
Rewind, Repair, Replay: Three R’s to Dependability

Aaron B. Brown and David A. Patterson
University of California at Berkeley, EECS Computer Science Division

387 Soda Hall #1776, Berkeley, CA, 94720-1776, USA
{abrown,patterson}@cs.berkeley.edu
Abstract

Motivated by the growth of web and infrastructure ser-
vices and their susceptibility to human operator-related
failures, we introduce system-level undo as a recovery
mechanism designed to improve service dependability.
Undo enables system operators to recover from their inev-
itable mistakes and furthermore enables retroactive repair
of problems that were not fixed quickly enough to prevent
detrimental effects. We present the “three R’s”, a model of
undo that matches the needs of human error recovery and
retroactive repair; discuss several of the issues raised by
this undo model; and introduce an initial architectural
framework for undoable systems using the example of an
undoable e-mail service system.

1. Introduction

The need for a dependable computing infrastructure
has never been more urgent. The world is shifting to a
model where data is stored and maintained in centralized
servers and doled out to clients via network services; we
have seen the beginnings of this trend over the last few
years with the growth of Internet-based services, portals,
and e-commerce. As the trend accelerates further with the
deployment of technologies such as pervasive wireless
networking, mobile devices, .NET, and J2EE, the social
and financial impact of dependability problems in the
infrastructure promises to be enormous. 

One of the primary impediments to infrastructure
dependability today is the human operator (a.k.a. system
administrator). Human operator error is the leading cause
of outages across a spectrum of systems ranging from
Internet services to the US telephone network [2] [7] [14].
When operators don’t create outages, they often com-
pound them by not responding quickly enough to fix the
problems before damage is done. 

What are we to do? One option is to eliminate the
human operator entirely. This may work for small embed-
ded devices, but it doesn’t apply to the large systems with
hard state that make up the network service infrastructure
of the future. Furthermore, studies from psychology and
system accident theory leave little room for debate:

attempts to automate away human operators in large sys-
tems invariably fail due the automation irony1 [15].

The only viable alternative, then, is to build infrastruc-
ture systems that accept and compensate for the inevitable
weaknesses of their human operators. Future systems
should recover easily from operator mistakes, give the
operator an environment in which trial-and-error reason-
ing is possible, and harness the unique human capacity for
hindsight by allowing retroactive repairs once problems
have been manifested. There is a recovery mechanism that
has these properties, and it is one that we use every day in
our word processors and spreadsheets: undo. Unfortu-
nately, undo as a recovery model has been limited to the
application level, where it is insufficient to tackle the oper-
ational problems that plague infrastructure systems: opera-
tor errors made during upgrades and reconfiguration,
external virus and hacker attacks, and unanticipated prob-
lems detected too late for their effects to be contained.

To address these problems, we introduce system-level
undo, an undo-based recovery model that covers all levels
of the system, not just the application. The crux of our
undo model is that it disambiguates user intentions from
their manifestations in system state, allowing the undo
mechanism to repair problems in system state without los-
ing user data. 

Although the technological underpinnings of our undo
mechanism are simple—a combination of non-overwriting
storage and logging of user inputs—the policy choices in
an undo implementation are complex. Most challenging is
dealing with the problem of external inconsistency, where
the undo process alters or revokes erroneous state changes
that have already been seen by external end-users. Another
challenge lies in identifying and tracking state that should
be made recoverable through undo: a good undo mecha-
nism will preserve user data while allowing arbitrary

1 The automation irony captures two problems with automation.
First, automation shifts the burden of correctness from the operator to the
designer, requiring that the designer anticipate and correctly address all
possible failure scenarios. Second, as the designer is rarely perfect, auto-
mated systems almost always can reach exceptional states that require
human intervention. These exceptional states correspond to the most
challenging, obscure problems; psychological studies routinely show that
humans are most prone to mistakes on these types of problems, espe-
cially when automation has eliminated normal day-to-day interaction
with the system.



repairs to system state, and drawing the dividing line
between recoverable and non-recoverable changes is non-
trivial. A final challenge is in constructing an undo system
that works at multiple granularities: cluster-wide, per-sys-
tem, and per-user.

