the product. Without error correction during fabrication, each fabricator making a certain
nanoblock design will move in lockstep. This means that a single, centrally generated
instruction stream can be sent in parallel to all fabricators making a particular nanoblock
type. Sending information to myriad production modules will cost significant energy,
which argues for compressing the instruction stream. On the other hand, running myriad
CPUs to decompress the instruction stream also costs significant energy. Specialized
hardware decompression can be far less costly, though also less flexible. The chosen
architecture uses a central computer to expand a highly compressed product file into an
instruction stream that is easily decompressed. This stream is sent to all production
modules. Each module includes a general-purpose computer, which passes some of the
instructions directly to the fabricators without needing to store them. Other instructions
are stored for out-of-sequence or repetitive nanopart and nanomachine fabrication, or for
use in multiple designs of nanoblocks. This storage allows a variety of nanoblock
arrangements to be created from the same instructions, though it imposes limits on their
complexity due to local memory limitations. However, since module computers are not
required to store the instructions that are passed directly to the fabricators, non-
parameterized nanoblocks can be of arbitrary complexity.

If the fabricator is mechanically controlled by discrete pulses, it can be driven directly by
the rod-logic system. Even in Merkle's admittedly inefficient assembler design, the
energy required by a fabricator actuator is comparable to the energy used to drive a rod-
logic element; thus, it is likely that amplification will not be required to drive actuators
directly from rod logic. (In rod logic the energy used is mostly recoverable (the operation
is reversible), while in actuation the energy may not be recoverable. This does not require
any design change to the rod-logic hardware.) The pulses can be produced by interpreting
the control words produced by the decoding logic. A simple coding divides a sixteen-bit
word into one mode selection bit and fifteen line selection and counting bits. The first
mode uses six bits of selection and nine bits of power pulse counting, allowing up to 512
pulses to be sent to any of 64 single control lines. (Where the pin drive (Section 3.1) is
used, a pulse will be translated into several consecutive operations, all of them
thermodynamically reversible except perhaps for the main shaft motion.) The second
mode provides four bits of sub-mode selection to guide the division of the remaining 11
bits into multiple counting fields and the assignment of those fields to control lines; this
allows short operations to be done concurrently by pulsing multiple lines simultaneously
or in sequence with separate counts, in any of sixteen hard-coded combinations. Some of
the sixteen modes can be used to specify interleaved actuation of several robotic degrees
of freedom (e.g. tripod legs), permitting motion at an angle. Merkle estimates that

placement of an atom may require on the order of 1000 pulses; this accomplishes large
tripod motions and detailed mechanochemical work, and also includes control line
selection. A large tripod motion may require six words, one for each leg, for each
motion. Detailed work will not require many pulses, and with careful design of the
second mode codes, can probably be accomplished with only a few words per operation.
Thus it is reasonable to estimate that each atom placed requires 25 words (400 bits) of
control codes. These 25 words can be generated by special-purpose decompression logic
to minimize data transmission and storage requirements.

Special hardware logic for decompression can implement fairly complex functions,
including accessing multiple tables in memory and doing arithmetic on the values
retrieved, far more efficiently than a general-purpose CPU. Most of the decompression
operations, including arithmetic operations, could be implemented in reversible logic,
saving significant energy. For example, adding hydrogen atoms to a flat diamond surface
is likely to be a very repetitive operation; the only thing that changes from atom to atom
is the distance moved to reach the next attachment position, and the atoms are in a regular
pattern. The decompression logic would have to combine information from three or four
sources. One is the list of instructions common to all hydrogen addition operations. The
second is tables of positional offsets specifying individual atoms in a two- or three-
dimensional crystal cell; the cell can include a large number of atoms. The third
information source is numeric constants representing the starting position of the cell.
Thus a few numbers can invoke the placement of dozens or even thousands of atoms,
depending on the size of the cell tables. J. Soreff points out that the precomputed
positions may require slight additional tweaking to compensate for varying surface strain
near workpiece edges. This can probably be precomputed and stored in additional tables,
supplying a fourth source of information. Although significantly more complex than a
standard DMA (Direct Memory Access) controller, the logic required is well within the
capability of existing digital design methods (significantly simpler than a JPEG decoder,
for example) and requires only a few registers and adders to implement.

In the nanofactory, all nanoblocks other than the mechanochemical fabricator will be
composed mainly of bulk diamond, graphite, and other simple materials, allowing the use
the efficient DMA hardware as described above. Only a few kinds of atom-placement
operations will need to be done, so only a few operation lists will be stored locally for
repetitive delivery. The size of cell tables can be chosen for optimal tradeoff between the
local memory used and the amount of data distributed to invoke the tables. The
contribution of the production module's CPU to mechanochemical operations is simply to
allocate local memory to store the parts of the broadcast instruction streams that are
relevant to the nanoblocks it is building, and program the local DMA/arithmetic hardware
to send the instructions on to the fabricators. This requires far less than one CPU
operation per mechanochemical operation. Note that any sequence of operations that
cannot efficiently be generated by cell tables can be delivered directly in control code
sequences.

7. Product Performance

A product built with this nanofactory system would have several advantages over
products built with conventional manufacturing. Both the passive functionality (strength)
and active functionality (power transformation and computation) require orders of
magnitude less mass and volume than today's products. The potential complexity of the
product is at least nine orders of magnitude higher for the same mass or volume. The
design process will frequently be easier and faster for equivalent functionality. The cost
and difficulty of manufacture may be markedly lower than with conventional
manufacturing. With nanoblocks smaller than today's manufacturing tolerances, the
specification of mechanical and structural components for macro-scale products should
not be much affected by the modular construction method. In general, the design and
manufacture of products equivalent to today's state of the art will not be difficult;
futuristic products are beyond the scope of this paper.

In products, distribution of liquids can take place through pipes that are simply
implemented as holes in diamondoid structures. Hydrogen-terminated diamond should
be unreactive to most of the fluids that might be used, or the holes can be lined with
graphite. Distribution of electricity can take place through graphite inclusions in the
nanoblocks that are pressed together when the nanoblocks are joined. (In some
configurations, buckytubes can be excellent conductors of electricity, though in-plane
conduction in graphite will be adequate for many purposes.) Power can also be
transmitted in the form of mechanical motion; a rotating rod 10 nm in diameter can
transfer 1 mW of power (Freitas, 1999, sec. 6.4.3.4). This is small enough to be included
in any part of the design, and far more power than is needed for a nanocomputer (7.5 nW)
or mechanochemical fabricator (150 fW). The rod need not be supported along most of
its length, reducing frictional losses.

For transmission of digital information, the breaking strength of a polyyne rod is far
higher than the force needed for reliable transmission of information, so a single rod can
be used to pull several rods in a broadcast architecture. Electromechanical repeater
stations can also be used, in which the motion of a rod switches electricity to actuate
another rod with increased force. Finally, signals can be sent electrically, by pulses in
graphite "wires" which can be subdivided.

7.1. Strength, stiffness, and shape

The strength of the product is limited by the strength of the joints between blocks.
Expanding ridge joints (Section 3.2.1) will retain a large fraction of the strength and
stiffness of a solid diamond lattice. The tensile strength of diamond depends on lattice
direction, varying from 90 to 225 GPa (Telling et al., 2000); for comparison, the tensile
strength of aluminum is less than 1 GPA and that of steel and plastic around 1-6
(Nowicki, 2003). A nanofactory product should thus have at least one order of magnitude
advantage in volume and mass over products using conventional material. Where
compressive strength is required, the advantage increases still further due to more
efficient use of material. The available design complexity provides several ways to

convert compressive force to tensile force, including fractal trusses, active supports to
prevent buckling, and pressurized tanks used as structural members. (Water-filled tanks
may be preferable to gas-filled, both for safety in the event of rupture and for resistance to
combustion.) To produce softness or springiness, a wide variety of sub-micron diamond
trusses can be constructed to provide the desired mechanical properties.

The shape of the product will be limited by the convergent assembly mechanism, but the
possible final shapes are increased by the ability to unfold the product after assembly and
securely join the result. Even during assembly, the product need not be a solid cube. At
each stage, the convergent assembly mechanism must be able to manipulate each sub-
block and position it precisely for joining to its seven neighbors. However, the surface
area required for a secure grip is quite small: the weight of the largest sub-block is about
5 N, requiring less than a square millimeter of van der Waals contact to hold it against
gravity, so faces need not include much contact area for manipulation. A design process
might involve designing a final product shape containing large empty volumes, then
simulating "crushing" the shape until sufficient pieces touch to support the convergent
assembly process.

The nanofactory may have trouble assembling products in which a very small fraction of
a large block is filled (adjacent to a block that it will join at a late stage in the convergent
assembly process). The tiny piece may be too small for the larger manipulators to
handle. In general, such small pieces can be either relocated, omitted, or surrounded by
lightweight scaffolding to allow handling by large-scale manipulators.

7.2. Appearance

If only simple carbon and hydrogen chemistry are available, the range of color choices
may not be large. However, there are several possibilities for creating color. Structures
similar to oil films on water may preferentially absorb certain colors and reflect others.
Chemical dyes may be supplied in the feedstock and incorporated in the nanoblocks
without chemical processing. Diamond prisms may be used to scatter light back from a
surface. Photonic crystals may preferentially absorb certain frequencies. An ultraviolet
diamond-based LED has already been built with boron and phosphorous doping
(Optics.org, 2001); although such a device would probably require special
mechanochemical research, it is attractive as a means of stimulating phosphors to create a
variety of colors.

7.3. Complexity

Typical manufacturing technologies today have tolerances of multiple microns, although
grinding and polishing operations can achieve sub-micron tolerance in a limited variety of
shapes. The expense of fabricating with such precision restricts its use to a few surfaces
per product. Even MEMS are not typically produced with features smaller than 1
micron. Semiconductor transistors are smaller than a cubic micron, but the chip must be
packaged for further assembly; for example, the packaged Pentium IV, containing 42

million transistors, has an overall volume of billions of cubic microns. By contrast,
nanotech-built parts can have features a few nanometers in size.

The construction method imposes no penalty for high precision no matter how many parts
are specified--the only cost is design. Thus a nanotech-built product can contain more
than a billion times as many parts as the same volume of conventionally manufactured
machinery or electronics. This many parts cannot be individually designed. To a large
extent, the functional power of a nanofactory-built product design will depend on the
sophistication of the design software and on the development of a useful library of virtual
materials. In the near term, there are many applications where a repetitive, small-scale
design is useful, including visual displays, massively parallel computers, combinatorial
research (testing many variations on a theme), many medical applications, and the
nanofactory itself.

7.4. Design

A very simple design program, not much more complex than a basic 3D modeling
program, will suffice to design simple products. For example, a Cartesian network of 1
billion computers could be designed simply by designing one computer and cutting and
pasting the result. Solid diamond structure can be specified by specifying a volume to
fill. Any macroscopic product that is simple enough to be comprehended by an unaided
human will consist almost entirely of empty space or inert mass. This allows the
extensive use of restrictive design constraints to reduce the sophistication of the program.
For example, interpenetrating networks could be restricted to separate nanoblocks. (This
restriction still allows 3D networks.)

7.5. Powering the product

As noted previously, power densities for both transmission and transformation are quite
high compared to conventional engineering. Efficiency of an electrostatic motor can
exceed 99%. A product using a kW of electrical power to produce mechanical motion
might produce only ~10 W of waste heat in the conversion, and the motors required
would occupy a volume of less than a cubic millimeter. Computation transforms all the
power used into heat, but computation comparable to today's fastest supercomputers
requires only a few watts.

Efficient conversion of chemical energy into other forms requires special
mechanochemical apparatus, which is not assumed here. A fuel cell may be the best
short-term solution. Freitas (1999, sec. 6.3.4.5) analyzes a 40% efficient fuel cell
producing up to 2 pW/nm^3 (10^15 W/m^3) in its active region, although his design
involves oxygen-terminated diamond.

A lightweight solar energy collector, consisting of a holographic lens or water-filled
Fresnel lens concentrating sunlight onto a diamond thermionic cell (Salisbury, 2001),
should be able to recover the energy cost of its manufacture in only a few days. A square

mile of desert land receives on average more than 500 MW of solar power (including
night and seasons), and thermionic conversion should be ~50% efficient.

7.6. Computation

A typical CPU at this writing is the Pentium 4, a 32-bit architecture with 42 or 54 million
transistors depending on the version. The "mobile" version running at 1.7 GHz consumes
30 watts (Popovich, 2002). Assuming that computation power scales linearly with speed
and transistor count, this CPU does approximately 2500 times as much computation per
second as the 16-bit architecture described here. However, it draws 15 billion times as
much power, so is six million times less efficient.

