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Abstract

In this paper, we propose four architectures for
intrusion-tolerant database systems. While traditional se-
cure database systems rely on prevention controls, an
intrusion-tolerant database system can operate through at-
tacks in such a way that the system can continue delivering
essential services in the face of attacks. With a focus on
attacks by malicious transactions, Architecture I can detect
intrusions, and locate and repair the damage caused by the
intrusions. Architecture II enhances Architecture I with the
ability to isolate attacks so that the database can be immu-
nized from the damage caused by a lot of attacks. Architec-
ture III enhances Architecture I with the ability to dynam-
ically contain the damage in such a way that no damage
will leak out during the attack recovery process. Architec-
ture IV enhances Architectures II and III with the ability to
adapt the intrusion-tolerance controls to the changing envi-
ronment so that a stabilized level of trustworthiness can be
maintained. Architecture V enhances Architecture IV with
the ability to deliver differential, quantitative QoIA services
to customers who have subscribed for these services even in
the face of attacks.

1 Introduction

The visions of Internet applications (e.g., e-commerce)
and pervasive computing not only push computations from
a computer into everywhere, but also maximize our de-
pendence on networked computing systems. Quickly in-
creased complexity, openness, inter-connection, and inter-
dependence have made these systems more vulnerable and
difficult to protect than ever. The inability of existing secu-
rity mechanisms to prevent every attack is well embodied in
several recent large-scale Internet attacks such as the DDoS
attack in Feb. 2000 [44]. These accidents convince the secu-
rity community that traditional prevention-centric security
is not enough and the need for intrusion-tolerant or attack-
resilient systems is urgent. Intrusion-tolerant systems, with

characteristics quite different from traditional secure sys-
tems [12, 3, 18, 40, 30], extend traditional secure systems
to be able to survive or operate through attacks. The focus
of intrusion-tolerant systems is the ability to continue deliv-
ering essential services in the face of attacks. New mech-
anisms of attack-resilient systems include but are not lim-
ited to intrusion detection, fragmentation, replication, mi-
gration, masking, isolation, containment, and recovery.

Being a critical component of almost every mission criti-
cal information system, database products are today a multi-
billion dollar industry. Database systems motivated 32%
of the hardware server volume in 1995 [41], and 39% of
the server volume in 2000. Improving the intrusion toler-
ance of database systems has a direct positive impact on the
technology that enables a variety of critical, trusted appli-
cations such as e-commerce, air traffic control, credit-card,
telecommunication control, and electricity and water supply
systems, that our everyday live depends on.

However, existing database security mechanisms are
very limited in tolerating intrusions. In particular, authen-
tication and access control cannot prevent all attacks; in-
tegrity constraints are weak at prohibiting plausible but
incorrect data; concurrency control and recovery mecha-
nisms cannot distinguish legitimate transactions from ma-
licious ones; and automatic replication facilities and active
database triggers can even serve to spread the damage.

A Multi-Layer Approach to Database Intrusion
Tolerance

Making a database system intrusion tolerant requires in
general a multi-layer approach, since attacks could come
from any of the following layers: hardware, OS, DBMS,
and transactions (or applications). A multi-layer approach
can be developed along two directions: (1) from scratch or
(2) using “off-the-shelf” components.

Along the from-scratch direction, tamper-resistant pro-
cessing environments [39], and trusted OS or trusted DBMS
loaders have been applied to close the door on hardware
attacks and OS bugs; certified programs [32, 38] and pro-
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tective compiler extensions [8] can be applied to close the
door on many DBMS bugs; and signed checksums (and a
small amount of tamper-resistant storage to keep the sign-
ing key) have been used to detect OS-level data corruption
[27]. However, the from-scratch approach is usually not a
cost-effective approach, and it cannot be used to tolerate au-
thorized transaction-level intrusions. For example, neither
trusted OS nor signed checksums can detect or repair the
data corruption caused by a malicious transaction issued by
an attacker assuming the identify of an authorized user.

Based on “off-the-shelf” components, OS-level attacks
have been addressed by several efforts. In [5], (signed)
checksums are smartly used to detect data corruption. In
[29] a technique is proposed to detect storage jamming, ma-
licious modification of data, using a set of special detect ob-
jects which are indistinguishable to the jammer from normal
objects. Modification of detect objects indicates a storage
jamming attack. Although these techniques can effectively
tolerant OS-level intrusions, they cannot handle authorized
but malicious transactions.