In the remainder of this paper, we expand on these
challenges, identifying possible solutions and integrating
them into an architectural framework for undo-capable
systems. We begin in Section 2 by defining the essence of
the undo process: the “Three R’s” of rewind, repair, and
replay. Section 3 puts the Three R’s into the context of
related work on undo systems. Section 4 delves deeper
into the issues and challenges raised by the Three R’s
model, and Section 5 introduces an architecture for Three
R’s-undo that addresses these challenges. Finally, we wrap
up with conclusions and future work in Section 6.

2. The Three R’s: an Undo Model Akin to 
Time Travel

To support retroactive repair and recovery from opera-
tor error, we propose an undo model based on a 3-step pro-
cess that we call “the three R’s”: Rewind, Repair, and
Replay. In the rewind step, all system state (including user
data as well as OS and application hard state) is reverted to
its contents at an earlier time (before the error occurred).
In the repair step, the operator is allowed to make any
changes to the system he or she wants. Changes could
include fixing a latent error, installing a preventative filter
or patch, retrying an operation that was unsuccessful the
first time around (like a software upgrade of the applica-
tion or OS), or even simply omitting an action that caused
problems (like accidental deletion of important data).
Finally, in the replay step, the undo system re-executes all
end-user interactions with the system, allowing them to be
reprocessed with the changes made during the repair step. 

A convenient metaphor for understanding the 3R undo
model is to think of it as time travel. In a common por-
trayal of time travel in science-fiction, a protagonist trav-
els back through time to right a wrong. By making
changes to the timeline in a past time frame, the protago-
nist fixes problems and averts disaster, and the effects of
those changes are instantaneously propagated forward to
the present. The 3R undo model offers a similar sequence
of events. The rewind step is the equivalent of traveling
back in time, in this case to the point in time before an
error occurred. The repair step is equivalent to changing
the timeline: the course of events is altered such that the
error is repaired or avoided. Finally, the replay step propa-
gates the effects of the repair forward to the present by
reexecuting—in the context of the repaired system—all
events in the timeline between the repairs and the present.
Since the events are replayed in the context of the repaired
system, they reflect the effects of the repairs and any

incorrect behavior resulting from the original error is can-
celled out. 

All three steps in the 3R model are required to achieve
effective retroactive repair and recovery from operator
error. Without rewind, recovery would not be possible
since the state changes induced by the error could not be
revoked. Without repair, the error itself could not be cor-
rected. Without replay, all user interactions and updates
between the rewind point and the present would be lost.

3. Related Work

Our 3R undo model draws on a long heritage of work
in temporal recovery and undoable systems. Probably the
most ground-breaking work to date on sophisticated undo
systems can be found in Edwards’s Timewarp system [4],
a framework for building collaborative productivity appli-
cations that supports a rich and malleable view of time and
history. In Timewarp, different users work autonomously
on shared state, each generating explicitly-visible histories
of actions over that state; users can rewind their state, alter
their histories, and replay changes at will. Timewarp also
defines a framework for detecting and managing undo-
induced inconsistencies based on an analysis of the static
relationships between user actions [3].

Much of our 3R undo model is similar to Timewarp. In
particular, both systems are based on the command-object
idiom [9], where history is tracked in terms of user opera-
tions representing instances of generic actions. However,
3R undo is targeted at a much lower level of the system
and hence has some key differences. First, 3R undo is
designed to undo and replay entire systems—from the OS
up—and not just application-level events; this requires
that 3R rewind be implemented physically whereas Time-
warp rollback is done logically. Note that physical rewind
is also necessary in 3R undo to cope with buggy systems
where user actions can have potentially-arbitrary effects
on state.

More fundamentally, 3R undo makes no assumptions
about the structure of repair, allowing arbitrary changes to
the system itself during the repair phase. In contrast, Time-
warp repairs are limited to inserting or deleting well-
known actions from the history. 

