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ABSTRACT 
This paper describes a case study and design flow of a secure 
embedded system called ThumbPod, which uses cryptographic 
and biometric signal processing acceleration. It presents the 
concept of HW/SW acceleration transparency, a systematic 
method to accelerate Java functions in both software and 
hardware. An example of acceleration transparency for a Rijndael 
encryption function is presented. The embedded prototype 
hardware platform is also described. Acceleration transparency 
yields software and hardware performance gains of 333X. 

Categories and Subject Descriptors 
E5 [Case Studies]; E3 [HW/SW Co-Design]: specification, 
modeling, co-simulation and performance analysis, system-level 
scheduling and partitioning.  

General Terms 
Performance, Design, Experimentation. 

1. INTRODUCTION 
The field of embedded systems is growing at a rapid rate, as 

evidenced by the burgeoning market for cellular phones, PDAs, 
digital camcorders, smart cards, and other intelligent portable 
devices in the last decade or so. Recent interest has piqued in 
security of embedded systems, as many of these systems contain 
or transmit sensitive data. Application convergence in embedded 
systems is also another area of interest, as hybrid solutions of 
phones and PDAs, GPS receivers and watches, etc. enter the 
marketplace. 

This paper describes the design flow of a secure embedded 
system called ThumbPod [1]. ThumbPod is a driver for our 
research in domain-specific processing techniques and design 
methods. It is embedded system which consists of a 32-b Sparc 
microcontroller, a fingerprint image sensor, signal processing 
hardware acceleration, cryptographic hardware acceleration, and a 
memory module enclosed within a form factor similar to an 
automobile keychain transmitter. A concept drawing is seen in 
Figure 1. ThumbPod will offer flexible communication via two 
ports: 1) an infrared port for wireless communication and 2) a 

USB port for fast wire-line communication. ThumbPod represents 
the application convergence of several domains, all of which are 
biometrically secured. Potential applications include wireless 
credit card payments, keychain flash memory replacement, 
universal key functionality (house, car, office), storage of 
sensitive medical data, and IR secure printing.  

 

1.1 Cryptography & Biometrics 
In the design of ThumbPod, two particular domains require 

implementation consideration. The first domain is the domain of 
cryptography, in our case secret-key (symmetric-key) 
cryptography. Secret-key cryptography is based on the premise 
that two users share a secret key that is known only to them. In 
order to securely communicate with one another, this key is used 
both for encryption and decryption purposes.  

The most recent standard for symmetric-key cryptography is 
the Rijndael algorithm, which was made into the NIST AES 
(Advanced Encryption Standard) in 2001 [2]. For the purposes of 
ThumbPod, Rijndael is a block cipher which takes in a 128-b 
block of plaintext and produces a 128-b block of ciphertext based 
on a 128-b secret key. Arithmetically, the Rijndael algorithm 
performs computationally-complex functions such as byte 
substitution, mathematic operations over a Galois field GF(28), 
row shifting, column shifting, and frequent xor operations. Due to 
this complexity, acceleration of the Rijndael function is desirable. 

The other domain that requires implementation consideration 
is biometric fingerprint signal processing. Fingerprint biometrics 
can be used as the means to identify a user to a system. In 
ThumbPod, the entire fingerprint verification process is 
performed within the embedded system (not on an server). At the 
computational core of the fingerprint verification process are the 
minutia detection and matching algorithms. These algorithms 
require signal processing functionality such as image 
enhancement, Fourier transforms, edge detection, etc. Due to the 
complexity of signal processing functionality, acceleration for the 
fingerprint verification process is also desirable. 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
DAC 2003, June 2-6, 2003, Anaheim, California, USA. 
Copyright 2003 ACM 1-58113-688-9/03/0006…$5.00. 
 

Figure 1. ThumbPod concept drawing. 
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1.2 ThumbPod Authentication Protocol 
We have developed a protocol for wireless credit card 

transactions which utilizes ThumbPod and its biometric 
authentication capabilities. Though the details of the protocol are 
beyond the scope of this paper, the protocol in essence is based on 
secret-key cryptography using the Rijndael algorithm. In the 
protocol, the secret key is a 128-b representation of the user’s 
fingerprint. This secret key is stored at the financial institution’s 
central server and stored (in a different format) on the user’s 
ThumbPod.  

In order to make a transaction at a merchant’s register, the 
user uses the ThumbPod’s IR port to initiate communication with 
the register. A series of challenge and response functions is 
negotiated between the user and the financial institution’s central 
server, all routed through the merchant’s register (which cannot 
interpret the data because it does not posses the key). In the 
course of the authentication protocol the user places his finger on 
the fingerprint sensor to ensure the ThumbPod is his (and not 
stolen or fraudulent). This information is processed within the 
ThumbPod and, if a match is made, cryptographic hash functions 
and keys are generated using Rijndael and the protocol continues 
to its completion.  