Our Focus and Contributions

In this paper, we focus on transaction-level intrusion-
tolerance, which, based on the fact that most attacks are
from insiders [6], should be the major threat to database
systems; and we propose five architectures for intrusion-
tolerant database systems. Although built using “off-the-
shelf” components, our frameworks cannot (directly) de-
fend against processor, OS, or DBMS-level attacks, when
the lower-level attacks are not so serious and when most
attacks are from malicious transactions, our framework
can still be very effective. Moreover, existing lower-level
intrusion-tolerance mechanisms such as those proposed in
[39, 27, 5, 29] can be easily integrated into our frameworks
to build a multi-layer, intrusion-tolerant database system.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses some related work. In Sections 3, 4, 5, 6,
and 7, we present five intrusion-tolerant database systems
architectures. Section 8 concludes the paper.

2 Related Work

Database security concerns the confidentiality, integrity,
and availability of data stored in a database. A broad span of
research from authorization [13, 34, 16], to inference con-
trol [1], to multilevel secure databases [46, 36], and to mul-
tilevel secure transaction processing [4], addresses primar-
ily how to protect the security of a database, especially its
confidentiality. Intrusion tolerance, however, is seldom ad-
dressed.

One critical step towards intrusion-tolerant database sys-
tems is intrusion detection (ID), which has attracted many
researchers [26, 31]. The existing methodology of ID can

be roughly classed as anomaly detection [17, 35, 19, 37]
or misuse detection[10, 14]. However, current ID research
focuses on identifying attacks on OS and computer net-
works. Although there has been some work on database
ID [7, 42], these methods are neither application aware nor
at the transaction-level.

The need for intrusion tolerance has been recognized by
many researchers in such contexts as information warfare
[12]. Recently, extensive research has been done in gen-
eral principles of survivability [18, 45, 11], survivability of
networks [30], survivable storage systems [47], survivable
application development via middleware [33], persistent ob-
jects [28], and survivable document editing systems [43].

Some research has also been done in database intrusion
tolerance. In [3], a fault tolerant approach is taken to sur-
vive database attacks where (a) several useful survivability
phases are suggested, though no concrete mechanisms are
proposed for these phases; (b) a color scheme for marking
damage (and repair) and a notion of integrity suitable for
partially damaged databases are used to develop a mecha-
nism by which databases under attack could still be safely
used.

Some of the architectures presented in this paper are di-
rectly or indirectly proposed, investigated (using detailed
system and algorithm designs), and evaluated (using pro-
totypes) by our previous research. In particular, Architec-
ture I is addressed in [2, 24]; Architecture II is addressed in
[22, 20]; and Architecture III is proposed in [21, 23]. How-
ever, Architectures IV and V are new. Although in [25] we
proposed a rule-based adaptation mechanism for intrusion-
tolerant database systems, [25] does not give a comprehen-
sive formal model for adaptive intrusion-tolerant database
systems, and such a model is presented by Architecture IV.
We include Architectures I, II, and III in this paper because
(a) we want to provide a comprehensive view of the funda-
mental problems in intrusion-tolerant database systems and
the corresponding set of promising solutions, and (b) the
three architectures build the foundation for Architectures IV
and V. It should be noticed that our focus is on architecture
level issues and the readers may need to refer to other papers
for more design and implementation details.

3 Scheme I

Since the property of database atomicity indicates that
only committed transactions can really change the database,
it is theoretically true that if we can detect every malicious
transaction before it commits, then we can roll back the
transaction before it causes any damage. However, this
“perfect” solution is not practical for two reasons. First,
transaction execution is, in general, much quicker than de-
tection, and slowing down transaction execution can cause
very serious denial-of-service. For example, the Microsoft
SQL Server can execute over 1000 (TPC-C) transactions
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Figure 1. Architecture I

within one second (see www.oracle.com), while the aver-
age anomaly detection latency is typically in the scale of
minutes or seconds. Detection is much slower since: (1)
in many cases detection needs human intervention; (2) to
reduce false alarms, in many cases a sequence of actions
should be analyzed. For example, [19] shows that when
using system call trails to identify sendmail attacks, syn-
thesizing the anomaly scores of a sequence of system calls
(longer than 6) can achieve much better accuracy than based
on single system calls.

Second, some authorized but malicious transactions are
very difficult to detect. They look and behave just like other
legitimate transactions. Anomaly detection based on the se-
mantics of transactions (and the application) may be the
only effective way to identify such attacks, however, it is
very difficult, if not impossible, for an anomaly detector to
have a 100% detection rate with reasonable false alarm rate
and detection latency.

Hence, a practical goal should be: “After the database is
damaged, locate the damaged part and repair it as soon as
possible, so that the database can continue being useful in
the face of attacks.” In other words, we want the database
system to operate through attacks.