Finally, 3R undo and Timewarp take different
approaches to the problem of undo-induced inconsisten-
cies. Timewarp only manages inconsistencies arising as
the result of conflicts between two or more operations in
the system’s history, meaning that it assumes the behavior
of operations is repeatable and well-known. Because of its
support for unconstrained repair, 3R undo cannot make
that assumption, and hence models inconsistencies as aris-
ing from conflicts between individual operations and the
system state context in which they are executed. The 3R
approach permits much more flexibility in repair but sacri-



fices the ability to perform extensive static analysis of
inconsistency; an interesting area of future work is to
merge the two approaches to provide static analysis of
expected behavior while dynamically handling worst-case
behavior.

Besides Timewarp, there are several other influential
systems that support time-travel-like undo. Freeman and
Gelernter’s Lifestreams is a system that explicitly man-
ages a user’s state repository as a temporal stream of docu-
ments [8]; Rekimoto’s Time-Machine Computing is a sim-
ilar system that merges temporal and spatial
representations of history [16]. Unlike 3R undo, these sys-
tems only support a linear, unchanging view of history
without repair: users can observe the past and even add
events to the future timeline, but changes to the past are
limited to simple annotations that have no side effects on
future state. Roxio’s GoBack utility is a commercial prod-
uct providing similar utility to the users of Windows envi-
ronments [17]. Several graphical-editing environments
define models that support editing of past history (with
Kurlander’s Chimera being one of the most influential
[11]), but unlike 3R undo or Timewarp, none of these sys-
tems address management of undo-induced inconsisten-
cies.

Finally, in terms of implementation, many systems
offer a subset of the 3R properties but none offers full 3R
semantics at the system level. For example, backup/restore
or checkpointing schemes [1] [6] [12] offer rewind/repair
or rewind/replay, but deny the ability to roll forward once
changes have been made. Recovery systems for transac-
tional relational databases use rewind/replay to recover
from crashes, deadlocks, and other fatal events [13], but
again do not offer the ability to interject repair into the
recovery cycle; the standard transaction model does not
allow committed transactions to be altered or removed.
Some extended transaction models do allow altering or
undoing of committed transactions (a good example is
Korth et al.’s model of compensating transactions, upon
which our compensation approach in Section 4.2 is loosely
based [10]), but these models are primarily theoretical and,
like Timewarp, are based on operation-operation conflicts
rather than state-operation conflicts.

In summary, our 3R undo model offers a unique com-
bination of properties not found together in any existing
undo system of which we are aware. It operates at a low
level of the system, allowing recovery from problems
affecting the operating system and higher software levels,
supports unconstrained repair with forward-propagation of
changes, and allows detection and management of repair-
induced inconsistencies.

4. Challenges in the 3R Undo Model

4.1. Tracking recoverable state for replay

When an undo is carried out under the 3R undo model,
all state changes made since the undo point are wiped out
during the rewind step. It is the responsibility of the replay
step to restore all state changes that are important to the
end user. Defining exactly what state this encompasses is
tricky, especially when repairs could radically change the
physical representation of state (e.g., an upgrade of a mail
server that rewrites the on-disk mailbox format). Ideally,
the replay mechanism should track and preserve end-user
intent rather than specific state changes. For example, in
an undoable e-mail system, a user’s act of deleting a mes-
sage should be recorded as “delete message with Msg-ID
x”, not “alter byte range m – n in file z”. By tracking user
updates at an intentional level, the replay system has the
best hope of preserving the state that the user cares about
while leaving as much flexibility for repair as possible.

In the network service environment that we are target-
ing, users interact with the system through standardized
application protocols, so the easiest way to achieve inten-
tional tracking of user updates is to intercept and record
user interactions at the protocol level. Most network ser-
vice protocols define a set of verbs that the client can use
to express desired actions, and most are designed so that
state is referenced using logical names divorced from any
particular internal state representation. Protocols also have
the advantage of being reasonably standard and well-
defined. Good examples include SMTP and IMAP for
email, JDBC/SQL for databases, and XML/SOAP for the
emerging online application frameworks. Tracking inter-
actions at the level of protocol verbs and logical state
names automatically provides a record of user intent that
is independent of the details of the application itself; in
fact, it should be possible to completely swap out one
server implementation for another during the repair phase
and still be able to replay user interactions, as the protocol
itself is unlikely to change across implementations.