The protocol is an example of a complex application in which 
ThumbPod requires both cryptographic and signal processing 
functionality. There are various other protocols for other 
ThumbPod applications, all of which share the common 
denominators or cryptography and biometric signal processing. 
Some applications, such as encryption/decryption for audio and 
video systems, require encryption rates beyond the capacity of 
embedded software implementations and require hardware 
acceleration. 

The rest of the paper describes Java acceleration and a design 
method called hardware/software acceleration transparency used 
to simultaneously allow for selective acceleration as well as 
incremental refinement of the design flow.  
 

2. JAVA ACCELERATION  
In our embedded design flow, Java was used for its well-

known portability and security advantages [3]. The issue of 
portability is important in embedded systems because of their 
high processor heterogeneity. Java’s security advantages—such as 
a safe memory model, byte-code verification, cryptographic 
interface libraries, and the sandbox model—are important in the 
design of secure systems.  

However, though advantages exist in these domains, Java has 
one primary drawback: performance. A Java application is slower 
than its counterpart in C, and much slower than its counterpart in 
pure hardware. An example of Java’s performance drawback can 

be seen in Table 1, where the 128-b input, 128-b key Rijndael 
function in Electronic Code Book (ECB) is performed. The Java 
(KVM) and C figures are on a 1 mW / 1 MHz Sparc processor. 
This configuration is used to emulate an embedded environment. 
The ASIC figures are based on a recent implementation 
performed by our research group [4]. As can be seen in the table, 
a hardware solution is five orders of magnitude superior in both 
performance and energy consumption (as measured in Gb/s per 
Watt). For streaming encryption applications described in the 
previous section, pure embedded software solutions are 
inadequate. Hardware acceleration is required. 
Table 1. Comparison of 128-b Rijndael on different platforms. 

Platform Throughput Power Gb/s / W 

Java 450 bits/s 120 mW 0.00042 

C 345 Kbits/s 120 mW 0.029 

0.18 µm ASIC 2.29 Gb/s 56 mW 35.7 
 

2.1 HW/SW Acceleration Transparency 
In order to incorporate software and hardware acceleration 

and simultaneously allow for incremental refinement in the design 
flow process, we have used a technique called hardware software 
acceleration transparency in our design. HW/SW acceleration 
transparency is described below in further detail and involves 
three closely related items: 1) incremental acceleration, 2) Java 
function emulation, and 3) interface transparency. 

The goal of acceleration transparency is to begin with Java 
code on a workstation and to conclude with an embedded 
prototyped system (with hardware acceleration) whose Java code 
is identical to the initial code, except for coping with 
communication issues and processor and hardware support. The 
main consequence of this method is that code writing and 
validation becomes easier, providing a gain in terms of 
development time and quality. 

 

2.2 Incremental Refinement Acceleration 
The first principle of acceleration transparency is incremental 

refinement acceleration. In the example shown in Figure 2a, a 
Java application calls a Rijndael method. Based upon profiling 
results, if the performance of the pure Java solution is inadequate, 
it can be accelerated using a C function, as shown in Figure 2b. 
Rather than designing a custom interface to the C Rijndael 
function, as shown in the dotted line in Figure 2b, the application 
accesses the function through the Java Native Interface (JNI). If 
profiling and comparison with system specifications determine 
that hardware acceleration is required, a crypto-processor can be 
designed and interfaced to the Java application. However, this 

Figure 2. HW/SW acceleration transparency. 
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crypto-processor does not directly interface with the Java 
application (as shown in the dotted line in Figure 2c) but is 
accessed via assembly instructions by a skeletal C function, which 
itself is accessed by the Java application via the JNI. Though it 
seems wasteful in terms of overhead to use these interfaces, 
incremental refinement allows for a smoother design flow than 
creating custom interfaces at each of the design levels. Methods 
for the design of domain-specific co-processors can be found in 
[11]. 

 

2.3 Java Function Emulation 
HW/SW acceleration transparency also includes Java function 

emulation, a term used to describe the interface relationship 
between the Java application and the accelerated function. For 
example, a Java application wishes to access a Rijndael function 
via a function call rijndael(). From the above discussion, the 
Java application has one of three alternatives to obtain the 
implementation: 1) a Java function, 2) a C function, or 3) 
hardware acceleration.  