Architecture I, as shown in Figure 1, combines intrusion
detection and attack recovery to achieve this goal. In partic-
ular, the Intrusion Detector monitors and analyzes the trails
of database sessions and transactions in a real-time man-
ner to identify malicious transactions as soon as possible.
Alarms of malicious transactions, when raised, will be in-
stantly sent to the Repair Manager, which will locate the
damage caused by the attack and repair the damage. During
the whole intrusion detection and attack recovery process,
the database continues executing new transactions.

Although there are a lot of anomaly detection algorithms
(for host or network based intrusion detection) [17, 35, 19,
37], they usually cannot be directly applied in malicious
transaction detection, which faces the following unique
challenges:

� Application semantics must be captured and used.

For example, for a school salary management appli-
cation, a $3000 raise is normal, but a $10000 raise
is very abnormal. Application semantics based in-
trusion detection is application aware. Since differ-
ent applications can have very different semantics,
general application-aware database intrusion detection
systems must support dynamic integration of applica-
tion semantics. Since different anomaly detection al-
gorithms may be good for different application seman-
tics, a general application-aware database intrusion de-
tection system must adapt itself to application seman-
tics.

� Multi-layer intrusion detection is usually necessary
for detection accuracy. First, proofs from application
layer, session layer, transaction layer, process layer,
and system call layer should be synthesized to do in-
trusion detection. Lower level proofs can help iden-
tify higher level anomalies. Second, OS-level and
transaction-level intrusion detection should be coupled
with each other.

We suggest a flexible cartridge-like detector to address
these challenges. The detector is a cartridge which should
be general enough to plug in a variety of (a) anomaly de-
tection algorithms, (b) application semantics extraction al-
gorithms, and (c) application semantics based adaptation
policies. The user should be able to prepare some of these
algorithms and policies. The detector should provide the
interfaces for the user to pick existing and provide new bul-
lets, and the detector should not be required to rebuild itself
again and again to support each new bullet. (Here each bul-
let indicates an algorithm or a policy that the detector wants
to plug in.) In this way, one detector can be used to meet
the intrusion detection needs of multiple applications. Flex-
ibility and expressiveness are the key challenges for devel-
oping such a detector. In [15], we have developed a simple
cartridge like detector where bullets are supported through
DLL modules and a rule based mechanism is used to build
the cartridge.

Malicious transactions can seriously corrupt a database
through a vulnerability denoted as damage spreading. In a
database, the results of one transaction can affect the exe-
cution of other transactions. When a transaction � � reads
a data object � updated by another transaction � � , �� is di-
rectly affected by �� . If a third transaction �� is affected
by ��, but not directly affected by �� , �� is indirectly af-
fected by �� . It is easy to see that when a (relatively old)
transaction �� that updates � is identified as malicious, the
damage to � can spread to every object updated by a good
transaction that is affected by ��, directly or indirectly. In a
word, the read-from dependency among transactions forms
the traces along which damage spreads.

The job of attack recovery is two-fold: damage assess-
ment and repair. In particular, the job of the Damage As-
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sessor is to locate each affected good transaction, i.e., the
damage spreading traces; and the job of the Damage Re-
pairer is to recover the database from the damage caused
on the objects updated along the traces. In particular, when
an affected transaction � is located, the Damage Repairer
builds a specific cleaning transaction to clean each object
updated by � (and not cleaned yet). Cleaning an object is
simply done by restoring the value of the object to its latest
undamaged version.

Temporarily stopping the database will certainly make
the attack recovery job simpler since the damage will no
longer spread and the repair can be done backwardly after
the assessment is done, that is, we can repair the database
by simply undoing the malicious as well as affected trans-
actions in the reverse order of their commit order. However,
since many critical database servers need to be 24*7 avail-
able and temporarily making the database shut down can
be the real goal of the attacker, on-the-fly attack recovery
which never stops the database is necessary in many cases.

On-the-fly attack recovery faces several unique chal-
lenges. First, we need to do repair forwardly since the as-
sessment process may never stop. Second, cleaned data ob-
jects could be re-damaged during attack recovery. Finally,
the attack recovery process may never terminate. Since as
the damaged objects are identified and cleaned new trans-
actions can spread damage if they read a damaged but still
unidentified object, so we face two critical questions. (1)
Will the attack recovery process terminate? (2) If the attack
recovery process terminates, can we detect the termination?