The fastest computer in the world, as of this writing, is the NEC Earth Simulator
(Top500.org, 2002). It includes 640 8-processor nodes using 20 kW apiece, for a total of
13 MW (ignoring the large crossbar switch). It also includes 10 TB of RAM, and fills a
large building. Assuming that the Earth Simulator's power consumption per operation is
comparable to the Pentium 4, a massively parallel nanocomputer with equivalent raw
processing power would require 2 watts. The CPUs would require a volume of 8 million
cubic microns, and the memory an additional 3 million cubic microns. The entire
computer could fit into a cubic millimeter.

8. Nanofactory calculations

This section has several purposes. The first is to illustrate the methods by which
nanofactory performance may be estimated from fabricator parameters, so that as better
estimates become available or other designs are considered, the corresponding estimates
may be found more easily. A second and subsidiary purpose is to derive preliminary but
plausible numbers for a typical nanofactory design. Obviously, given the large number of
unknowns in device performance and the number of arbitrary design choices, any
numerical results must be viewed with suspicion.

Because many of the calculations are repetitive and tedious, a computer program was
used (Appendix A) to calculate some of the results. The methods of calculation are
explained in the text, except for certain numerical techniques that are explained in the
program.

For convenience, a specific nanofactory size is chosen as the basis for several parameters:
a tabletop design that can produce ~4 kg of diamond (~10.5 cm cube) in a few hours.
This product size is 2^19 times the length, and 8^19 times the volume, of a nanoblock.
Thus 19 convergent assembly steps are required to fabricate the product from 1.44x10^17
nanoblocks.

8.1. File size and data distribution

The nanofactory requires only a few patterns and regions for complete specification. For
example, each array of 6,561 fabricators is specified by a pattern of 81 fabricators in a
line, repeated 81 times. The convergent assembly stage mechanisms that are laid across
the fabricators during construction are specified by an independent pattern or
parameterization, made up of heterogeneous but generally simple partial nanoblocks. The
combining of production modules into stages, and stages into larger stages, requires only
a few additional patterns per stage, and the number of stages is relatively small. Since
every substage of a stage is identical, each substage only has to be specified once.
Likewise, the outer shell of the factory can be specified by a small pattern tiled across the
whole surface area by six region specifications, with a few more patterns and regions for
the edges and corners.

Aside from the larger convergent assembly robotics, for which each part must be
specified in terms of solid-geometry regions, the entire nanofactory design will require
only a few hundred patterns and regions, all of simple shape, based on just a few
nanoblock designs. This will require very little information to describe. Of course, this
only specifies the placement, not the contents, of the nanoblocks. The contents are
specified by direct description of the mechanochemical and assembly operations needed
to fabricate them. Since a nanoblock contains up to 1.4 billion atoms, and an atom
requires up to 25 words (50 bytes) to specify, a complicated nanoblock design might
require up to 70 gigabytes. In the nanofactory, all nanoblocks except the fabricator will
be relatively simple and repetitive, being built entirely of bulk diamond, and even the
fabricator will include large volumes of regular structure. (The nanocomputer blocks will
involve complicated machinery, but built from just a few small digital logic
components.) Thus in the worst case, the nanofactory file size may be perhaps a
terabyte. A more reasonable number is 100 gigabytes, and as little as 10 gigabytes seems
plausible, but the nanofactory design can easily accommodate a terabyte or larger file.
Detailed specification of modern computer chips may generate files over a gigabyte in
size, although these files can typically be compressed to 100-200 megabytes (Morrison,
2002).

The entire specification must be broadcast to all the production modules once per product
cycle. This requires sending perhaps 10^12 bytes over 1.6x10^8 meters. A product cycle
time of three hours (see Section 8.4) would require a bit rate of ~0.7 Gbit/s. Since most
of the distance occurs in the Stage 1 tubes, which are only 25 microns long and may have
walls <200 nm thick, rod logic appears best. (Coaxial electrical cable appears attractive
(Freitas, 1999, sec. 7.2.5.1), but submicron coax has not yet been sufficiently
investigated.) The energy dissipated by a moving logic rod depends on its length and on
the switching time; inspection of the equations in (Drexler, 1992, sec. 12.3.4) indicates
that if the product of length * time is held constant, the dissipated energy should remain
constant or decrease for each source of loss. Equation 12.19 is an apparent exception, but
a correction for thermal equilibration time was omitted in its derivation (sec. 7.4.1). In
other words, a rod-logic rod can be lengthened without increasing dissipative losses as
long as its switching time is proportionally slowed. An overly long rod will suffer
positional uncertainty, but according to sec. 12.5.4a a 2x2-nm rod five microns long is

adequately stiff for reliable operation. A 1x1 by 64-nm rod loses 2 zJ per 0.1-ns
switching cycle (sec. 12.3.8b). Quadrupling the rod area increases vibrational losses
(Equation 12.15) by approximately a factor of four; this term then dominates the
dissipated energy. Given the number of arbitrary design parameters, exact calculation is
pointless; as will be seen, the energy used for instruction broadcasting will make
negligible difference in the overall energy use of the nanofactory. A conservative value
of 6 zJ per bit per rod is used. Partitioning a rod requires a register at each division,
dissipating ln(2)kT per bit or 2.6 zJ at 273 K. A rod-logic chain divided at 5-micron
intervals will cost 1.7x10^6 zJ per bit per meter, and have a transmission rate of 128
Mbit/s (and a delay of ~1.5 ms/meter, which is unimportant in this design). With these
arbitrary but conservative parameters, 6 rods working in parallel can carry the desired 0.7
Gbit/s, and the cost per bit for factory-wide broadcast is 2.8x10^-7 J; a 10^12 byte file
requires 2,200,000 J, or only 611 Wh, or 11 zJ/atom for a 4 kg product.

8.2. Fabricator control, energy, and cooling

The nanofactory design incorporates several sources of energy loss. These include data
processing, mechanochemistry, and mechanical motion. Some of these sources can be
estimated or bounded, providing a partial estimate of the energy use of the factory.

Data distribution to production modules, as we have seen, requires very little energy.
Local data processing requires quite a bit more. The redundant nanocomputer system
described in Section 6.1 uses 60,000 zJ per instruction, but the use of efficient DMA
controllers allows many atoms per instruction to be placed. As estimated in Section 6.3,
placing an atom may require 400 bits to be sent from the nanocomputer's memory to the
fabricator, an average distance of 8 microns. Placing 1.4 billion atoms (200-nm cube) in
3 hours (see Section 8.4) requires a data rate of 50 Mbit/s. Following the calculations in
Section 8.1 (with suitable adjustments to extend rod length beyond 5 microns) the energy
required is about 2000 zJ/atom. However, it will be possible to reduce this by any
fraction desired, by using more and slower rods; a bundle of 81 2x2 nm rods to control a
column of 81 fabricators requires only 18 nm square.

The internal hardware of the fabricator will dissipate energy through friction. Without a
detailed design, this dissipation cannot be reliably estimated. However, it should be
noted that the moving components are on a scale comparable to rod-logic elements; that
only a few components will be moving at a time; and that their speed will also be
comparable to the speed of the driving rods. It is plausible that the fabricator may require
significantly less energy to overcome internal friction than is used to deliver its control
pulses, ~2000 zJ/atom.

Energy that is stored in the system as work (as in compressing a spring) can be recovered
when the actuator is moved backward. The force of the spring will drive the actuator
backward, imposing a force on the driving system. If the driving system is capable of
generating potential energy (running in reverse), the energy can be recovered. Drexler's
electrostatic motor has this capability.

Energy dissipated in abrupt state transitions cannot be recovered. Examples of state
transitions include erasing a bit, pushing a ratchet past a tooth, and pushing a component
past a soft projection that springs back suddenly. Since the state of the fabricator's
mechanism and workspace is predictable at all times, no energy needs to be dissipated
within the fabricator to keep track of it; the digital logic control eliminates any need to
retain state internally. Its operation will require no irreversible state transitions. The pin
drive described in Section 3.1 allows a stepping motion to be produced without any use of
ratchets. The digital logic control can change states without abrupt energy transitions,
while retaining its state reliably in the face of thermal noise. This permits operation
orders of magnitude more efficient than (for example) the Merkle assembler, which
requires large amounts of energy to operate ratchets and to overcome thermal noise.
Although accidental state transitions can be eliminated from a good nanoscale mechanical
design, it is unknown at this point whether such problems will exist in the preliminary
fabricator design. In general, abrupt state transitions can be avoided in stiff sliding
machinery. It may be hoped that the designers of the fabricator will have worked to
eliminate them. However, this may not be the case in early designs.

A chemical bonding event may act as either a reversible spring or a sudden state
transition, depending on the stiffness of the driving mechanism. If the chemical
manipulator and all drive systems could be made sufficiently stiff, this chemical energy
could be recovered like any other stored energy. The high forces encountered during
mechanochemistry may not be easy to overcome; if they cause the manipulators to "snap"
from one position to another, the corresponding energy will be lost. The cost of
inefficient chemistry must accordingly be included in the energy budget. A tetravalent
carbon atom has a bond energy of approximately 556 zJ/bond (the number varies
depending on the surrounding chemistry) or 1112 zJ/atom since each atom forms four
half-bonds. This number may be multiplied by a small factor if multiple chemical steps
are required to prepare an atom or molecule for deposition. On the other hand, the
feedstock molecule may include several atoms already bonded appropriately, which could
save a large fraction of the energy. In the absence of complete information about
feedstock chemistry and processing, 1000 zJ per product atom is taken as a reasonable
estimate for the cost of mechanochemical operations.

The drag forces generated by rapid movement through gas at atmospheric pressure may
be significant even for small devices. In Merkle's design, the tripod moves perhaps 100
nm to place an atom in 0.1 msec; this implies an average speed of 0.001 m/s. With a
viscosity of 2.1x10^-5 kg/(m s) for argon (neon is 40% higher) (Handbook of Chemistry
and Physics, 1971), the power required to move a single 10-nm diameter sphere (Stokes
drag times velocity) is 2x10^-18 W (Freitas, 1999, sec. 9.4.2.4) or 0.2 zJ per atom.
However, the power scales as the square of the velocity; faster fabricator speed or jerky
motion may increase this number significantly. In addition, smaller parts may move at
speeds of 1 m/s or more. To be conservative, the working area of the nanofactory (as
opposed to the coolant channels) is assumed to contain either hard vacuum or inert gas at
low pressure. (Nanofactory structure to withstand collapse from internal pressure
differences is considered in Section 8.3.)

The above energy figures cannot be summed to give a meaningful answer, since some of
them depend on engineering choices and others depend on unknown aspects of fabricator
design. However, it appears possible that the energy spent per atom can be limited to
around 4000 zJ for frictional losses, 1000 zJ for mechanochemical losses, and perhaps
another 1000 zJ for computation (if each production module computer runs full time).
These estimates are not especially brittle, since each of these losses (with the possible
exception of mechanochemistry) can be controlled by engineering. Accordingly, a cost of
10,000 zJ per atom is taken as a reasonable, conservative estimate for further
calculations. Since 1 kg of diamond contains roughly 5x10^25 atoms, the energy cost per
kg is 5x10^8 J, or 140 kWh. A factory producing 4 kg in 3 hours might need to dissipate
approximately 200 kW.

A coolant consisting of suspended encapsulated ice particles can absorb 1.2x10^8 J/m^3
(Drexler, 1992, sec. 11.5), so less than 2 liters per second of this coolant would be
required. This will be divided among many linear channels. Figure 5 shows small 1x16
micron coolant channels left open in Stage 1. As Stage 1 components are stacked to
make larger stages, the channels line up and form long narrow linear (non-fractal) pipes.
For laminar flow, the pressure required for a certain flow rate is directly proportional to
the length of the pipe and to the velocity of the fluid. The volume of coolant in the pipe
must be replaced in constant time regardless of pipe length, so the necessary coolant
velocity is also proportional to the length of the pipe. Thus the pressure required to cool
the pipe is proportional to the square of its length. Running sufficient fluid to cool
16,384 production modules through a 40-cm long 1x16-micron pipe would require quite
high pressure. However, splitting the factory into N independently-cooled slabs reduces
the pressure by N^2. Splitting into slabs requires only extending a few of the assembly
tubes, not rearranging any of the internal architecture. The formula for pressure drop
from incompressible laminar flow through a rectangular duct of dimension 2*a by 2*b
(where a is larger), from (Tunkel, 2002), is:
pressure drop = 3*v*L*V/(a^2*(1-192*a/(pi^5*b)*tanh(pi*b/(2*a)))), where v is
viscosity, L is duct length, and V is average velocity.
Assuming a 200 kW cooling load, flow sufficient to cool 2048 basic modules in series
can flow through the pipes with a speed of ~1 cm/s (laminar flow; Reynolds number near
1) and a pressure drop of ~6 atm. See Appendix A for calculations. Thus the factory may
be split into as few as 8 slabs, with each slab supplied at the top and bottom by low-
pressure coolant. The energy cost for recycling (cooling) the expended coolant will be
only a fraction of the energy input.