Finally, up to now we have defined replay as only
affecting user state, but have ignored the issue of whether
repairs are tracked. As with user updates, to track and
replay repairs the undo system would have to log the
intent of the repairs, not their effects on state. While this is
feasible for protocol-limited user interactions, it becomes
a nightmare when the set of possible changes is limited
only by the operator’s human ingenuity, not a list of proto-
col commands. Thus for practical reasons we make the
choice to not allow replay of repairs in our undo model;
we may explore the possibility in future work. Note that
this restriction does have implications for the undo history
paradigm: the operator can use undo to back up over arbi-
trary repairs and changes (and in a simple extension can



immediately undo the undo before making any changes),
but once changes are made in the repair phase, only user
state will be restored on replay.

4.2. External inconsistency

A favorite device of time-travel fiction is the time-par-
adox, where alterations to the past timeline effect unex-
pected changes in the present. In these paradoxes, the
time-traveling protagonist, whose memories are typically
isolated from the altered timeline, sees the “new” present
as inconsistent. 

The same problem plagues system-level undo: during
the undo cycle, repairs change the past state of the system,
and replay propagates those changes forward to produce a
new version of the present that is likely inconsistent with
the view of the present seen before the undo cycle. For
example, in an email system, a retroactive repair could
consist of installing a spam- or virus-blocking filter. When
replayed forward, formerly-delivered mail messages
might be squashed by the new filter. A user who had read,
forwarded, or replied to those messages would see the sys-
tem as inconsistent with his or her expectations once the
undo cycle was complete. Note that this problem of post-
undo external inconsistency arises only when state that has
formerly been made visible to an external entity (i.e., the
user) is altered by the undo cycle; state that has not been
externalized cannot cause inconsistencies.

As with the similar output commit problem discussed
in the checkpointing literature [6], there is no complete fix
for the external inconsistency problem; possible solutions
involve managing the inconsistency rather than eliminat-
ing it. The easiest solution is to simply ignore the inconsis-
tency, assuming that the user will tolerate it. This approach
is best suited for minor inconsistencies in applications
with relaxed semantics, for example when the inconsis-
tency causes reordering of message delivery in an email
system or changes item availability estimates in an e-com-
merce system. When the inconsistency is too large to
ignore, the best solution is to use compensating or explan-
atory actions to help the user adjust to it. For example, in
our email scenario above, we could replace the removed
message in the user’s mailbox with a new message
explaining why the original message was removed; this
technique is used effectively today by virus-scanning
email gateways. 

When the entity that externalizes state is not an end-
user but another computer system, there are more power-
ful solutions available. One, which removes inconsisten-
cies entirely, is to expand the boundary of the undo system
to encompass the external system. This can be done by
propagating undo requests across system boundaries so
that when externalized state is changed the external system
is rolled back and replayed with the new version of the

externalized state. This approach must be used with care,
as the boundary may have to be drawn arbitrarily large to
completely tolerate the inconsistency; however, a small
increase in boundary size may reduce the inconsistency to
the point where it can be tolerated by a human user.
Another approach when the externalizer is a computer is to
delay the execution of externalizing actions for a given
time period; during this undo window, the actions can be
rolled back and altered without inconsistency. This
approach is limited to cases where the actions are asyn-
chronous and not time-critical, like delivering email to an
external system or generating bounce messages upon a
delivery failure.

4.3. Granularity of undo

To be most useful, undo as a recovery mechanism
should be available at multiple granularities. A user might
want to use undo to recover from a mistake affecting only
his or her state; it should not be necessary to rewind/replay
the entire system in order for this to happen. Conversely,
the system operator must still be able to apply undo across
all system state in order to recover from system-wide fail-
ure or to carry out low-level repairs that affect all users.
An extension of this problem occurs in a clustered system,
where it would be useful from an efficiency standpoint to
support undo on the per-node level as well as the cross-
cluster level. 