To tackle challenge 1, we must ensure that a later on
cleaning transaction will not accidentally damage an object
cleaned by a previous cleaning transaction. To tackle chal-
lenge 2, we must not mistake a cleaned object as damaged,
and we must not mistake a re-damaged object as already
cleaned. To tackle challenge 3, our study in [2] shows that
when the damage spreading speed is quicker than the repair
speed, the repair may never terminate. Otherwise, the repair
process will terminate, and under the following three con-
ditions we can ensure that the repair terminates: (1) every
malicious transaction is cleaned; (2) every identified dam-
aged object is cleaned; (3) further (assessment) scans will
not identify any new damage (if no new attack comes).

From a state-transition angle, the job of attack recovery
is to get a state of the database, which is determined by the
values of the data objects, where (a) no effects of the mali-
cious transactions are there and (b) the work of good trans-
actions should be retained as much as possible. In particu-
lar, transactions transform the database from one state to an-
other. Good transactions transform a good database state to
another good state, but malicious transactions can transform
a good state to a damaged one. Moreover, both malicious
and affected (good) transactions can make an already dam-
aged state even worse. We say a database state �� is better
than another one �� if �� has fewer corrupted objects. The

goal of on-the-fly attack recovery is to get the state better
and better, although during the repair process new attacks
and damage spreading could (temporarily) make the state
even worse.

Architecture I has the following properties: (1) It builds
itself on top of an “off-the-shelf” DBMS. It does not require
the DBMS kernel be changed. It has almost no impact on
the performance of the database server except that the Medi-
ator can cause some service delay and the cleaning transac-
tions can make the server busier. (2) The intrusion-tolerance
processes are all on-the-fly. (3) During attack recovery, the
data integrity level can vary from time to time. When the at-
tacks are intense, damage spreading can be very serious, and
the integrity level can be dramatically lowered. In this situa-
tion, asking the Mediator to slow down the execution of new
transactions can help stabilize the data integrity level, al-
though this can cause some availability loss. This indicates
that integrity and availability can be two conflicting goals in
intrusion tolerance. (4) More availability loss can be caused
when (a) the Intrusion Detector raises false alarms; or (b) a
corrupted object is located (It will not be accessable until it
is cleaned. Making damaged parts of the database available
to new transactions can seriously spread the damage). (5)
Inaccuracy of the Intrusion Detector can cause some dam-
age to not be located or repaired. (6) Architecture I is not
designed to and cannot handle physical world attack recov-
ery, which usually requires many additional activities. Log-
ically repairing a database does not always indicate that the
corresponding physical world damage can be recovered.

To justify the cost-effectiveness of Architecture I, we
have implemented a prototype of Architecture I on top of
an Oracle database server. Our preliminary testing mea-
surements suggest that when the accuracy of the Intrusion
Detector is satisfactory, Architecture I can effectively lo-
cate and repair damage on-the-fly with a reasonable impact
on (database) performance [24].

4 Scheme II

One problem of Architecture I is that during the detec-
tion latency of a malicious transaction �, i.e., the duration
from the time � commits to the time � is detected, damage
can seriously spread. The reason is that during the detection
latency many innocent transactions could be executed and
affected. For example, if the detection latency is 2 seconds,
then Microsoft SQL Server can execute over 2000 transac-
tions during the latency on a single system, and they can
access the objects damaged by � freely (since we do not
know which objects are damaged by � during the latency).

Quicker intrusion detection can mitigate this problem,
however, reducing detection latency without sacrificing the
false alarm rate or the detection rate is very difficult, if not
impossible. When the detection rate is decreased, more
damage is left unrepaired. When the false alarm rate is in-
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Figure 2. Architecture II

creased, more denial-of-service will be caused. These two
outcomes contradict the goal of Architecture I.

Architecture II, as shown in Figure 2, integrates a novel
isolation technique to tackle this problem. In particular,
first, the Intrusion Detector will raise two levels of alarms:
when the (synthesized) anomaly of a transaction (or ses-
sion) is above Level 1 anomaly threshold ���, the transac-
tion is reported malicious; when the anomaly is above Level
2 anomaly threshold ��� (but below ���), the transac-
tion is reported suspicious. (The values of ��� and ���

are determined primarily based on the statistics about pre-
vious attacks). Suspicious transactions should have a sig-
nificant probability that they are an attack. Second, when
a malicious transaction is reported, the system works in the
same way as Architecture I. When a suspicious transaction
�� is reported, the Mediator, with the help of the Isolation
Manager, will redirect �� (and the following transactions
submitted by the user that submits ��) to a virtually sepa-
rated database environment where the user will be isolated.
Later on, if the user is proven malicious, the Isolation Man-
ager will discard the effects of the user; if the user is shown
innocent, the Isolation Manager will merge the effects of
the user back into the main database. In this way, damage
spreading can be dramatically reduced without sacrificing
the detection rate or losing the availability to good transac-
tions.