HW/SW acceleration transparency means that, to the Java 
application, each of these alternatives is accessed with the same 
Java function signature. In the pure Java case, this is already 
apparent: A Java Rijndael function is accessed by the Java 
application with a simple function call rijndael(). For C 
acceleration, interfaces are constructed such that the Java 
application can access the C Rijndael function with the same 
function call rijndael(). For hardware acceleration, HW/SW 
interfaces to the crypto-processor are designed such that Rijndael 
functionality is again accessed by the same function call 
rijndael(). In this way, from the Java application vantage 
point, each of these alternatives “looks” exactly the same. To the 
application, each of the three alternatives takes in the same input, 
produces the same output, and is accessed by the same Java 
function and hence functionally is the same, as seen in Figure 2d, 
Figure 2e, and Figure 2f.  

 

2.4 Interface Transparency 
Implicit to the previously mentioned Java function emulation 

is the concept of interface transparency. This is also illustrated in 
Figure 2. Interface transparency (from which we derive the 
transparency term of HW/SW acceleration transparency) means 
that to the Java application, all the interfaces in between it and the 
acceleration implementation are transparent. In other words, the 
Java application can directly “see” the acceleration 
implementation (which looks to it like a Java function) regardless 
of the number of interfaces. Interface transparency essentially 
raises co-processor control a number of abstraction layers directly 
to the Java application level. 

2.5 Advantages and Potential Drawbacks 
Using HW/SW acceleration transparency to facilitate Java 

acceleration has the following advantages: 

• Smooth interface design flow. Using HW/SW acceleration 
transparency, we build our interfaces incrementally. Instead 
of tearing down the previous interface and starting from 
scratch at each abstraction level, the next interface 
incrementally refines the previously constructed interface. 
Thus, the interface design flow is smooth and continuous. 

• System performance modeling and verification. Using 
HW/SW acceleration transparency allows for system 
performance modeling at each abstraction level. As each 
accelerated function is placed into the overall system, the 
hybrid system can be re-benchmarked and the performance 
gains ascertained.  

• Smooth Java application design flow. As the system 
progresses from software to hardware, the original Java 
application requires only minor modification. Using HW/SW 
transparency implies that each of the acceleration modules 
“looks” like the initial Java function in the original 
application; hence, the original Java application can remain 
the same (or relatively unchanged) from the beginning 
functional simulation to the final HW/SW system 
implementation. 

• Reconfiguration. Once the interface hierarchy is 
constructed, a new acceleration module can be appended to 
the system through the pre-designed interfaces. A system can 
thus be reconfigured in a systematic way. 

There are a few potential drawbacks to HW/SW transparency 
acceleration: 

• Interface overhead. Interface overhead is the cost, in cycle 
count, of going through the many layers of interface 
abstractions to reach the acceleration module.  Obviously, if 
the interface overhead outweighs the performance/power 
gains of acceleration, then the acceleration should not be 
performed. This topic will be discussed in further detail in a 
section below. 

• Design time. It takes a considerable amount of time to 
construct the interface hierarchy from abstraction level to 
abstraction level. However, as stated earlier, in the end this 
may actually save overall design time due to the incremental 
interface construction. 
 

2.6 Rijndael Example 
This section of the paper describes an example of HW/SW 

acceleration transparency and gives performance measurements 
for interface overhead. All the advantages of HW/SW 
acceleration transparency described in earlier sections would be 
moot if the interface overhead were too large. We are therefore 
interested in quantifying the overhead of different abstraction 
levels as we go down from C to hardware. Our simulation 
environment consists of a cycle-true LEON-Sparc simulator [10]. 
C code is compiled with the GNU C compiler gcc V3.2 with full 
optimization (-O2). Java byte-code is interpreted on the KVM 
embedded virtual machine from the Java2 Micro Edition. Thus, 
cycle counts for Java are cycles of the target LEON-Sparc which 
runs KVM that in turn runs the Java program. 

We start by choosing the aforementioned interface 
specification of the Rijndael in Java and C. We use a 128-bit key 
and 128-bit data block. 
 
Java:  int[] rijndael(int[] key, int []din) 
C:     void rijndael( int din[4], int key[4], 
int dout[4])  
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A pure Java implementation for Rijndael on top of KVM 
takes 301,034 cycles, as shown in Figure 3. All numbers in the 
figure are for one iteration of the Rijndael algorithm, starting from 
the Java function call. Startup overhead, such as setting up the C 
or Java runtime environments, is not included.  

A first refinement to the pure Java model is to substitute the 
pure Java implementation with a native implementation in C. A 
native method in Java is seen Figure 4a. The corresponding C 
implementation is shown in Figure 4b. A function renaming is 
required in order to reflect the position of the native method in the 
Java class hierarchy. The C implementation then can forward 
control to the implementation of the rijndael() function.  