Transmitting 200 kW electrically requires high voltage and large conductors. Within the
factory, or even for input into the factory, mechanical transmission may be preferable; for
example, a single rotating rod of 140 micron diameter could theoretically transfer 200 kW
(Freitas, 1999, sec. 6.4.3.4). Electrical and mechanical power can be converted in several
ways. A rotating electrostatic motor based on Drexler's design (Drexler, 1992, sec.11.7)
can be built out of only carbon and hydrogen. Bulk diamond is an excellent insulator, but
a thin layer of diamond can be a semiconductor, and graphite is an adequate conductor.
The electrodes for such a motor should have varying work functions for simplicity and
efficiency. The work function of graphite is 4.5 eV, while the work function for CVD
diamond has been measured at 5.7 eV (Groening et al., 2003). This difference should be

sufficient to place ~1 electron per (graphite) electrode in a motor similar in scale to
Drexler's (50 nm). With electrode charge and discharge driven by work function, the
motor functions as a generator without modification. With half the current carrying
capacity of Drexler's design, its power density is only half of the 10^15 W/m^3 computed
by Drexler; half a cubic millimeter suffices to convert 200 kW.

Electromagnets do not work well at small scales, but an electrostatic replacement for a
solenoid can be made simply by charging parallel movable plates; a device about 12 nm
can develop a force of 1 nN over a stroke distance of 1 nm by applying 5V (Drexler,
1992, sec. 11.6.4). This is approximately as much work as is done by the pistons in
Merkle's fabricator. Likewise, an electrical pulse may be generated by manipulating the
plates or dielectric of a capacitor, or by bringing a single charged plate (which may be
charged triboelectrically) near a conductor.

8.3. Physical arrangement and mass

Section 4.2 describes a small, extremely reliable production module making two 3.2
micron product blocks per product cycle using 8192 active and 4930 redundant
fabricators. A gathering stage collects the blocks from four production modules. A 10.5-
cm product is 2^15 times larger in linear dimension than a 3.2 micron product, so product
assembly requires 14 further assembly stages where each stage assembles 64 sub-blocks
to produce eight product blocks. Each stage is made by stacking sub-stages on their
largest faces, either two (for the gathering stage) or four (for the assembly stages) in a
stack on two opposite sides of a gathering/assembly tube. The result is a larger
rectangular solid with the tube leading to its smallest face. Its smallest dimension is equal
to the biggest dimension of its substages. Another dimension is equal to four times the
smallest substage dimension (two times, for the first stage). The remaining stage
dimension equals twice the remaining substage dimension, plus the width of the tube.
The stage 1 delivery tube is fractionally larger than the 3.2-micron product. The other
assembly/delivery tubes are 1.55 times larger than their product, to allow space for
moving sub-blocks past the product block under construction. This calculation is
repeated for each stage. Volume of nanofactory components, and length of signal and
transport paths, can be directly computed from these numbers, multiplied by the number
of copies of each substage which is eight times the number of the next higher stage.

To produce eight 3.2-micron blocks requires a gathering stage of four production modules
grouped around a 3.5-micron tube ("Stage 1" in Figure 5). The dimensions of this are
about 36x25x16 microns. To produce eight 6.4-micron blocks, four stage 1's are stacked
on each side of a 7-micron tube, for stage 2 dimensions of 61x65x36 microns. The final
factory is about 94x92x41 cm, not counting exterior panels; for intermediate calculations,
and volumes and lengths, see Appendix A. The final eight blocks are either assembled
within the final tube and extruded, or a balloon is used for external assembly (Section
4.4). A minimum-volume arrangement may not have space for simultaneous assembly of
8 blocks in the tubes of several of the smaller stages, so four blocks may have to be
assembled and passed on to the next stage, and then the other four assembled; this adds
only fractionally to the total product cycle time.

The nanofactory consists of low-pressure working volume surrounded and interpenetrated
by higher-pressure cooling channels. Small cables strung across the cooling channels,
perpendicular to each surface, will resist the force efficiently. The cable mass required is
directly proportional to the volume and the pressure, and inversely proportional to
material strength; surface area and configuration can be ignored as long as the
configuration is rectilinear. Thus the amount of tensile bracing required to maintain
structural integrity in the factory will be directly proportional to the amount required to
maintain the structural integrity of a hypothetical cubic-meter box pressurized to one
atm. One atm of pressure exerts ~100,000 N of force per square meter. Holding opposite
faces together in a 1-m cube pressurized to 1 atm requires 100,000 N. A cable with the
density of diamond and a conservative tensile strength of 5 GPa (5% the strength of
diamond) needs a cross section of 2x10^-5 m^2, and of course will be one meter long.
Three cables are needed (one for each pair of faces) for a total volume of 6x10^-5 m^3
and mass of 210 g for the hypothetical one-meter one-atmosphere cube.

The volume of cooling channels can be calculated by subtracting production module and
tube size from total factory size. The production modules occupy a total volume of 0.055
m^3 (~47 times the volume of their product). The volume of assembly/delivery tubes is
0.066 m^3, for a total volume of 0.12 m^3. (See Appendix A.) The volume of the
nanofactory is 0.35 m^3, so this volume is about 1/3 occupied, leaving gaps totaling 0.23
m^3. These gaps will be filled with coolant under pressure, and this pressure will try to
collapse the factory's workspaces and must be resisted. The design arbitrarily limits
coolant pressure to <10 atm. To withstand this pressure in the 0.23 m^3 open volume of
the nanofactory requires 0.28 kg of bracing material (0.21 x 10 x 0.23). Inspection of
Figure 5 shows that some coolant channels will be blocked by assembly tubes in stages
divisible by 3; this requires a <1 micron gap between the sub-stages and the tube, which
is not included in the present calculations. It may be desirable to prevent fluid from
flowing into large gaps, to prevent excessively slow flows that could allow the suspended
ice capsules to settle out. More detailed design is beyond the scope of this paper.

The production module includes 13,122 fabricators plus perhaps 1,000 computer blocks
(CPU and memory). Each block is assumed to be mostly solid diamond. With
1.6x10^13 production modules, the total volume of "solid" nanoblocks is 2x10^-3 m^3,
composed of up to 7.0 kg of diamond.

Walls are required to prevent coolant/solvent fluid from entering the workspace. The
total workspace/fluid wall area of the factory is the sum of the wall areas of each stage.
When stages are stacked together, most faces overlap and need not be filled with walls;
the exception is the wall facing the assembly tube. The wall area of a stage is
approximately the area facing each assembly tube plus the area of each tube. This figure
is an over-estimate since it does not account for some of the empty area on each surface
facing the gap. (Note that without walls between adjacent basic modules, blocks can be
passed sideways between the modules for increased manufacturing flexibility or
decreased need for redundant fabricators. Although it may save up to 20% of nanofactory
mass, this option is not considered further here.) The program in Appendix A carries out
this tedious calculation, computing the total wall area to be about 8400 m^2, plus another
4300 m^2 for the tubes, mostly in the smallest stages. At 38.2 carbon atoms/nm^2

(Freitas, 1999, Appendix A), the mass of a graphite sheet is 7.6x10^-4 g/m^2. If the
walls are made of graphite sheet, the total interior wall mass is 0.01 kg. If the walls are
made of 20 nm diamond panels, the total interior wall mass is 1 kg.

Because blocks do not need extremely precise alignment, and ridge joints do not require
force to assemble, the convergent assembly manipulators do not have to be extremely
stiff. Large-scale manipulators must contend with gravity. A 5.25-cm diamond cube
exerts a force of 5 N; a 15-cm cable capable of lifting it weighs only half a milligram, and
the total cable weight scales by 0.5 in each smaller stage. This analysis breaks down
when block forces are dominated by van der Waals attraction (100 nm^2 of van der
Waals interface is as strong in tension as 1 nm^2 of diamond), and when the smallest
gantry crane component size is limited by manufacturing. Therefore the total mass of the
convergent assembly manipulators is dominated by the total mass of the smallest 0.4-
micron units. Detailed manipulator design is beyond the scope of this paper, but the
following analysis shows that manipulator mass will not be a large percentage of factory
mass.

The manipulator shown in Figure 3 uses guide rails and linear actuators. If the smallest
possible bulk-diamond cross section for the rails and actuators is 100 nm^2, the volume
for four 0.62-micron "Y" rails, two 0.6-micron "X" rails, and one 0.6-micron "Z" rail is
4x10^-4 micron^3. The factory contains 2.6x10^16 of these manipulators, for a total
mass of 0.04 kg. The 0.8-micron level uses four 1.24 micron "Y" rails, and three 1.8-
micron "X" and "Z" rails, for a total volume of 10^-3 micron^3, but there are 1/9 as many
manipulators in the factory. Note that at the 0.4 micron level, the double tripods of the
fabricators are exposed and can be used as a 2 DOF manipulator. Also, the 0.4 micron
manipulator may be unnecessary if the 0.8 micron manipulator can sequentially assemble
the eight required 0.4 micron sub-blocks before assembling the 0.8 micron block. (Such
an adaptation also saves 10% of module volume.) A total manipulator mass of 1 kg is
surely conservative.

A 10.5-cm product requires an external balloon ~18 cm wide, and larger balloons can be
used for larger products (which will require multiple production cycles) or for unfolding
small products in a protected environment to avoid joint contamination. An 18-cm
diameter balloon with one-micron walls (to provide UV and physical as well as chemical
shielding) requires about half a gram for a 10.5-cm product. If the factory is shielded
from ultraviolet light and air currents, material requirements for the balloon may be
substantially reduced. More sophisticated designs may combine a re-usable UV and
structural shield with a much thinner non-reusable chemical shield.

The factory is a rectilinear box; internal vacuum applies bending force to each panel, and
each panel applies crushing force to the edge of the adjacent panels. The casing of the
nanofactory must provide support to anchor the interior and prevent the working volume
from collapsing under atmospheric pressure. (Cooling fluid pressure will be contained by
the tension members bracing the internal gaps, and will not put additional force on the
external casing.) This can be accomplished with a hollow panel filled with pressurized
fluid, with tension members between the panel layers to maintain shape. The amount of
structural material required is essentially independent of the thickness of the panels; 1 cm

is chosen for convenience, though additional fluid may be useful as radiation shielding.
Two of the panels are about a square meter each, and are held apart by panels with a
sideways area of 1/25 square meter. This implies that those panels need an internal
pressure of 25 atm to resist crushing. The other panels are about half a square meter, but
rest on 2/3 as much sideways area; again, 25 atm is sufficient. A panel with an internal
pressure of 25 atm, internally braced, needs only a slight slant in the bracing to stay flat
against a pressure difference of 1 atm. Closely spaced, thin tension members reduce the
required skin thickness to any desired level; 1 micron is assumed here to allow UV
shielding and puncture resistance, for a total skin volume of 8x10^-6 m^3. Sufficient
tension members to withstand 25 atm (in one direction) in a total panel volume of 0.03
m^3 requires 1.5x10^-5 m^3. The total mass of this diamondoid structure is 0.08 kg.

The total nanofactory volume is about half a cubic meter. Using the conservative
estimates, the total mass includes 0.28 kg cooling channel bracing, 7 kg of fabricators and
computers, 1 kg interior walls, 1 kg convergent assembly manipulators, and 0.08 kg for
exterior shell: total, 9.4 kg of diamondoid. However, it will likely be possible to save
some mass: the convergent assembly manipulators are probably overestimated, the factor
of 20 allocated to tension bracing strength and choice of 20 nm walls are probably
unnecessary, and the fabricators and computers will contain some empty space.

The maximum distance traveled by power and signal going to the production modules, or
blocks coming out, is approximately equal to the length of the assembly tubes of each
stage. This is 1.7 meters. The total length of all tubes is 1.6x10^8 meters.

8.4. Product cycle, duplication, and bootstrapping time

Without knowing more about the fabricator, product cycle time can be only crudely
estimated. Since convergent assembly requires only pressing blocks together, the
assembly operations will require minimal time; transporting blocks for 1.7 meters through
nineteen assembly stages will take only a few seconds in total. Thus the product cycle
time will be roughly equal to the time required for a single nanoblock-sized fabricator to
fabricate a single nanoblock.

Merkle's assembler (1999) was calculated to require 28 hours to fabricate one billion
atoms. (A 200-nm solid diamond block contains ~1.4 billion atoms.) However, this was
limited by the idiosyncratic requirement to broadcast pressure pulses at 10 MHz through
fluid medium to large numbers of assemblers. Without this requirement, Merkle
calculated that the internal mechanisms could work at ten times higher frequency. This
implies a replication time, or product cycle time, of about three hours. The use of digital
logic control allows each actuator (Merkle estimates that the fabricator would use "tens of
actuators") to be separately driven sequentially or in concert, eliminating the need for the
actuator-selection function and somewhat increasing the speed of operation. (Merkle
stated (personal communication, January 25, 2003) that 1 GHz "should work if you're
careful", which implies a product cycle time of about 15 minutes, but this may be overly
aggressive.) Drexler's factory design (1992, chap. 14) used a one-hour replication time,
though it assumed the use of more advanced fabrication systems (molecular mills). Also,

many bacteria have a replication time of an hour or less. In the absence of detailed
fabricator designs, a product cycle time estimate of three hours appears to be plausible,
though not defensible.