We enforce isolation on an user-by-user basis because
the transactions submitted by the same user (during the
same session) should be able to see the effects of each other.
And the framework should be able to isolate multiple users
simultaneously. Isolating a group of users within the same
virtual database can help tackle collusive attacks, however,
a lot of availability can be lost when only some but not all
members of the group are malicious. Using a completely
replicated database to isolate a user has two drawbacks: (1)
it is too expensive; (2) new updates of unisolated users are
not visible to isolated users. In Architecture II, we use data
versions to virtually build isolating databases. In particu-
lar, a data object � always has a unique trustworthy version,

denoted �������. And only if � is updated by an isolated
user can � have an extra suspicious version. In this way, the
total number of suspicious versions will be much less than
the number of main versions.

The isolation algorithm has two key parts: (1) how to
perform the read and write operations of isolated users
(Note that unisolated users can access only the main
database); and (2) how to do merging after an isolated user
is proven innocent. For part 1, we can enforce one-way iso-
lation where isolated users can read main versions if they
do not have the corresponding suspicious versions, and all
writes of isolated users must be performed on suspicious
versions. In this way, the data freshness to isolated users is
maximized without harming the main database.

The key challenge in part 2 is the inconsistency between
main versions and suspicious versions. If a trustworthy user
and an isolated user update the same object � independently,
������� and the suspicious version will become inconsis-
tent, and one update has to be backed out in order to do
consistent merging. In addition, [22] shows that (1) even
if they do not update the same object, inconsistency could
still be caused; and (2) the merging of the effects of one
isolated user could make another still being isolated history
invalid. These inconsistencies must be resolved during a
merging (e.g., [22] proposes a precedence-graph based ap-
proach that can identify and resolve all the inconsistencies).

Architecture II has the following set of properties. (1)
Isolation is, to large extent, transparent to suspicious users.
(2) The extra storage cost for isolation is extremely low. (3)
The data consistency is kept before isolation and after merg-
ing. (4) During a merge, if there are some inconsistencies,
some isolated or unisolated transactions have to be backed
out to resolve these inconsistencies. This is the main cost
of Architecture II. Fortunately, the simulation study done in
[9] shows that the back-out cost is only about 5%. After
the inconsistencies are resolved, the merging can be easily
done by forwarding the left updates of the isolated user to
the main database. (5) Architecture II has almost no im-
pact on the performance of the database server except that
during each merging process (a) the isolated user cannot ex-
ecute new transactions; and (b) the main database tables in-
volved in the update forwarding process will be temporarily
locked.

We are now implementing an isolation subsystem proto-
type to further justify the cost-effectiveness of Architecture
II [20]. In order to transparently isolate a transaction on
top of a commercial single-version DBMS such as Oracle,
we need to (a) use extra tables to simulate multiple versions
and (b) rewrite the SQL statements involved in this trans-
action in such a way that the one-way isolation policy can
be achieved. Note that query rewriting could cause some
service delay to isolated users but not to unisolated users.
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5 Scheme III

Another problem of Architecture I is that its damage con-
tainment may not be effective. Architecture I contains the
damage by disallowing transactions to read the set of data
objects that are identified (by the Damage Assessor) as cor-
rupted. This one-phase damage containment approach has
a serious drawback, that is, it cannot prevent the damage
caused on the objects that are corrupted but not yet located
from spreading. Assessing the damage caused by a mali-
cious transaction � can take a substantial amount of time,
especially when there are a lot of transactions executed dur-
ing the detection latency of �. During the assessment la-
tency, the damage caused during the detection latency can
spread to many other objects before being contained.

Architecture III, as shown in Figure 3, integrates a novel
multi-phase damage containment technique to tackle this
problem. In particular, the damage containment process has
one containing phase, which instantly contains the damage
that might have been caused (or spread) by the intrusion
as soon as the intrusion is detected, and one or more later
on uncontaining phases to uncontain the objects that are
mistakenly contained during the containing phase, and the
objects that are cleaned. In Architecture III, the Damage
Container will enforce the containing phase (as soon as a
malicious transaction is reported) by sending some contain-
ing instructions to the Containment Executor. The Uncon-
tainer, with the help from the Damage Assessor, will en-
force the uncontaining phases by sending some uncontain-
ing instructions to the Containment Executor. The Contain-
ment Executor controls the access of the user transactions
to the database according to these instructions.