The rijndael() function of Figure 4b can, at first, call an 
implementation of the Rijndael algorithm in C. When we use the 
NIST reference code, we obtain the figures as shown in the 
second column of Figure 3. We have 44,430 cycles per Rijndael 
call, of which 367 can be attributed to the interfacing part (Figure 
3a and b) and the rest to native implementation. Overall we gain 
6.8X performance. 

The next step is to substitute the C implementation with a 
native hardware implementation of the Rijndael algorithm. We 
use a hardware coprocessor that completes a 128-bit encryption in 
11 clock cycles. This hardware processor is interfaced to the co-
processor interface of the Sparc, and programmed as shown in 
Figure 4c. The 128-bit key and data are provided with two 
double-word move instructions. In this case, the resulting 
performance was 903 cycles. Here, the interfaces turn out to 
consume the major part of the cycle budget. The actual encryption 
takes only 11 cycles; going from Java to hardware consumes 892 
cycles. The performance gain in going from Java to hardware is 
now 333X.  

We conclude that, while the performance gain of moving 
from Java to native implementation is substantial, it is not 
completely overhead-free. This overhead is primarily caused by 
moving data across the hierarchy levels in the model. We are 
refining our method to treat data- and control-flow separately, by 
which we expect this overhead to substantially decrease. In any 
case, the incremental refinement of the model is a major 
advantage from the design-flow point-of-view. 

 

3. DESIGN FLOW ABSTRACTION LEVELS 
The design of ThumbPod requires a number of abstraction 

levels, with each abstraction level requiring design decisions and 
interface construction. The smooth transition from one model to 

another allows for successive refinement of the system. This 
section enumerates the different abstraction levels and their 
particular characteristics. 

• Functional Model. The functional model models the entire 
ThumbPod financial protocol on a PC environment (Pentium 
processor) in Java. As shown in Figure 5a, this model 
includes a Rijndael encryption function performed in Java. A 
C function is also utilized to perform fingerprint verification 
signal processing. A C function rather than Java is used here 
in order to incorporate the NIST standard fingerprint 
detection algorithms given in C code [13]. This function 
interfaces with the application via JNI. Communication 
between modules (ThumbPod, register, and authentication 
server) is performed in a sequential main method. 

• Benchmarking Functional Model. In this abstraction level 
in Figure 5b the Rijndael function is accelerated as a C 
function for benchmarking purposes. An interface is 
constructed which allows the C Rijndael function to interface 
with the application via JNI. Rijndael performance 
measurements are compared with the functional model. 

• Transaction Level Model. In this abstraction level the 
communication between modules is modified to allow 
objects to communicate with one another in a transaction 
level manner, instead of being controlled by a sequential 
main method. The transaction-level applications 
communicate to one another via socket programming 
models. 

Figure 4. Rijndael acceleration transparency code. 
(a) Java interface calling native C (b) Native C 
forwards call to co-processor interface. (c) Co-
processor interface forwards call to co-processor. 
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Figure 3. Rijndael acceleration transparency. 

 

void rijndael(int din[4], int key[4], int dout[4]) {
asm(" mov    %0, %%l0" : : "r" (key));
asm(" ldd    [%l0],    %c0        ! upper double word key

ldd    [%l0+8],  %c2        ! lower double word key
cpop1  load_key %c0, %c2    ! load the key”);

asm(" mov    %0, %%l1" : : "r" (din));   
asm(" ldd    [%l1], %c0           ! upper double word data

ldd    [%l1+8], %c2         ! lower double word data
cpop1  encrypt_ecb %c0, %c2 ! encrypt AES-ECB
cpop1  read_output %c4, %c6 ! retrieve output data”); 

asm(" mov    %0, %%l2" : : "r" (dout));
asm(" std    %c4, [%l2]           ! store upper word output

std    %c6, [%l2+8]         ! store lower word output") ;
}

public final class RijndaelAlgorithm {
static native int[] rijndael(int[] din, int[] key) ;
public static void main(String args[]) {

...
dout = rijndael(key, din);
...