Nanofactory duplication speed is limited by total nanofactory mass. If the entire mass of
the nanofactory were used in active fabricator modules, the factory could duplicate itself
in one basic product cycle and double its size in two basic product cycles. However, the
presence of redundant non-operating fabricators, convergent assembly stages, control
computers, and inert walls makes this impossible. The factory can produce 4 kg per
product cycle, but will weigh about twice that. Thus it should be able to produce its mass
in two or three product cycles, and during bootstrapping, double its mass in four or five.

Duplication time may also be affected by nanofactory volume. The volume of the
nanofactory is ~300 times that of its product. However, the nanofactory is mostly empty
space, with a density as low as 0.016 g/cm^3. The nanofactory consists mainly of planes
of near-solid nanoblocks (the fabricators and computers); large, flat, thin surfaces (the
walls); and linear structures (the convergent assembly manipulators and tensile bracing),
so packing density should be quite good. Note that the densest and most complex
structure, the basic production module, occupies only 15% of the factory's volume, and
this module itself is mostly empty space. In fact, 3/4 or more of the total factory mass
(the fabricators and computers) occupies only half a percent of the volume. If the
machinery of the fabricator does not require the entire nanoblock volume (and
nanoblocks can be made slightly bigger to ensure this), space on top of each fabricator
can be reserved for interior structure (gantry cranes) that will be lifted off during
unfolding. This would allow the production module to be fabricated with no wasted
volume. The fact that ridge joints allow rearrangement during unfolding allows bulky
components, if any, to be fabricated in flat slices and assembled during unfolding rather
than during the convergent assembly stage; such tricks require extra design effort, but can
in principle be applied to any extent necessary for compact packing. It seems quite
possible that with careful design of the gathering/assembly tubes and the tension bracing,
the factory can be made to unfold from a 3.5-liter volume (produced by three product
cycles).

Finally, as discussed in Section 8.5, radiation damage during fabrication will require an
extra product cycle: the first convergent assembly operation will take place at the end of
the second product cycle, and the final convergent assembly operation will take place
after a final, mostly inactive product cycle.

Thus a reasonable estimate is that a nanofactory of this design can duplicate itself in three
or four product cycles, and make a factory twice as big in five or six. To create a
nanofactory from a single assembler requires many bootstrapping steps, in which each
factory constructs a version with twice the production capacity. A sufficiently small
system (the initial assembler certainly qualifies) will not need redundancy or onboard
general-purpose computers. Thus it will be able to produce a new system with double the
production capacity in only two product cycles. Around the four-micron level,
redundancy (see Section 8.5) and computers become necessary. This is about the size of
the machinery in a basic production module. A minimal bootstrapping recipe has a two-

dimensional sheet of fabricators producing a double sheet which then unfolds into a
single sheet twice as big. After 4,096 (2^12) fabricators are produced (12 steps, 24
product cycles), they fabricate a basic production module (3 cycles). (The smallest
devices will require little or no active cooling; see Drexler, 1992, sec. 12.8.) The full-
sized nanofactory contains 2^44 = 1.8x10^13 production modules, requiring 44
additional bootstrapping steps. Each of these steps requires at least 5 cycles. The total
number of cycles required is ~250-300--if every design works correctly the first time.
With a three-hour cycle time, the minimum cumulative fabrication time required for
bootstrapping is ~40 days.

8.5. Radiation and failure

A product containing a significant mass of small active parts can expect a certain failure
rate from background radiation. Radiation-induced failure is discussed in (Drexler, 1992,
sec. 6.7.2); the present work builds on that discussion. Although Drexler discussed
shielding, he did not assume the use of shielding in his damage estimates. UV radiation
and charged particles can be shielded with moderate amounts of mass, but gamma rays
may require a lot of shielding, and some forms of radiation such as neutrinos cannot be
shielded at all. As noted by Drexler, components above a certain size can be made
radiation-resistant. Smaller components must be made redundant (the current design
assumes no repair capability), and the design must allow substitution of spares for failed
components. The nanocomputers and the nanochemical fabricators will probably be
sensitive to radiation, and a certain failure rate must be expected. In Drexler's estimate, a
cubic micron of small parts has a damage probability of up to 3% per year. Although
some shielding can be used, to be conservative the current analysis adopts his estimate.
This analysis also assumes an arbitrary acceptable system failure rate of 3% per year.
Nanocomputer redundancy is discussed in Section 6.1; this section discusses the
redundancy required for the mechanical components (fabricators and small convergent
assembly systems).

Some forms of radiation, such as low-energy alpha particles, create compact swaths of
destruction; other forms, such as high-energy electrons and gamma rays, create widely
spaced point defects. The pattern and intensity of damage will depend on the amount of
shielding that can be placed around the device; a bootstrapping project could be protected
by a lot more shielding than a small product. Radiation damage also depends on the still-
unknown effects of radiation on diamondoid nanomachinery. Drexler's estimate of
radiation damage assumed no shielding. Because compact swaths of damage rapidly
expend the energy of the radioactive particle, such forms of radiation are relatively easy
to shield. Damage rates may be substantially reduced by shielding, which will be
especially effective in reducing compact events, but damage from high-energy radiation
cannot be eliminated entirely. The current design assumes that moderate shielding will
ensure that radiation damage will occur at widely spaced points. If this is not the case in
practice, redesign to place redundant components beyond the reach of a single swath will
be necessary. Such redesign would complicate the physical layout to some extent, and
may impose small speed and power penalties on nanocomputers due to the need to

distribute single memory "words" among several nanoblocks, but would not pose a
serious problem for the overall design.

If a component has a probability p of survival (not failing), then its failure probability q is
1-p. A system relying on n non-redundant components will only survive if all its
components survive; this probability is p^n. The failure rate of an n-component system
is 1-p^n or 1-(1-q)^n; failure probabilities cannot simply be multiplied. With q=0.03 for
a 1-micron block, the failure rate of a single nanoblock full of sensitive machinery, such
as a fabricator, is 0.00024 per year; a 5-micron cube of machinery with no redundancy
has a 98% chance of failing during the first year. n may be treated as a scaling factor
rather than an integer: if a system with m (non-redundant) components has a survival rate
of p, the survival rate of each component is p^(1/m). A single nanoblock, 1/125 of a
cubic micron, has a 98% chance of lasting a century. However, a system with 16,000
non-redundant nanoblocks has perhaps a 1% chance of radiation damage in a single day,
and 2000 cubic microns (250,000 nanoblocks) has a 15% per day hit rate. A memory
word occupying 3000 cubic nanometers has a chance of being hit of 9x10^-8 per year; the
chance of two hits to the same block is the square of that, or 8x10^-15.

The binomial formula gives the probability of exactly x successes in n trials, where each
trial has success probability p, as:
n! * [p^x] * [(1-p)^(n-x)] / [x!*(n-x)!] (Weisstein, 2002).
To calculate the probability of at least s successes in n trials, the formula is used
repeatedly with values of x from s through n and the results summed. This can be used to
compute the probability of at least a minimum required number of redundant components
remaining after a certain per-component failure rate. Because these calculations are
extremely tedious and use extremely large numbers, they are not worked out in the text.
Appendix A contains a program that calculates the results given in the rest of this section.

Redundancy will be required in a tabletop system full of radiation-sensitive components.
A wide variety of architectural tradeoffs can be used to compensate for the inevitable
failure of some percentage of the factory's machinery, but redundant fabricators must be
near the components they replace, to allow their products to be substituted.

In theory, it is sufficient to add redundancy only at the lowest level. The smallest stage
produces a 0.4-micron product, and the corresponding unit of failure is a single
nanoblock or fabricator. With no higher-level redundancy, 2^54 ~= 2x10^16 0.4-micron
stages must all function reliably to build a 10.5-cm product. Achieving an aggregate
failure rate of 0.03 requires a stage reliability rate of 10^(-7x10^-19) or a failure rate of
2x10^-18. The failure rate for the unreliable substage is 0.00024; achieving the desired
first stage reliability rate requires 5 redundant 0.2-micron fabricators for each 0.4-micron
stage, a 63% increase in mass. However, this analysis is suspect because spatially
correlated damage from a single radiation event may wipe out multiple adjacent
fabricators. Since there is no redundancy above the 0.4 micron stage, the loss of a single
stage disables the factory. Additionally, detecting errors in single nanoblocks may require
feeling each face of each block, a total of 8.6x10^17 faces or 34,000 square meters. It
may be preferable to defer error checking to higher stages, since the surface area to be
checked decreases by a factor of two at each stage while the number of faces decreases by

a factor of eight. If error checking is deferred, some errors will be discovered as a result
of failed assembly operations in lower stages; this may eliminate the need for explicit
shape checking entirely. Even if checking is required, the robotics to perform the check
will require proportionally less workspace, time, and energy at higher levels.

The cost for single-level redundancy increases rapidly for levels above the lowest.
Redundancy at the 0.8 micron stage means 2x10^15 stages and a substage failure rate of .
0019. The stage reliability rate must be 10^(-7x10^-18) or failure rate of 2x10^-17,
which requires 7 redundant substages or an 88% increase in mass. At the 1.6 micron
stage, the substage failure rate is 0.015 and 3x10^14 stages must all remain working for
the factory to work. An overall failure rate of 0.03 requires a reliability per 1.6-micron
stage of 10^(-4x10^-17) or failure rate of 10^-16. This can be achieved with 11
redundant stages in addition to the eight actives, a 238% increase in mass.

A better solution is to implement redundancy in several substages with a scalable design.
If each stage includes nine substages instead of eight, the overall probability of failure
decreases at each stage as long as the probability of failure of the sub-stages is less than
3.2% each. The redundant substage causes a mass increase of 12.5%, and this increase is
cumulative; with 19 redundant stages, the factory would increase in mass by 1.125^19 or
9.3 times. However, most of the stages do not need to be redundant. The probability of
failure increases by a bit less than ten times for each non-redundant stage, but drops off
far faster than that for redundant stages with very reliable sub-stages; very approximately,
the number of zeros in the failure probability doubles for each redundant stage. The
failure rate of a single nanoblock is about 0.00024 per year. If the first four stages are
redundant, the rest of the stages can be non-redundant. Implementing this redundancy
would increase the fabricator mass of the factory by about 60%. In fact, with the
estimates used here, only the first three stages need to be redundant, but a nanoblock
failure rate only twice as high would cause a 7% per year chance of factory failure. With
the first four stages redundant, a factor of ten increase in nanoblock failure rate still
provides a yearly factory failure rate of 1 in 10^5; the more conservative design is used.

A redundant stage must either check the input sub-blocks before it attempts to assemble
them, or accept that an improperly assembled product (due to sub-stage error) may jam
the stage, propagating the unreliability to the higher level. (A faulty block can usually be
pushed back into the faulty substage, clearing the assembly space.) The only errors that
absolutely must be detected are those that will affect convergent assembly at higher
levels. These can be found by feeling each face of each sub-block at whatever stage the
errors are to be detected. Alternatively, if the ridge joints are designed for delayed joining
with controllable shims, the mechanical fit may be checked by applying a mating face to
the whole surface at once. If the 400-nm stage is not redundant, then the next four or five
stages must be redundant depending on actual error rates. If both the 0.4-micron and 0.8-
micron stages are not redundant, then the next five or six stages must be redundant. If
none of the first three stages is redundant, the 11.5% failure rate of the 1.6 micron stage
cannot be reduced by 9-in-8 redundancy.

Once a block is formed correctly, subsequent radiation damage will not prevent
convergent assembly; at worst, if a ridge does not expand properly (see Section 3.2.1), the

joint will be somewhat weaker than planned. Once assembled blocks of any size are
tested for correct joint function at their surfaces, the larger composite blocks do not need
to be tested again; thus, the size at which to test can be selected to maximize overall
efficiency. Above a certain size, robotic hardware can be made tolerant of radiation, and
its control computers can be made redundant at insignificant cost. Fault-tolerant design is
therefore unnecessary for assembly machinery above a certain size. This design assumes
that machinery scaled to handle a 3.2 micron sub-block can be made radiation tolerant. If
this is not the case, or if production modules cannot easily be designed to be extremely
reliable, additional redundant substages can be added to the branching fractal architecture
at any stage.

Radiation damage that occurs during block fabrication, either to the fabricator or the
growing nanoblock, will usually cause a malformed or missing block, which must be
replaced. Although only a tiny fraction (~10^-7) of the fabricators will be affected during
each product cycle, this still represents ~10^10 failures, which must be dealt with since a
nanoblock with the wrong surface configuration could affect the convergent assembly
process at a much later stage. Of course, some percentage of failures will be easily
detectable as the fabricator will jam during operation. In these cases, failure detection
will be far easier than failure correction, which is not contemplated in the present design.
Blocks could be tested before assembly simply by running a plate over their surfaces;
errors preventing assembly but leaving ridge tops in correct position are unlikely. (If
necessary, a probe could be passed through each of the ridge joint valleys to ensure the
absence of blockages.) Functional damage to the interior of blocks is harder to detect, but
need not be detected since it can be treated the same as other radiation-related damage:
products (including nanofactories) above a certain scale must be designed to compensate
for a certain failure rate.