When a malicious transaction� is detected, the contain-
ing phase must ensure that the damage caused directly or
indirectly by � will be contained. In addition, the contain-
ing phase must be quick enough because otherwise either a
lot of damage can leak out during the phase, or substantial
availability can be lost. Time stamps can be exploited to
achieve this goal. The containing phase can be done by just

adding an access control rule to the Containment Execu-
tor, which denies access to the set of objects updated during
the period of time from the time � commits to the time
the containing phase starts. This period of time is called
the containing-time-window. When the containing phase
starts, every active transaction should be aborted because
they could spread damage. New transactions can be exe-
cuted only after the containing phase ends.

It is clear that the containing phase overcontains the
damage in most cases. Many objects updated within the
containing time window can be undamaged. And we must
uncontain them as soon as possible to reduce the corre-
sponding availability loss. Accurate uncontainment can be
done based on the reports from the Damage Assessor, which
could be too slow due to the assessment latency. [21] shows
that transaction types can be exploited to do much quicker
uncontainment. In particular, assuming that (a) each trans-
action �� belongs to a transaction type 	
������ and (b)
the profile for 	
������ is known, the read set template and
write set template can be extracted from 	
������’s profile.
The templates specify the kind of objects that transactions
of 	
������ can read or write. As a result, the approxi-
mate read-from dependency among a history of transactions
can be quickly captured by identifying the read-from depen-
dency among the types of these transactions. Moreover, the
type-based approach can be made more accurate by mate-
rializing the templates of transactions using their inputs be-
fore analyzing the read-from dependency among the types.

Architecture III has the following set of properties. (1)
It can ensure that after the containing phase no damage
(caused by the malicious transaction) leaks out. (2) As a
result, the attack recovery process needs only to repair the
damage caused by the transactions that commit during the
containing time window, and the termination problem ad-
dressed in Architecture I does not exist any longer. (3) One-
phase containment and multi-phase containment are the two
extremes of the spectrum of damage containment methods.
In particular, one-phase containment has maximum damage
leakage (so minimum integrity) but maximum availability,
while multi-phase containment has zero damage leakage (so
maximum integrity) but minimum availability. In the mid-
dle of the spectrum, there could be a variety of approximate
damage containment methods that allow some damage leak-
age.

Architectures II and III share the same goal, that is, to
reduce the extent of damage spreading, while they take two
very different approaches. We are pleased to find that these
two architectures are actually complementary to each other
and can be easily integrated into one architecture, as illus-
trated in Figure 4.
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6 Scheme IV

The intrusion-tolerance components introduced in Ar-
chitectures I, II, and III can behave in many different ways.
At one point of time, the resilience or trustworthiness of an
intrusion-tolerant database system is primarily affected by
four factors: (a) the current attacks; (b) the current work-
load; (c) the current system state; and (d) the current de-
fense behavior of the system. It is clear that based on
the same system state, attack pattern, and workload, two
intrusion-tolerant database systems (of the same Architec-
ture) with different behaviors can yield very different lev-
els of resilience. This suggests that one defense behavior
is only good for a limited set of environments, which are
determined by factors (a), (b), and (c). To achieve the max-
imum amount of resilience, intrusion tolerant systems must
adapt their behaviors to the environment.

Architecture IV, as shown in Figure 4, integrates a re-
configuration framework to handle this challenge. In par-
ticular, an Adaptor is deployed to monitor the environment
changes and adjust the behaviors of the intrusion tolerance
components in a way such that the adjusted system behavior
is more (cost) effective than the old system behavior in the
changed environment.

In Architectures I, II, and III, almost every intrusion-
tolerance component is reconfigurable and the behavior of
each such component is controlled by a set of a parameters.
For example, the major control parameters for the Intrusion
Detector are ��� and ���. The major control parameter
for the Damage Container is the amount of allowed damage
leakage, denoted 
�. When 
� � �, multi-phase con-
tainment is enforced; when there is no restriction on 
�,
one-phase containment is enforced. The major control pa-
rameter for the Mediator is the transaction delay time, de-
noted 
� . When 
� � �, transactions are executed in
full speed; when 
� is not zero, transaction executions are
slowed down. At time 	, we call the set of control param-

eters (and the associated values) for an intrusion tolerance
component ��, the configuration (vector) of � � at time 	,
and the set of the configurations for all the intrusion-tolerant
components, the configuration of the intrusion-tolerant sys-
tem at time 	. In Architecture IV, each reconfiguration is
done by adjusting the system from one configuration to an-
other configuration.