Exposing undo at multiple granularities raises some
challenges, most significantly in managing and coordinat-
ing the timelines of state at different levels of the system.
For example, if a user in an email system has rewound his
or her own mailbox, and the system operator then wants to
rewind the entire system, a policy is needed to determine
which rewind request takes precedence, and coordination
is necessary to ensure that all state ends up at the correct
point in time upon replay. 

A further challenge arises when implementation is
considered: to support fine-grained undo at the per-user
level, system state must be divided into per-user state and
shared state and dependencies between the two types must
be respected on rewind and replay; similar issues apply to
the logs of user actions used for replay.

5. An Architecture for 3R-Undo

To explore and address the challenges laid out above,
we have been developing an architecture and implementa-
tion of a 3R-Undo layer. Our initial application of undo is
in an e-mail service system, chosen as it is an essential ser-
vice in today’s Internet environment, but one of our goals
is to make the implementation as generic as possible so
that it can be easily adapted to other applications.



5.1. Basic structure

Our architecture begins by defining the basic structure
of an undoable system. Following the discussion in Sec-
tion 4.1, we require a verb-based application interface that
uses logical state names; this allows the undo system to
properly disambiguate recoverable user state changes from
other system events. The verb-based interface should
cover all interactions with the system that affect user-visi-
ble state, including operator interfaces that are used to cre-
ate, delete, move, and modify user state repositories. If
existing protocols satisfy these requirements, then all is
well; otherwise, new protocols can be created and layered
above the existing interfaces. In our target case of e-mail,
the IMAP and SMTP protocols define most of what is
needed in a verb-based interface for the end-user, although
they need a small extension to the naming semantics in
order to provide globally-unique and time-invariant state
names. Also required is a new verb-based protocol to stan-
dardize and encapsulate the parts of the operator interface
affecting user state repositories (such as accounts or mail-
drops), which we are attempting to develop.

A consequence of the verb-based interface requirement
is that undo functionality is best implemented as a wrapper
layer surrounding the application itself, interposing on the
interface to track and replay state-changing events. Keep-
ing the undo layer outside of the application itself leaves
the most flexibility for repair and minimizes the potential
for introducing new bugs into the undo system as the
application evolves. As a fringe benefit, it also enables
straightforward geographic replication of undo-wrapped
services, as the high-level intentional undo log can be
shipped from one instance of the service to another and
applied using the same replay mechanisms used for an
undo cycle. We will assume this wrapper-based architec-
ture, shown diagramatically in Figure 1, for the remainder
of this paper.

5.2. Managing external inconsistency

Probably the most difficult challenge in architecting
undo is in developing a generic mechanism to detect and
manage external inconsistency. Our approach is based on
an analysis of the history recorded by the undo wrapper:
we augment the log with enough information to allow the
undo system to track inter-verb dependencies and identify
unsafe operations that result in the externalization of
inconsistent state. Once identified, these inconsistencies
can be addressed using one of the possible solutions intro-
duced in Section 4.2: applying compensating actions,
extending the boundary of undo, or ignoring the inconsis-
tencies entirely. A key property of our approach is that it
uses a declarative specification of the inter-verb relation-
ships, allowing the system designer to identify and

exhaustively test all possible inconsistency conditions; this
provides increased confidence in the undo system’s
dependability, and provides the tools needed to verify a
priori that all possible undo scenarios can be handled.

The crux of our approach to external inconsistency is
an understanding of undo history. We define a history as
the sequence of operations recorded/logged by the undo
wrapper, where an operation is an instance of one of the
verbs in the application interface. In our e-mail applica-
tion, a verb might be to FETCH a message from the mail
store, a corresponding operation would be a particular
user’s fetch of a particular message at a particular point in
time, and the operation would appear alongside other
operations in a history of all user interactions with the mail
system.