When damage is detected either during or after fabrication, the faulty fabricator or stage is
shut down, and its damaged block is stored permanently in its workspace without
blocking other factory operations. There are several ways to replace the missing block.
The factory could stockpile standard replacement blocks for commonly-used designs,
though transferring the block from the stockpile to its proper place in the design would
add complexity. Lacking stockpiled blocks, an adjacent fabricator will have to construct
a replacement for each of the failed blocks. The time penalty to construct the replacement
will vary widely depending on product design. In any product, the number of non-
redundant blocks must be small enough to ensure a low failure rate over the life of the
product. This implies that most blocks can be replaced by hollow blocks (to support
convergent assembly) that require only a short fabrication time. A block that is a crucial
structural or functional component cannot be replaced by a non-functional version;
however, in most cm-scale products, few if any 0.00002-cm blocks will be irreplaceable.
For rapid error recovery in such products, each nanoblock design can be accompanied by
a low-mass alternative design permissible for use in a tiny fraction of cases. In the worst
case, a special product cycle would be required to replace the failed blocks; this would
have to be done before the convergent assembly of the first cycle's blocks, but could
overlap with the second product cycle in products requiring multiple cycles (including
duplicate nanofactories). To prevent further delay from further errors, two replacements
for each missing block must be made, one used and the other cached inside the factory or

discarded. The mass of wasted material is roughly equivalent to the mass of fabricators
destroyed by background radiation: less than 1% of the factory mass per year.

The nanofactory will contain a wide variety of component sizes, many of them
engineered to save mass in order to reduce replication time. An unusually large number
of its nanoblocks may be crucial components that cannot be gutted. Accordingly, a full
additional product cycle is presumed to be necessary in the production of nanofactories.

A low rate of unpredictable error in construction is tolerable as long as it does not disable
the nanofactory. As long as the error rate is not much greater than the damage rate from
radiation, a block damaged during fabrication by mechanochemical error may be stored in
place, permanently disabling its fabricator. Drexler has calculated (1992, sec. 6.3) that
mechanochemical error rates for many reactions can be significantly lower than radiation
error rates. If the fabricator makes more frequent mechanochemical errors and is not
equipped to correct them, the factory will need a mechanism for detecting and discarding
failed nanoblocks.

Even if blocks are fabricated correctly, they may still in theory fail to assemble correctly.
An error in block assembly would be likely to jam the nanofactory at a non-redundant
stage, so would be unacceptable. However, the joining process is purely mechanical, and
the block faces to be joined are rigid by design. A suitable pattern of ridge joints can
prevent misaligned faces from coming together. Once blocks are correctly aligned and
pushed together, they will be strongly held (relative to the force of gravity and thermal
noise) even if the shims do not insert properly. Accordingly, errors in assembly should
occur at a negligible rate.

8.6. Cost and difficulty of manufacture

Manufacturing costs may be surprisingly low. The main variable is the cost of the
feedstock. Ultrapure complex chemicals may cost thousands of dollars per gram.
However, the mechanical binding of chemicals required for mechanochemistry implies
the ability to sort the desired chemical from competing molecular shapes, reducing the
purity requirement. In any case, for the level of reliability required to build a billion-atom
fabricator, a final purification stage must be included in the fabricator's mechanism. The
feedstock chemical is unlikely to be extremely complex, because small chemicals are
easier to sort. Complex microfluidic apparatus for chemistry and purification can be built
by the nanofactory, which may reduce the subsequent capital costs of manufacturing the
feedstock. Further consideration of feedstock cost must be deferred until a fabricator
design is completed.

The cost of the nanofactory is comparable to the cost of its product. The energy cost per
kg, including cooling, will probably be less than 250 kWh--less than $20 at current
electric rates. The space required by the nanofactory and its associated cooling
equipment is not large and does not need special facilities other than power and a small
supply of water to vaporize for efficient cooling. If exotic feedstock chemistries are not
used, the only elements required in bulk are carbon and hydrogen, which are readily

available. The mechanochemical fabricators may require a few atoms of metal apiece as
a catalyst, but this will amount to micrograms per kilogram.

Conventional manufacturing encompasses thousands of processes, materials, and
components. This requires multiple factories and much human labor, and involves the
transport of intermediate products. Because a nanofactory can convert simple chemicals
into complicated structures and then into final products within a single small enclosure,
manufacture will require far less logistical planning. The simple fabrication, assembly,
and error recovery operations contemplated in this design can be completely automated,
eliminating labor costs. The environment of a nanofactory will be small and
unspecialized, so the capital and maintenance costs for the environment will be quite
low. A 10.5-cm cube, weighing up to 4 kg, can be manufactured in approximately three
hours. Assuming the feedstock is not overly dangerous, the nanofactory described here
would even be appropriate for home use if run at a lower speed to reduce power
dissipation requirements.

A 10.5-cm product requires an external balloon ~18 cm wide, and larger balloons can be
used for larger products (which will require multiple production cycles) or for unfolding
small products in a protected environment to avoid joint contamination. Because the
inflating gas need not be assembled one atom at a time (though it must be perfectly pure),
the loss of gas in the released balloon does not contribute significantly to the energy cost
of the product. At $1/liter or more, neon gas (used in Merkle's design) may form a
significant fraction of the dollar cost of the product; assuming argon can be substituted
without adverse effect, the cost drops to pennies per liter.

It appears, then, that if a cheap feedstock can be found, the costs of products may be
determined mainly by the cost of their design and by licensing fees for the use of
nanofactory technology. Design for simple products will require little more than solid-
geometry specification. More complex products will require some work to specify
suitable patterns and regions to accommodate the nanoblock system. However, this
should be more than offset by the reduced need to design for a variety of idiosyncratic
manufacturing processes. The reduced cost of prototyping may further reduce design
effort and thus cost. Licensing fees for nanofactory use will be a matter of governmental
and economic policy, far beyond the scope of this paper.

9. Conclusion and discussion

This paper has described a modular, scalable architecture for a tabletop nanofactory that
integrates numerous small mechanochemical fabricators. Although existing fabricator
designs are hypothetical and incompletely specified, the nanofactory design developed
here can be adapted to any reliable self-contained diamondoid fabricator capable of self-
replication from simple feedstock under digital control. The design effort required to
progress from fabricator to nanofactory is straightforward for a wide range of fabricator
designs.

The nanofactory design is modular and scalable with only two basic plans. The first is a
production module a few microns on a side, which includes a computer and a few
thousand fabricators. The second is the stacking of modules around simple convergent
assembly hardware to create larger modules, which can be repeated at least to tabletop
size. Redundancy, heat, control, chemical supply, and convergent assembly mechanisms
have been analyzed in some detail. Products are fabricated in nanoblocks small enough
to be made by a single fabricator in a reasonable time, but large enough to contain useful
function. The nanoblock mechanical joining mechanism allows products to be assembled
in cubical form by simple robotics and unfolded or rearranged extensively after
assembly. A wide variety of useful products, including duplicate factories, can be made
by this system.

The nanofactory design, and detailed plans for bootstrapping, could be completed before
the fabricator was finished. The mechanochemical fabricator design is essentially
unmodified from the self-contained fabricator, and the rest of the nanofactory design is
entirely mechanical. The science of mechanics is well established and well understood;
simulation can be used with a high degree of confidence to enable design-ahead. Once
the first fabricator becomes available, the nanofactory bootstrap process requires the
creation of ~60 different devices, each ~twice as large as the preceding device; however,
most of the devices will not require much new engineering or testing, so as soon as a
device is created it can attempt to make the next device. Under plausible assumptions
regarding fabricator speed and factory mass, volume, and architecture, the doubling time
of a nanofactory is measured in hours, and the entire bootstrap process could in theory
take less than 40 days if all of the simulations were reliable, no redesign was necessary,
and if every design worked correctly the first time (see Section 8.4). (The rapid build
time allows a debugging cycle more comparable to software engineering than to
mechanical engineering.) Products to be built by the nanofactory can also be partially
designed before the factory becomes available.

It has been argued that molecular nanotechnology will not create a sudden disruption in
technological capability because of the need for testing each new product and technique
(Kaehler, 1996). However, the present analysis casts doubt on this position. Although
the current paper does not speak to the difficulty of creating a mechanochemical
fabricator, it does indicate that the time interval from the first fabricator to a
programmable nanofactory could be quite short. It also appears that the nanoblock design
paradigm is an effective method of reducing design and assembly difficulty while
retaining product complexity and functionality: the use of a few standard nanoblock types
can allow easy design and even predesign of a wide variety of products.

Once a self-contained, reasonably inexpensive nanofactory is produced, it can be rapidly
duplicated and used widely. A power use of 250 kWh/kg means that a large 1-GW power
plant, or four square miles of sun-collecting surface, could produce ~12,000 8-kg
nanofactories per day (not including feedstock production). If feedstock is sufficiently
easy to produce, sufficient factories to supply the world's population could be produced in
a few months. Without knowing the design for the initial fabricator, it is impossible to
estimate the cost or availability of the feedstock chemicals. However, for applications
such as computers and some medical, aerospace, military, and surveillance hardware, the

output of a nanofactory would be economically and/or technologically competitive at
almost any price; also, the nanofactory might be used to build compact, automated "lab
on a chip" chemical processing plants, reducing the feedstock price.

The wide range of useful products that can be produced by even a basic nanofactory
argues strongly for its commercial viability, its humanitarian potential, and its military
significance. The apparent feasibility and simplicity of integrating mechanochemical
fabricators into a nanofactory indicates that development of an assembler may therefore
be an event of substantial political, military, and economic significance. It also indicates
that any project to create an assembler should include a parallel project to bootstrap that
assembler into a nanofactory; the additional effort required will probably be a fraction of
the assembler design and creation effort.

This paper has analyzed a simple, scalable design leading to a functional meter-scale
nanofactory and suggesting the possibility of rapid bootstrapping from primitive
mechanochemical diamondoid fabricators. The particular design described here appears
likely to be practicable and accessible to present-day engineering practice. Little attempt
was made in this design to save mass, time, or energy; it is possible that with further
engineering effort, the first nanofactory might be significantly more efficient in each of
these categories. The design is highly scalable, with only one basic architecture change at
the few-micron scale, and can be bootstrapped from a single fabricator. Most of the
design can be simulated in detail, and most of the techniques and mechanisms tested by
experiment, before the fabricator becomes available. This indicates the possibility of
rapid development from a basic mechanochemical fabricator to a flood of advanced
products.

Appendix A. Calculations in software

Appendix A is a computer program written in Python, a simple scripting language
available for free from www.python.org.

These numbers are used in Section 8. The complete printout follows:

This text is a Python program (http://www.python.org).
The first part calculates failure probabilities and redundancies.
The second part calculates sizes of the convergent assembly stages.
The third part calculates coolant flow and pressure drop
If Appendix A is copied to a file and executed with a Python
interpreter
it will print the following:

"""
Assuming a failure rate of 0.03 per micron^3 per year...
And an acceptable factory failure rate of 0.03 per year...
Nanoblock (0.2 micron) failure rate is 2.44e-004 per year
If 2^54 0.4-micron stages all have to work, each stage needs

 a failure rate of 1.69x10^-18
That requires substage redundancy of 5 (plus the 8 required)
If 2^51 0.8-micron stages all have to work, each stage needs
 a failure rate of 1.35x10^-17
That requires substage redundancy of 7 (plus the 8 required)
If 2^48 1.6-micron stages all have to work, each stage needs
 a failure rate of 1.08x10^-16
That requires substage redundancy of 11 (plus the 8 required)

If the first three stages are 9-in-8 redundant [1,1,1,0,0,0...]
 The chance of factory failure is 2.73x10^-4
If the first three stages are 9-in-8 redundant
 and nanoblocks fail 2X as often
 The chance of factory failure is 6.71x10^-2
If the first four stages are 9-in-8 redundant
 The chance of factory failure is 1.19x10^-21
If the first four stages are 9-in-8 redundant
 and nanoblocks fail 10X as often
 The chance of factory failure is 1.09x10^-5
If the first stage isn't and the next 4 are [0,1,1,1,1,0,0...]
 The chance of factory failure is 3.86x10^-8
If the first 2 aren't and the next 5 are [0,0,1,1,1,1,1,0,0...]
 The chance of factory failure is 9.57x10^-1
If the first 2 aren't and the next 5 are [0,0,1,1,1,1,1,0,0...]
 and nanoblocks fail 1/2 as often
 The chance of factory failure is 1.92x10^-9
If the first 2 aren't and the next 6 are
 The chance of factory failure is 6.51x10^-10
If the first 3 aren't and the next 16 are
 The chance of factory failure is 1.00x10^0