}
}

void Java_RijndaelAlgorithm_rijndael (void) {
ARRAY i1, i2;
ARRAY result = instantiateArray(INT,4);
i1 = popStackAsType(ARRAY);
i2 = popStackAsType(ARRAY);
rijndael(i1->data, i2->data, result->data);
pushStackAsType(ARRAY, result);

}

(a)

(b)

(c)
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• Embedded SW Implementation Model (PC). Since the 
goal of the project is to implement the ThumbPod on an 
embedded hardware platform, the next abstraction level is 
the embedded software implementation model. In this model, 
the ThumbPod application operates on KVM (an embedded 
virtual machine) rather than JVM, and communicates with 
the accelerated C functions through a customized KNI (JNI 
for KVM) interface, rather than a standard JNI interface. In 
this model the effects of the constrained embedded 
environment can be ascertained. 

• Embedded SW Implementation Model (Board). In this 
abstraction level, the ThumbPod application is moved 
entirely onto an embedded hardware platform. At this time 
the application runs on top of KVM operating on a C 
backbone on a LEON 32-b Sparc processor (FPGA). The 
acceleration continues to be performed in C. The FPGA 
board communicates with the PC via a UART and Java 
server proxy. 

• Embedded HW/SW Implementation Model. In this 
abstraction level, hardware acceleration is introduced both 
for biometric signal processing and for Rijndael encryption. 
The hardware co-processors (implemented within an FPGA) 
interface with the Java application via a C interface and KNI. 
This abstraction level demonstrates the applicability and 
performance of HW/SW acceleration transparency. 

4. EMBEDDED HARDWARE PLATFORM 
Figure 6 illustrates the prototype architecture of our concept 

demonstrator. The software architecture is built upon an 

embedded Java virtual machine (KVM) which has been extended 
with appropriate platform specializations. The KVM executes on 
top of a LEON Sparc processor [10], which in turn is configured 
as a soft-core in a Virtex XC2V1000 FPGA. Thus our prototype 
has three levels of configuration: Java, C and hardware. The 
prototyping environment is an Insight Electronics development 
board, which contains besides the FPGA also a 32 MByte DDR 
RAM. 

The LEON/Sparc core provides two interfaces: a high-speed 
AMBA bus interface (AHB) and a co-processor interface (CPI). 
Each interface has specific advantages toward domain-specific 
co-processors. The CPI offers an instruction- and register-set that 
is visible from within the Sparc instruction set, and allows a close 
integration of a domain-specific processor and the Sparc. The 
AMBA bus requires mapping of a co-processor through the 
abstraction of a memory interface. The CPI provides two 64-bit 
data ports and a 10-bit opcode port. 

The high speed AMBA bus contains a memory interface and a 
bridge to the peripheral bus interface (APB). The memory 
interface includes an interface to a 32 MByte DDR RAM 
memory. The AMBA peripheral bus (APB) contains the 
fingerprint processor and two UART blocks. One connection is 
used to attach a fingerprint sensor, while the second one is used to 
connect an application server. This server is used to download and 
debug applications, as well as to experiment with the security 
protocol. 

Table 2 indicates relevant gate counts and memory footprints 
for the application under development. 
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Table 2. Memory Footprints and CLB Counts. 

  Unit 
Embedded Java VM  339 Kbyte 

Pure Java Rijndael 11311 byte 

Java Rijndael calling native 530 byte 

Pure C Rijndael (Leon) 39488 byte 

C Rijndael calling native 8432 byte 

LEON processor 4810 Virtex2 LUT 

AES co-processor 2197 Virtex2 LUT  

5. PRIOR ART 
Interfaces have been the cornerstone of several different 

design methodologies. Interface-based design [6] introduces a 
clear separation between communication and behavior in a design 
with the goal of easier design verification and refinement. This 
idea is also followed by communication-based design [8] where 
the objective is to create a manageable communications 
architecture in a system-on-chip. It has also been shown with 
interface synthesis [5] that interface refinements can be done 
automatically. 

In this work we use interfaces as the driving point of 
refinement that move an application, which is initially described a 
high abstraction level, onto an embedded target. In coping with 
highly complex systems, we prefer to keep as much of the design 
work as possible in the higher abstraction levels. We refine only 
the parts which violate system specifications in terms of 
efficiency. The result is a layer of service interfaces that are 
specialized to a particular application. TinyOS [7] takes a similar 

approach to specialization, but works bottom-up. Support for top-
down design is important as well. 

Accelerator design at the instruction-set architecture level has 
shown to yield promising results [12]. Our work demonstrates that 
acceleration has an even wider span, and that it is possible to 
refine a single specification smoothly into a heterogeneous target 
architecture. 

6. CONCLUSIONS AND 
ACKNOWLEDGEMENTS 

This paper introduced the ThumbPod secure embedded 
system and described a design flow for the system. The concept 
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and interface transparency. A design flow example of the HW/SW 
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description of the embedded prototype architecture was also 
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Figure 6. Prototype architecture. 
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