The goal of Architecture IV is to improve the resilience
of the system, which has three major aspects: (1) how well
the level of data integrity is maintained in the face of at-
tacks; (2) how well the level of data and system availability
is maintained in the face of attacks; and (3) how well the
level of cost effectiveness is maintained in the face of at-
tacks.

To do optimal reconfiguration, we want to find the
best configuration (vector) for each (new) environment.
However, this is very difficult, if not impossible, since
the adaptation space of Architecture IV systems con-
tains an exponential number of configurations. To illus-
trate, the simplest configuration of an Architecture IV sys-
tem could be ����� ���� 
��
� �, then the size of the
adaptation space is ����������� � ����������� �
�������
�� � �������
� �, which is actually huge.
Moreover, we face conflicting reconfiguration criteria, that
is, trustworthiness and cost conflict with each other, and in-
tegrity and availability conflict with each other. Therefore,
we envision the problem of finding the best system config-
uration under multiple conflicting criteria a NP-hard prob-
lem.

Architecture IV focuses on near optimal heuristic adap-
tation algorithms which can have much less complexity.
For example, a data integrity favored heuristic can work as
follows: when the level of data integrity, i.e., �� , is be-
low a specific warning threshold �� , (a) switch the sys-
tem to multi-phase containment, i.e., let 
� � �; (b)
slow down the execution of new transactions by 
� �

����������; and (c) lower the anomaly levels required
for alarm raising, that is, ��� � ��� � ���� � ���,
and ��� � ��� � ���� � ���. In this way, we reject
and isolate more transactions. Here the values of �, �,
and � are determined based on previous experiences. Note
that it is very possible that different (value) combinations
of ��� �� �� are optimal for different environments. Hence
it is worthy to have multiple such heuristics with different
combinations of ��� �� ��.

It is clear that under different environments different
heuristics are the most effective. For example, in some
cases integrity favored heuristics can be better, but in some
other cases availability favored heuristics can be better. Ar-
chitecture IV systems should have a mechanism to guide
the system to pick the right heuristic (for the current en-
vironment). For example, a rule-based mechanism can be
used for this purpose.
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7 Scheme V

The resilience achieved by Architecture IV is state-
oriented survivability, that is, the amount of resilience or
trustworthiness achieved by Architecture IV is specified,
measured, and delivered in terms of the database state. For
example, at time 	, an integrity level of 0.92 achieved by an
intrusion-tolerant database system that protects a database
of 10,000 data objects can simply mean that 800 objects are
corrupted, and an availability level of 0.98 can simply mean
that only 200 objects are not accessable. Note than Archi-
tecture IV does not differentiate between data objects.

Unfortunately, state-oriented, intrusion-tolerant database
systems have one serious drawback, that is, they are in
general not cost-effective in handling people’s intrusion-
tolerance requirements in the real world. In the real world,
different users usually have different intrusion-tolerance re-
quirements on the shared database system. For example,
in a bank, customer Alice could be able to tolerate much
less fraud loss on her accounts than Bob on his. In other
words, Alice has a much higher integrity level requirement
than Bob. In this situation, to satisfy both Alice and Bob,
Architecture IV has to achieve (and maintain) the integrity
level required by Alice across the whole database, and as
a result Architecture IV can waste substantial resources to
protect Bob’s accounts.

The drawback of state-oriented survivability motivates
the idea of service-oriented survivability where users’
intrusion-tolerant requirements are associated with each
(transaction processing) service, and the database system’s
goal is to make sure that the amount of resilience require-
ment associated with a service is satisfied when the ser-
vice is delivered. In particular, we call a service associated
with a specific level of trustworthiness a Quality of Infor-
mation Assurance (QoIA) service. And from the viewpoint
of users, the goal of a service-oriented, intrusion-tolerant
database system is enabling people to get the QoIA services
that they have subscribed for even in face of attacks. To
illustrate, in the above example a QoIA balance inquiry ser-
vice delivered to Alice could be associated with either one
of the following two trustworthiness levels: (1) above 90%
accounts involved in this service are not corrupted; (2) for
each account involved in this inquiry, the balance reported
is at least 90% of the correct balance.

It should be noticed that state-oriented survivability and
service-oriented survivability are closely related to each
other. Their relationship can be captured by the notions
of state trustworthiness, which is dependent on the extent
to which the data objects can be corrupted or made unavail-
able, and service trustworthiness, which is dependent on the
extent to which a service can be distorted by the attacker.
If we assume that the DBMS and all transaction codes are
trusted, then it is not difficult to see that the QoIA require-
ments associated with a service can be equivalently mapped

Console

Arch IV Systems QoIA Adaptor

Users

Observer Trustworthiness
Assessor

Malicious and 
legitimate transactions

QoIA Reservation

Figure 5. Architecture V

to a set of state trustworthiness requirements since each ser-
vice can be modeled as a function of the database state on
which the service is executed.