For example, failure rates at each stage for [0,1,1,1,1,0,0...]
Stage 0.2 p 2.44x10^-4
Stage 0.4 p 1.95x10^-3
Stage 0.8 p 1.35x10^-4
Stage 1.6 p 6.59x10^-7
Stage 3.2 p 1.56x10^-11
Stage 6.4 p 8.78x10^-21
Stage 12.8 p 7.02x10^-20
Stage 25.6 p 5.62x10^-19
Stage 51.2 p 4.50x10^-18
Stage 102.4 p 3.60x10^-17
Stage 204.8 p 2.88x10^-16
Stage 409.6 p 2.30x10^-15
Stage 819.2 p 1.84x10^-14
Stage 1638.4 p 1.47x10^-13
Stage 3276.8 p 1.18x10^-12

Stage 6553.6 p 9.43x10^-12
Stage 13107.2 p 7.54x10^-11
Stage 26214.4 p 6.03x10^-10
Stage 52428.8 p 4.83x10^-9
Stage 104857.6 p 3.86x10^-8

Factory sizes...
Small cooling gap volume = 4.673892e-003 m^3
Level 1, width 3.63e-005 height 1.62e-005 depth 2.54e-005 product size
3.2e-006
 4.39805e+012 copies, volume of tube 0.00138414, surface of tube
1392.74
 Volume of cooling 4.986e-003 m^3, surface area of walls 3.259e+003
Level 2, width 6.07e-005 height 3.63e-005 depth 6.48e-005 product size
6.4e-006
 5.49756e+011 copies, volume of tube 0.00350565, surface of tube
1368.53
 Volume of cooling 9.330e-003 m^3, surface area of walls 2.498e+003
Level 3, width 0.000149 height 6.07e-005 depth 1.45e-004 product size
1.28e-005
 6.87195e+010 copies, volume of tube 0.00392979, surface of tube
769.778
 Volume of cooling 8.097e-003 m^3, surface area of walls 1.167e+003
Level 4, width 0.00033 height 0.000149 depth 2.43e-004 product size
2.56e-005
 8.58993e+009 copies, volume of tube 0.00328492, surface of tube
319.882
 Volume of cooling 9.087e-003 m^3, surface area of walls 6.010e+002
Level 5, width 0.000565 height 0.00033 depth 5.98e-004 product size
5.12e-005
 1.07374e+009 copies, volume of tube 0.00404231, surface of tube
198.116
 Volume of cooling 1.278e-002 m^3, surface area of walls 4.127e+002
Level 6, width 0.00135 height 0.000565 depth 1.32e-003 product size
0.000102
 1.34218e+008 copies, volume of tube 0.00446645, surface of tube
109.747
 Volume of cooling 1.144e-002 m^3, surface area of walls 1.948e+002
Level 7, width 0.00296 height 0.00135 depth 2.26e-003 product size
0.000205
 1.67772e+007 copies, volume of tube 0.00382159, surface of tube
46.7477
 Volume of cooling 1.248e-002 m^3, surface area of walls 9.990e+001
Level 8, width 0.00516 height 0.00296 depth 5.42e-003 product size
0.00041
 2.09715e+006 copies, volume of tube 0.00457898, surface of tube
28.1457
 Volume of cooling 1.676e-002 m^3, surface area of walls 6.583e+001
Level 9, width 0.0121 height 0.00516 depth 1.18e-002 product size
0.000819
 262144 copies, volume of tube 0.00500312, surface of tube 15.409

 Volume of cooling 1.531e-002 m^3, surface area of walls 3.129e+001
Level 10, width 0.0262 height 0.0121 depth 2.06e-002 product size
0.00164
 32768 copies, volume of tube 0.00435825, surface of tube 6.68877
 Volume of cooling 1.641e-002 m^3, surface area of walls 1.601e+001
Level 11, width 0.0463 height 0.0262 depth 4.84e-002 product size
0.00328
 4096 copies, volume of tube 0.00511565, surface of tube 3.94087
 Volume of cooling 2.129e-002 m^3, surface area of walls 1.022e+001
Level 12, width 0.107 height 0.0463 depth 1.05e-001 product size
0.00655
 512 copies, volume of tube 0.00553979, surface of tube 2.13745
 Volume of cooling 1.972e-002 m^3, surface area of walls 4.886e+000
Level 13, width 0.23 height 0.107 depth 1.85e-001 product size 0.0131
 64 copies, volume of tube 0.00489492, surface of tube 0.941759
 Volume of cooling 2.088e-002 m^3, surface area of walls 2.494e+000
Level 14, width 0.411 height 0.23 depth 4.28e-001 product size 0.0262
 8 copies, volume of tube 0.00565231, surface of tube 0.54544
 Volume of cooling 2.635e-002 m^3, surface area of walls 1.553e+000
Level 15, width 0.937 height 0.411 depth 9.20e-001 product size 0.0524
 1 copies, volume of tube 0.00607645, surface of tube 0.293597
 Volume of cooling 2.467e-002 m^3, surface area of walls 7.458e-001
Total volumes: cooling 0.234276 tubes 0.0656543 modules 0.0546845 total
0.354615
Total surface: tubes 4263.64 walls 8365.56
Max path length 1.72919; total tube length 1.60277e+008

Pressure for 16384 blocks is 36120197 Pa (356.5 atm), flow 0.066602 m/s
Pressure for 2048 blocks is 564378 Pa (5.6 atm), flow 0.008325 m/s
Pressure for 512 blocks is 35273 Pa (0.3 atm), flow 0.002081 m/s
"""

from math import *

##################################
Part 1: Failure Probability
##################################

Due to extremely large numbers, this section does most of its
bookkeeping
with logarithms of numbers. For many functions, both versions are
given.
log(a*b) = log(a)+log(b). log(a^b) = log(a)*b.

Log base 10 of x (Not in math library)
def exp10(x):
 return exp(x*log(10))

Add two log'd numbers without taking antilog of larger number
def addLogs(a, b):
 "Log of sum of two #'s, where a and b are their logs"
 if (a < b):
 return b+log10(exp10(a-b)+1)
 else:
 return a+log10(exp10(b-a)+1)

Multiply two log'd numbers (just add logs)
def mulLogs(a, b):
 "just add"
 return a+b

Factorial of n 1x2x...xn
def fact(n):
 "n!"
 ans = 1
 for i in range(2,n+1):
 ans=ans*i
 return ans

Log of factorial of n
def logfact(n):
 "log10(n!)"
 ans = log10(1)
 for i in range(2,n+1):
 ans=mulLogs(ans, log10(i))
 return ans

Print the exponent of logs of very large or small numbers
def StrExp(x):
 "Print log'd number"
 basis = floor(x)
 return "%.2fx10^%.0f"%(exp10(x-basis), basis)

Invert probability, e.g. success->failure
def LogInvLogP(lps):
 "Given lps = log(p), return log(1-p)"
Floating point arithmetic can represent 0.00...01 with dozens of
zeros,
but can't represent 0.99....99 with dozens of nines. The log of such
a
number looks like -4.3x10^-75, which floating point can represent.
For x extremely close to 0 or 1, an approximation
of 1-x good to several decimal places can be obtained by simply
multiplying log(x) by a constant.
 if lps < -10: #close to 0

 res = exp10(lps)*(log10(0.9999999999)/0.0000000001)
 return res
 elif lps < -1e-10: #in the middle (normal math)
 return log10(1-exp10(lps))
 elif lps < 0: #close to 1
 return log10(lps/(log10(0.9999999999)/0.0000000001))
 else: #very close to 1
 return -1000

def ScaleFail(vScale, pFail):
 "multiply success probabilities: return 1-(1-p)^n"
 return 1-pow(1-pFail,vScale)
def LengthScaleFail(lScale, pFail):
 "just cube the length to get the scale"
 return ScaleFail(pow(lScale, 3), pFail)
def logScaleFail(vScale, pFail):
 "scale failure prob, then return the log of that"
 return LogInvLogP(log10(1-pFail)*vScale)

"""
Binomial formula:
 n! X n-X
P(X successes in n trials) = ________ p q
 X!(n-X!)
"""

def pSucXNP(x, n, p):
 "Trial has success prob. p, return prob of exactly x success in n
trials"
 return fact(n)/(fact(x)*fact(n-x))*pow(p,x)*pow(1-p,n-x)

def pSucXNPfail(x, n, p):
 "Trial has fail prob. p, return prob of exactly x success in n
trials"
 return fact(n)/(fact(x)*fact(n-x))*pow(1-p,x)*pow(p,n-x)

def logpSucXNlogP(x,n,logp):
 "Trial has success prob. logp, return logprob of exactly x success
in n trials"
 return logfact(n)-logfact(x)-logfact(n-x)+logp*x+LogInvLogP(logp)*
(n-x)

def logpSucXNlogPfail(x,n,logp):
 "Trial has fail prob. logp, return logprob of exactly x success in
n trials"
 return logfact(n)-logfact(x)-logfact(n-x)+LogInvLogP(logp)*x+logp*
(n-x)

def pNotXleftNtrialPfail(x,n,p):
 "sum the binomial: return P(fewer than x left out of n with failure
p)"
 pTooFew = 0
 for i in range(0, x):
 pSucNow = pSucXNPfail(i, n, p)
 pTooFew = pTooFew + pSucNow
 return pTooFew

def logpNotXleftNtrialLogPfail(x,n,logp):
 "sum the binomial: return logP(fewer than x left out of n with
failure logp)"
 logpTooFew = logpSucXNlogPfail(x-1, n, logp)
 for i in range(0, x-1):
 logpSucNow = logpSucXNlogPfail(i, n, logp)
 logpTooFew = addLogs(logpTooFew, logpSucNow)
 return logpTooFew

def RedundantXP(x, p):
 "Just for testing"
 for i in range(0,30) + range(30,100,10):
 logpxf = logpNotXleftNtrialLogPfail(x,x+i,log10(p))
 print "%d redundant, %f log fail %s fail"% \
 (i, logpxf, StrExp(logpxf))

def NeedRedundantPlus8(pFailOne, logpFailRequired):
 "See how many redundant units (plus 8 required) I need for desired
failure rate"
 i = 0
 while 1:
 logFailI = logpNotXleftNtrialLogPfail(8,8+i,log10(pFailOne))
 if logFailI < logpFailRequired:
 return i
 i=i+1

def logMultistageRedundancy(list, pInit, show=0):
 "Cumulative of redundant and nonredundant stages; list has # of
redundant"
 list = list + [0]*(19-len(list))
 logpFail = log10(pInit)
 s = 0.2
 if show:
 print "Stage %.1f p %s"%(s, StrExp(logpFail))
 for n in list:
 logpFail = logpNotXleftNtrialLogPfail(8, 8+n, logpFail)
 s=s*2
 if show:

 print "Stage %.1f p %s"%(s, StrExp(logpFail))
 return logpFail

Print the answers...

print
MicronPerYear = OKFail = 0.03
print "Assuming a failure rate of %.2f per micron^3 per year..."%
MicronPerYear
print "And an acceptable factory failure rate of %.2f per year..."%
OKFail
NanoblockPerYear = LengthScaleFail(0.2,MicronPerYear)
print "Nanoblock (0.2 micron) failure rate is %.2e per year"%
NanoblockPerYear
LogFailRate2e54 = logScaleFail(1/(2.0**54), OKFail)
print "If 2^54 0.4-micron stages all have to work, each stage needs"
print " a failure rate of %s"%StrExp(LogFailRate2e54)
print "That requires substage redundancy of %d (plus the 8 required)"%\
 NeedRedundantPlus8(NanoblockPerYear, LogFailRate2e54)
Stage1PerYear = LengthScaleFail(0.4,MicronPerYear)
LogFailRate2e51 = logScaleFail(1/(2.0**51), OKFail)
print "If 2^51 0.8-micron stages all have to work, each stage needs"
print " a failure rate of %s"%StrExp(LogFailRate2e51)
print "That requires substage redundancy of %d (plus the 8 required)"%\
 NeedRedundantPlus8(Stage1PerYear, LogFailRate2e51)
Stage2PerYear = LengthScaleFail(0.8,MicronPerYear)
LogFailRate2e48 = logScaleFail(1/(2.0**48), OKFail)
print "If 2^48 1.6-micron stages all have to work, each stage needs"
print " a failure rate of %s"%StrExp(LogFailRate2e48)
print "That requires substage redundancy of %d (plus the 8 required)"%\
 NeedRedundantPlus8(Stage2PerYear, LogFailRate2e48)
print
print "If the first three stages are 9-in-8 redundant [1,1,1,0,0,0...]"
print " The chance of factory failure is %s"%\
 StrExp(logMultistageRedundancy([1,1,1], NanoblockPerYear))
print "If the first three stages are 9-in-8 redundant"
print " and nanoblocks fail 2X as often"
print " The chance of factory failure is %s"%\
 StrExp(logMultistageRedundancy([1,1,1], NanoblockPerYear*2))
print "If the first four stages are 9-in-8 redundant"
print " The chance of factory failure is %s"%\
 StrExp(logMultistageRedundancy([1,1,1,1], NanoblockPerYear))
print "If the first four stages are 9-in-8 redundant"
print " and nanoblocks fail 10X as often"
print " The chance of factory failure is %s"%\
 StrExp(logMultistageRedundancy([1,1,1,1], NanoblockPerYear*10))
print "If the first stage isn't and the next 4 are [0,1,1,1,1,0,0...]"

print " The chance of factory failure is %s"%\
 StrExp(logMultistageRedundancy([0,1,1,1,1], NanoblockPerYear))
print "If the first 2 aren't and the next 5 are [0,0,1,1,1,1,1,0,0...]"
print " The chance of factory failure is %s"%\
 StrExp(logMultistageRedundancy([0,0,1,1,1,1,1],
NanoblockPerYear))
print "If the first 2 aren't and the next 5 are [0,0,1,1,1,1,1,0,0...]"
print " and nanoblocks fail 1/2 as often"
print " The chance of factory failure is %s"%\
 StrExp(logMultistageRedundancy([0,0,1,1,1,1,1],
NanoblockPerYear/2))
print "If the first 2 aren't and the next 6 are "
print " The chance of factory failure is %s"%\
 StrExp(logMultistageRedundancy([0,0,1,1,1,1,1,1],
NanoblockPerYear))
print "If the first 3 aren't and the next 16 are"
print " The chance of factory failure is %s"%\
 StrExp(logMultistageRedundancy([0,0,0]+[1]*16, NanoblockPerYear))
print
print "For example, failure rates at each stage for [0,1,1,1,1,0,0...]"
logMultistageRedundancy([0,1,1,1,1], NanoblockPerYear, 1)

#######################################
Part 2: Sizes and volumes at each stage
#######################################

Stage 0: 16.2 x 16.4 x 11.7 plus 1 micron cooling gap
L0Width = 16.2e-6
L0Height = 11.7e-6 # Height should be smallest; that's how they stack.
L0Depth = 16.4e-6
L0Gap = 1.0e-6 #cooling gap between production modules
L0BlockSize = 3.2e-6 #Basic module produces 3.2 micron product
Assume CA manipulator takes 0.1 times the size of the subproduct cube
HandlingGapFrac = 0.1

class Dimensions:
 def __init__(self, nLevels):
 "Set and compute dimensions and volumes for Production Module"
 self.nLevels = nLevels
 self.thisLevel = 0
 self.width = L0Width
 self.height = L0Height+L0Gap #Leave space for cooling when you
stack'em
 self.modHeight = L0Height #Used only in level 0
 self.depth = L0Depth
 self.blockSize = L0BlockSize

 self.nCopies = 8.0**nLevels / 2 #Each module produces 2 blocks
 self.coolingVolume = self.nCopies * self.width * self.depth *
L0Gap
 print "Small cooling gap volume = %e m^3"%self.coolingVolume

 def NextLevel(self):
 self.thisLevel = self.thisLevel + 1
 self.nCopies = 8.0**(self.nLevels - self.thisLevel)

 # Remember dimensions of sublevel
 subWidth, subHeight, subDepth, subBlockSize = \
 self.width, self.height, self.depth, self.blockSize

 # Special cases for first level
 if self.thisLevel == 1: #No assembly, just transport
 self.blockSize = subBlockSize
 self.tubeWidth = subBlockSize*(1+HandlingGapFrac)
 self.depth = subHeight*2 # Only 4 basic modules, 2 each
side of tube
 inPortArea = 4 * subBlockSize**2 #ports for sub-blocks to
enter
 else: # Assemble, then transport; needs bigger tube, more
modules
 self.blockSize = subBlockSize * 2
 self.tubeWidth = subBlockSize*(3+HandlingGapFrac)
 self.depth = subHeight*4 # 8 sublevels, 4 on each side of
tube
 inPortArea = 8 * subBlockSize**2
 #Compute the rest of the basic dimensions
 self.width = subDepth*2+self.tubeWidth
 self.height = subWidth

 # Compute the derived dimensions (for all copies)
 tubeVolume = self.tubeWidth**2 * self.depth
 self.tubesVolume = self.nCopies * tubeVolume
 tubeArea = 4*(self.depth * self.tubeWidth) - inPortArea
 self.tubesArea = self.nCopies * tubeArea
 self.coolingVolume = self.nCopies *
self.tubeWidth*self.depth*self.height \
 - self.tubesVolume
 # Face of sub-levels adjacent to tubes needs to be walled off.
 # This is an over-estimate.
 self.wallArea = (self.depth * self.height - inPortArea) * 2 *
self.nCopies

 # Print numbers for this level...
 print "Level %d, width %.3g height %.3g depth %.2e "\
 "product size %.3g"% \
 (self.thisLevel, self.width, self.height, self.depth,

self.blockSize)
 print " %g copies, volume of tube %g, surface of tube %g"% \
 (self.nCopies, self.tubesVolume, self.tubesArea)
 print " Volume of cooling %.3e m^3, surface area of walls %.
3e"% \
 (self.coolingVolume, self.wallArea)

def PrintDimensions(MaxLevel):
 "print width, height, depth, product size of stage, volumes, etc"
 #Initialize dimensions for production module
 dims = Dimensions(MaxLevel)

 #Set up summing variables
 TotalModuleVolume = dims.nCopies * dims.width * dims.depth *
dims.modHeight
 TotalCoolingVolume = dims.coolingVolume
 TotalGapSurface = 0
 TotalTubeVolume = 0 # No tubes yet at level 0
 TotalTubeArea = 0
 TotalTubeLength = 0 # Total for all tubes in system
 PathLength = 0 #Single path through all levels
 TotalWallArea = 0 #Area of wall adjacent to tubes; Level 0 wall is
computers

 while dims.thisLevel < MaxLevel:
 dims.NextLevel()
 TotalTubeLength = TotalTubeLength + dims.depth * dims.nCopies
 PathLength = PathLength + dims.depth
 TotalTubeVolume = TotalTubeVolume + dims.tubesVolume
 TotalTubeArea = TotalTubeArea + dims.tubesArea
 TotalCoolingVolume = TotalCoolingVolume + dims.coolingVolume
 TotalWallArea = TotalWallArea + dims.wallArea
 print "Total volumes: cooling %g tubes %g modules %g total %g"% \
 (TotalCoolingVolume, TotalTubeVolume, TotalModuleVolume, \
 TotalCoolingVolume+TotalTubeVolume+TotalModuleVolume)
 print "Total surface: tubes %g walls %g"%(TotalTubeArea,
TotalWallArea)
 print "Max path length %g; total tube length %g"% \
 (PathLength, TotalTubeLength)

Print the answers...

print
print "Factory sizes..."
PrintDimensions(15)

#######################################
Part 3: Coolant flow
#######################################

Coolant viscosity, Ns/m^2
VisNSpM2 = 8e-4
Heat capacity, J/m^3
CoolJpM3 = 1.2e8
Heat per block, W
HeatBlkW = 8e-9
Length per block, m
LengthBlkM = 16.2e-6
Cooling channel width, m
WidthBlkM = 16.4e-6
Cooling channel height (gap between modules), m
HeightChanM = 1e-6

Formula for rectangular flow, from
http://www.geocities.com/invitation21/DPZT_flow.htm
a, b = 1/2 width, height of the duct, a >> b
def fa_b(a, b):
 # Dimensionless
 return 1 - (192*a / (pi**5 * b) * tanh(pi*b / (2*a)))

def DeltaP(width, height, length, velocity):
 # Make sure units match!
 a = 0.5*width
 b = 0.5*height
 return 3*VisNSpM2*length*velocity/(a*a * fa_b(a,b))

def PascalToAtm(pres):
 return pres/101325

def PascalToPSI(pres):
 return PascalToAtm(pres)*14.2

def FlowRateNBlocks(n):
 # Flow velocity
 power = n*HeatBlkW
 volume = n*WidthBlkM*LengthBlkM*HeightChanM
 timeToHeat = volume*CoolJpM3/power
 # The fluid must flow the length of the channel in timeToHeat
 return n*LengthBlkM/timeToHeat

def DeltaPNBlocks(n):
 return DeltaP(WidthBlkM, HeightChanM, n*LengthBlkM, FlowRateNBlocks
(n))

print
for i in [16384, 2048, 512]:
 pPa = DeltaPNBlocks(i)
 print "Pressure for %d blocks is %d Pa (%.1f atm), flow %f m/s" %\
 (i, pPa, PascalToAtm(pPa), FlowRateNBlocks(i))

Appendix B. Projections from the Merkle assembler

The purpose of this Appendix is to explore the mechanochemical techniques and design
capabilities that may be implied by the successful development of early mechanochemical
fabricators. Since molecular design can be expected to be difficult in early stages of
development, it will be important to re-use as many capabilities and components as
possible in the design of the nanofactory. Laboratory demonstrations of
mechanochemistry (e.g. Hla et al., 2000; Oyabu et al., 2003) have not yet approached the
capability of building complex parts, and design of such parts is at best preliminary and
unreliable. However, the development of a mechanochemical system implies the
existence of certain capabilities and devices. Based on a typical proposal for a primitive
fabricator, Merkle's "assembler" (1999), this analysis shows tentatively that most of the
capabilities and devices required for the nanofactory may be developed during the
development of the assembler. (In the present paper, "assembly" refers to the process of
joining relatively large components, usually without the use of chemistry. This is not to
be confused with the "assembler", a device that performs mechanochemistry.)

B.1. Mechanochemical baseline

Merkle has produced several designs for an assembler. The most recent (which builds on
his earlier work) is also the most detailed and the simplest. This assembler uses a double
tripod (Merkle, 1997c) for mechanochemistry and manipulation. The double tripod
design is sufficiently stiff to carry out mechanochemical operations with a high degree of
reliability at room temperature, and has sufficient range of motion to build a 200-nm
device. (Adding nested telescoping segments to the legs can increase the range of motion
without compromising stiffness when the extra segments are retracted.) The source of
chemicals is the solution that the assembler is floating in; this solution also serves as a
medium for the pressure pulses which drive the pistons. The assembler contains perhaps
half a billion atoms (Merkle's estimate), and molecules to be incorporated into the
product must be conveyed from chemical inputs in the assembler base to the growing
workpiece. The interior of the assembler is filled with neon; contaminants are rigorously
excluded by a gas-tight wall made of a single graphite sheet.

Although the assembler is not fully specified, either chemically or mechanically, we can
draw quite a few conclusions about its makeup. Merkle does not provide a list of the
chemicals, or even the elements, required to make his assembler. However, we can safely
assume that the elements include carbon and hydrogen. Chemical structures specifically
mentioned in the paper include a large graphite tube, polyyne rods in small (9,0)

buckytube sheaths (Merkle, 1997b), and diamond. It is safe to assume that the diamond
can be made in a variety of shapes necessary for the double tripod and other equipment,
probably including hollow beams, concave parts, and overhangs. Since half a billion
atoms cannot be specified manually, the majority of the chemical steps required to make a
range of diamond shapes must be determined by computer program. (This is plausible
since diamond lattice is repetitive.)

Since half a billion mechanochemical operations also cannot be tested individually, we
may assume that the required computer-controlled mechanochemical operations usually
work as desired. In other words, within some presently unknown limits, specification of a
volume can reliably result in its being filled with diamond lattice. Given the design
complexity of the assembler, it is likely that the assembler design process will result in a
fairly broad array of known-good diamond shape configurations. Note that this does not
require a full understanding of the limits of automated diamondoid chemistry. It is likely,
and will be assumed for the purposes of the present analysis, that proposed diamond
shapes can be approved or disapproved without requiring physical testing or detailed
simulation of their construction. Since the assembler design almost certainly involves a
variety of passivated surfaces, it may be assumed that diamond surfaces and graphite
edges may be passivated by automated design.

Friction between interfaces may vary by orders of magnitude depending on the detailed
surface characteristics. (Drexler, 1992, chap. 10) and (Merkle, 1993) have shown that it
should be possible to design sliding interfaces with no static friction and low dynamic
friction. Drexler analyzes several simple surfaces, compatible with diamond lattice, that
should have these characteristics. It will be assumed that semi-automated bulk diamond
design is compatible with use of such surfaces for planar sliding interfaces.

B.2. Chemistry, electronics, and mechanics

Merkle's assembler does not use electricity at all. However, electricity may be useful
both in the nanofactory and in its products. Graphite is a conductor, and can be used to
implement wires. (It conducts far better in-plane than between sheets.) A (9,0)
buckytube is a semiconductor with a small (few meV) band gap. Some buckytubes are
metallic conductors. Even if metallic buckytubes can't be made with the established
chemistry, at least some electronic logic circuitry can be manufactured with wires and
semiconductors; this possibility is not important for the nanofactory design, but may be of
interest for some products.