Architecture V, as shown in Figure 5, extends state-
oriented, intrusion-tolerant database systems to service-
oriented, intrusion-tolerant database systems. In particular,
the QoIA Reservation Console enables users to subscribe
for QoIA services. The Observer monitors (and measures)
the trustworthiness or healthiness of the database state.
The Trustworthiness Assessor uses the observed healthiness
measurements to infer the “real” healthiness of the database
state. The QoIA Adaptor enhances the Architecture IV
Adaptor with the ability to map QoIA requirements asso-
ciated with services to a set of state trustworthiness require-
ments and the ability to maintain differential state trustwor-
thiness. The adaptation operations performed by the QoIA
Adaptor are determined based on the difference between the
inferred set of state trustworthiness measurements and the
set of state trustworthiness requirements mapped from user
QoIA requirements.

To develop an Architecture V system, we face several
key challenges. First, although the QoIA requirements as-
sociated with a service can be straightforwardly specified
based on the results and outputs of the service, delivering
a set of QoIA services in a differential way is challeng-
ing. Our idea is to indirectly deliver QoIA services through
differential state trustworthiness maintenance via the map-
ping from QoIA requirements to state trustworthiness re-
quirements. Although it is not very difficult to map one
service’s QoIA requirements to a set of state trustworthi-
ness requirements based on the “function” performed by
the service, it could be difficult to resolve the inconsis-
tencies among the set of different state trustworthiness re-
quirements that the set of QoIA services have on a shared
data object. Second, how can we maintain differential state
trustworthiness? Our idea is to apply different intrusion
tolerance controls on different parts of the database. To
make this idea feasible, we need to make sure that one set
of intrusion-tolerance controls does not influence another
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set of intrusion-tolerance controls. Third, how do we en-
sure that the (mapped) state trustworthiness requirements
on a part of the database can be satisfied in the face of at-
tacks? Our idea is through QoIA-aware adaptations where
the set of intrusion-tolerance controls enforced on a part of
the database can adapt to the changing environment in such
a way that the set of state trustworthiness requirements can
be satisfied with minimum cost. To make this idea feasible,
we need to be able to accurately measure state trustworthi-
ness. However, this is not an easy job. The measurements
observed by the Observer are usually incomplete and could
even be misleading due to false negatives, false positives,
and detection delays. New techniques are needed to infer
the “real” trustworthiness of the database state based on the
observed measurements. For example, a statistics based ap-
proach could work for this purpose.

8 Conclusion

In this paper, we have presented five intrusion-tolerant
database-systems architectures which can be built on top of
COTS components. These architectures indicate that: (1)
a multi-layer, defense-in-depth approach, as summarized
in Figure 6, is usually more cost-effective than having the
system’s survivability depend on the effectiveness of one
or two mechanisms such as intrusion detection; (2) adap-
tive intrusion-tolerant mechanisms are usually more cost-
effective than pre-programmed intrusion tolerant mecha-
nisms; (3) service-oriented, intrusion-tolerant database sys-
tems are usually more cost-effective than state-oriented,
intrusion-tolerant database systems.

Finally, we would like to mention a couple of exciting
future research directions that should be able to further im-
prove the proposed architectures:

� Malicious transactions may be able to be masked by a
set of partially replicated database servers where each
server executes only a group of but not all transac-
tions. The key challenge for such a masking frame-
work should be the tradeoff between security and data
consistency.

� It is in general true that the accuracy and latency of the
Intrusion Detector can have a big impact on the overall
cost-effectiveness of an intrusion-tolerant (database)
system. Hence it is very desirable to know how “good”
a detector needs to be (in terms of false positive rate,
false negative rate, and detection latency) in order to
make an intrusion tolerant database system (of Archi-
tectures I, II, III, IV, or V) that deploys the detector,
cost-effective.

� OS-level and transaction-level intrusion-tolerance
mechanisms should be seamlessly integrated to build
multi-layer, intrusion-tolerant database systems. This
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Figure 6. Intrusion Tolerance in Depth

integration requires careful study of the relationships
between these two layers of mechanisms. For exam-
ple, although OS-level data corruptions cannot be de-
tected using transaction-level approaches, transaction-
level approaches can be very useful to recover from
these corruptions.
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