Although the mechanics are not completely specified, there are certain devices that must
be available for a fabricator design to work. In addition to the polyyne/buckytube
sheathed control cables, a double tripod design requires universal joints, rotating joints
with one and two degrees of freedom, at least one threaded joint, and sliding joints.
Ratchet drive mechanisms must include springs and interlocking parts. Rotating joints
may pose special difficulty in design and construction, because of the need for low
potential energy slopes at every angular position, but the nanofactory does not require a
large set of small rotating joints; most motion (e.g. rod logic) will be linear. Above a

certain size, a roughly cylindrical diamond shape or void can be sheathed or lined with
multiple layers of graphite (buckytubes), creating a circular and slippery cross-section.

An assembler must contain many parts that are not bonded to each other and therefore
would not be well supported if manufactured in place; this requires some capacity for
fabricating two parts and then moving them into conjunction. This further implies that a
variety of completed shapes can be picked up and then released by the double tripod.

A large number of diamondoid devices, including several useful classes of mechanism
such as bearings, rely on strained bonds. These bonds can be formed either during
mechanochemical fabrication, or as a result of assembly. Strained bonds formed
mechanochemically may require specialized manipulation, individually designed for each
part. Strained bonds formed during assembly are the result of mechanical bending
operations; a simple example is bending a straight diamond rod and joining the ends to
form a hoop (Drexler, 1992, sec. 11.3.2). The nanofactory design probably does not
require parts requiring mechanochemically strained bonds except for specific designs
already present in the assembler. Sufficiently large buckytubes collapse naturally due to
van der Waals force, providing a flat and unstrained work area, so are essentially
equivalent to graphite.

B.3. Mechanochemical error rate

Because of the lack of feedback to the controller, the construction process for Merkle's
assembler cannot detect and correct errors. Accordingly, error rates must be extremely
low. A single error in the 25,000,000-atom graphite sheath can allow contaminants to
enter and bond to the work in progress, destroying it. Although a misplaced atom in a
structural diamond component may not cause a fatal change in shape, subsequent
mechanochemical operations will likely fail as a result, propagating the error. Small
parts, and especially sliding surfaces, may be unable to tolerate even a single atom error.
Merkle's assembler makes only two copies and then destroys itself to release them. An
error rate that renders even half of the assemblers non-functional would result in an
overall failure to replicate. Accordingly, the error rate must be better than one in 25
million, and probably approaching or bettering one in a billion. More generally, we can
assume that an adapted fabricator system made with the available mechanochemical
processes will be likely to work reliably, and other devices of comparable complexity that
use only tested components will also be unlikely to fail as a result of mechanochemical
failure.

Acknowledgements

The author would like to thank Eric Drexler, Robert Freitas, James Logajan, Jeffrey
Soreff, Michael Vassar, and two anonymous reviewers for comments, review, and/or
math review on various versions of this paper.

References

Algor, Inc. (2003). Professional MEMS Simulation. Retrieved July 24, 2003 from
http://www.algor.com/products/Profes1511/default.asp

Bishop, F. (1996). A Description of a Universal Assembler. Proceedings of the 1996
IEEE International Joint Symposia on Intelligence and Systems (IJSIS '96), 126.
Retrieved July 24, 2003 from http://www.iase.cc/html/universal.htm

Blaze Network Products. (2003). Manufacturing Technology. Retrieved July 24, 2003
from http://www.blazenp.com/technology/manufacturing.html

Bradbury, R. J. (2003). Protein Based Assembly of Nanoscale Parts. Retrieved July 24,
2003 from http://www.aeiveos.com/~bradbury/Papers/PBAoNP.html

Cagin, T., Jaramillo-Botero, A., Gao, G., & Goddard, W.A., III. (1998). Molecular
mechanics and molecular dynamics analysis of Drexler-Merkle gears and neon pump.
Nanotechnology 9(3), 143-152. Retrieved July 24, 2003 from
http://www.wag.caltech.edu/foresight/foresight_1.html

Drexler, K. E. (1986). Molecular Engineering :Assemblers and Future Space Hardware.
Proceedings of the 33rd Annual Meeting of the American Astronautical Society, 86-415
1327-1332. Retrieved July 24, 2003 from
http://www.aeiveos.com/~bradbury/Authors/Engineering/Drexler-KE/MEAaFSH.html

Drexler, K. E. (1992). Nanosystems. New York: John Wiley & Sons.

Freitas, R. A., Jr. (1999). Nanomedicine Volume 1. Georgetown, TX: Landes Bioscience.
Retrieved July 24, 2003 from http://www.nanomedicine.com

Freitas, R. A., Jr., & Merkle, R. C. (in press). Kinematic Self-Replicating Machines.
Georgetown, TX: Landes Bioscience. [Not yet available]:
http://www.MolecularAssembler.com

GE Advanced Ceramics. (2002). Graphite Monochromators. Retrieved July 24, 2003
from http://www.advceramics.com/acc/products/graphite_monochromators/

Groening, O., Kuttel O. M., Emmenegger, C. H., Groening, P., & Schlapbach, G. L.
(2003). Field emission properties of nanocarbon structures. Switzerland: University of
Fribourg, Physics Department. Retrieved July 24, 2003 from http://www.fondazione-
elba.org/28.htm

Handbook of Chemistry and Physics (51st ed.). (1971). Cleveland, OH: The Chemical
Rubber Co.

Hall, J. S. (1993). Utility Fog: A Universal Physical Substance. Vision-21, Westlake, OH;
NASA Conference Publication 10129, 115-126 Retrieved July 24, 2003 from
http://www.aeiveos.com/~bradbury/Authors/Computing/Hall-JS/UFAUPS.html

Hall, J. S. (1999). Architectural Considerations for Self-replicating Manufacturing
Systems. Nanotechnology, 10, 323-330. Retrieved July 24, 2003 from
http://www.foresight.org/Conferences/MNT6/Papers/Hall/index.html

Halfhill, T. R. (1993, May). Intel Launches Rocket in a Socket. Byte, 92-108.

Hla, S., Bartels, L., Meyer, G., & Rieder, K. (2000). Inducing All Steps of a Chemical
Reaction with the Scanning Tunneling Microscope Tip: Towards Single Molecule
Engineering. Phys. Rev. Lett., 85, 13, 2777-2780. Summary retrieved July 24, 2003 from
http://www.aip.org/enews/physnews/2000/split/pnu503-2.htm

Ipe Nanotube Primer. (2001). Fabrication of single nanotube emitters. Retrieved July 24,
2003 from http://ipewww.epfl.ch/gr_buttet/Manips/Nanotubes/NTfieldemission3.htm

Intracel LTD. (2001). Model P2000 Laser Based Puller. Retrieved July 24, 2003 from
http://www.intracel.co.uk/suttp2000.htm

Kaehler, T. (1990). Molecular Carpentry. Foresight Update 10. Palo Alto, CA: The
Foresight Institute. Retrieved July 24, 2003 from
http://www.foresight.org/Updates/Update10/Update10.3.html

Kaehler, T. (1996). In-Vivo Nanoscope and the Two-Week Revolution. In B. C. Crandall
(Ed.), Nanotechnology. Boston: MIT Press.

Kozierok, C. M. (2001). ECC [Error Correction Code]. The PC Guide. Retrieved July 30,
2003 from http://www.pcguide.com/ref/ram/errECC-c.html

Merkle, R. C. (1993). A Proof about Molecular Bearings. Nanotechnology, 4, 86-90.
Retrieved July 24, 2003 from http://www.zyvex.com/nanotech/bearingProof.html

Merkle, R. C. (1997a). Convergent assembly. Nanotechnology, 8(1), 18-22. Retrieved
July 24, 2003 from http://www.zyvex.com/nanotech/convergent.html

Merkle, R. C. (1997b). Binding sites for use in a simple assembler. Nanotechnology, 8(1),
23-28. Retrieved July 24, 2003 from http://www.zyvex.com/nanotech/bindingSites.html

Merkle, R. C. (1997c). A New Family of Six Degree of Freedom Positional Devices.
Nanotechnology, 8(2), 47-52. Retrieved July 24, 2003 from
http://www.zyvex.com/nanotech/6dof.html

Merkle, R. C. (1997d). A proposed metabolism for a hydrocarbon assembler.
Nanotechnology, 8(4), 149-162. Retrieved July 24, 2003 from
http://www.zyvex.com/nanotech/hydroCarbonMetabolism.html

Merkle, R. C. (1998). Theoretical studies of diamond mechanosynthesis reactions.
Nanotechnology, 9, 285-296. Retrieved July 24, 2003 from
http://www.zyvex.com/nanotech/mechanosynthesis.html

Merkle, R. C. (1999). Casing an assembler. Nanotechnology, 10, 315-322. Retrieved July
24, 2003 from http://www.zyvex.com/nanotech/casing.html

Merkle, R. C. & Freitas, R. A., Jr. (2003). Theoretical analysis of a carbon-carbon dimer
placement tool for diamond mechanosynthesis. J. Nanosci. Nanotechnol. 3, 1-6.
Retrieved July 24, 2003 from http://www.rfreitas.com/Nano/DimerTool.htm

MinFeng, Y., Mark J. D., Skidmore, G. D., Henry W. R., XueKun, L., Ausman, K. D.,
Von Ehr, J. R., & Ruoff, R. S. (1998). 3 Dimensional Manipulation of Carbon Nanotubes
under a Scanning Electron Microscope. Draft paper for a talk at the Sixth Foresight
Conference on Molecular Nanotechnology. November 12-15, Santa Clara, CA. Retrieved
July 24, 2003 from
http://www.zyvex.com/Research/Publications/papers/Foresight98.html

Morrison, M. (2002). Breakthrough Compression Technology for the Semiconductor
Industry - GDSII and MEBES Formats. SolutionSoftSystems Inc. Retrieved July 24, 2003
from http://www.solution-soft.com/gds_mebes_compressors.shtml

Nowicki, A. (2003). Structural Materials. Earth to Orbit Transportation Bibliography.
Retrieved July 24, 2003 from http://www.islandone.org/LEOBiblio/SPBI1MA.HTM

Olson, S. (2002). Interview with Scott Mize. NanoMagazine.com. Retrieved July 24,
2003 from http://www.nanomagazine.com/2002_08_16

Optics.org. (2001). Diamond LED Sparks Laser Hopes. Retrieved July 24, 2003 from
http://optics.org/articles/news/7/6/15/1

Oyabu, N., Custance, O., Yi, I., Sugawara, Y., & Morita, S. (2003). Mechanical vertical
manipulation of selected single atoms by soft nanoindentation using a near contact atomic
force microscope. Phys. Rev. Lett., 90, 176102. Summary retrieved July 24, 2003 from
http://focus.aps.org/story/v11/st19

Popovich, K. (2002). Intel Rolls Out Mobile Pentium 4 Chip. eWeek. Retrieved July 24,
2003 from http://www.eweek.com/article2/0,3959,73697,00.asp

Salisbury, D. F. (2001). Turning diamond film into solar cells. Exploration. Retrieved
July 24, 2003 from http://exploration.vanderbilt.edu/news/news_diamond.htm

Sinnott, S. B, Colton R. J, White, C. T,. Shenderova O. A, Brenner, D. W., & Harrison,
J. A. (1997). Atomistic simulations of the nanometer-scale indentation of amorphous-
carbon thin films. American Vacuum Society. Retrieved July 30, 2003 from
http://pyramid.spd.louisville.edu/~eri/papers_pres/sinn6.pdf

Sullivan, J. P. (2002). Amorphous Diamond for MEMS. Paper presented at the
American Physical Society, Indiana Convention Center. Abstract retrieved July 25, 2003
from http://www.eps.org/aps/meet/MAR02/baps/abs/S3280005.html

Telling, R. H., Pickard, C. J., Payne, M. C., & Field, J. E. (2000). Theoretical Strength
and Cleavage of Diamond. Physical Review Letters, 84(22), 5160-63. Retrieved July 25,
2003 from http://www.tcm.phy.cam.ac.uk/~cjp20/publications/PRL84_5160.pdf

TOP500.Org. (2002). Top500 Computer Sites: Earth Simulator. Retrieved July 25, 2003
from http://www.top500.org/top5/2002/11/one/

Tunkel, R. N. (2002). DPZT_flow. Retrieved July 25, 2003 from
http://www.geocities.com/invitation21/DPZT_flow.htm

Weisstein, E. (2002). CRC Concise Encyclopedia of Mathematics, 2nd. ed. Boca Raton,
FL: CRC Press.

Whitney, D. E., Peschard, G., & Artzner, D. (1998). Voices from Engine Plants. MIT
International Motor Vehicle Program. Retrieved July 25, 2003 from
http://web.mit.edu/ctpid/www/Whitney/morepapers/voices.pdf

World Factbook 2002. (2002). Central Intelligence Agency (editor). Retrieved July 25,
2003 from http://www.cia.gov/cia/publications/factbook/print/us.html