The potential for external inconsistency occurs during
the replay stage of undo when an unsafe operation appears
in the history. Unsafe operations are operations that pro-
duce different results during replay than they did during
their original execution. To detect unsafe operations, we
augment our logging of operations with the following
fields (note that these can be specified to the undo system
declaratively in template form along with the interface
verbs, allowing a generic undo layer to manage the details
of operation logging):

• the names of the set of state entities needed to carry
out the operation

• a set of preconditions over those state entities that
must be satisfied for the verb to be successfully re-
executed and to produce acceptably consistent results
with the original execution.

The preconditions are generated dynamically as the
operation is logged, and incorporate whatever tests are
necessary to guarantee acceptable consistency. For exam-
ple, in our e-mail scenario, the fetch operation might be
logged with a precondition that checks a hash of the mes-
sage body against a hash taken when the original operation

Figure 1: Basic undo architecture. The application
service is wrapped with an undo layer that interposes on
the verb-based application protocol, logging the intent of
user changes for later replay. The undo wrapper also
manages a time-travel storage layer used to implement
rewind, and tracks state externalization to manage
undo-induced inconsistency.

App. Service
Includes:

- user state
- application
- operating system

Time-travel
storage layer

Log

Undo
Wrapper

App protocol

control

App. Service
Includes:

- user state
- application
- operating system

Time-travel
storage layer

Log

Undo
Wrapper

App protocol

control



was logged; a discrepancy indicates that the message con-
tents have been altered by repair. Another e-mail example
is mail delivery to a folder. The logged operation might
include preconditions to check for the existence and read-
write status of the mail folder; if during replay the folder
was missing or found to be read-only, the operation
becomes unsafe.

Careful specification of preconditions is essential if
unsafe operations are to be properly identified. If specified
too broadly, the undo system will miss unsafe operations
and allow inconsistencies to propagate without compensa-
tion; if specified too narrowly, there is the risk that per-
fectly acceptable replay-induced inconsistencies will be
flagged as unsafe, hence limiting the transparency of
repairs. Specifying the appropriate preconditions is proba-
bly the most challenging part of designing an undoable
system.

Preconditions and required-state lists give the undo
system the information needed to detect unsafe operations
during replay, but further mechanism is needed to deter-
mine if those unsafe actions produce external inconsis-
tency. Recall that a main purpose of an undo mechanism is
to allow changes and repairs to the system, since those
changes could be converting previously-erroneous results
to correct results. Thus unsafe actions are actually desir-
able, and they only cause the problem of external inconsis-
tency if the state alterations they make are externalized
later in the history. 

We therefore return to the importance of history: the
level of inconsistency is a property of the history, not of
individual operations. We define three classes of history
with regard to the level of external inconsistency:

• replay-safe: the history can be re-executed as is with-
out causing visible external inconsistency

• replay-acceptable: re-execution of the history causes
visible but acceptable external inconsistency (for
example, the history includes compensating actions)

• replay-unsafe: the history cannot be re-executed
without causing unacceptable external inconsistency.

Without repair, any unedited history recorded by the undo
system will be replay-safe. But once we introduce repair,
replay-unsafe histories can arise as unsafe operations
appear and are externalized later in the history. Further-
more, repairs can consist of alterations to the history itself,
with operations deleted, added, or changed; if these
changes affect later-externalized state, the history again
becomes unsafe.

The undo system must detect when history is replay-
unsafe, as these histories need to be converted to at least
replay-acceptability for the undo system to work. This is
done by tracing dependencies from unsafe operations to
externalizing operations, an analysis enabled by again

augmenting the undo-logging of operations with the fol-
lowing fields (which also can be generically specified in
template form):

• an indication of which of the state entities are
expected to be modified by the verb’s execution

• an indication of which of the state entities are exter-
nalized by the verb’s execution

• the amount of time that the results of the verb’s exe-
cution are delayed before being externalized (to cap-
ture scenarios where inconsistency is avoided by
delaying notification of asynchronous actions).

Given an unsafe operation that “taints” certain state
entities (i.e., where preconditions are violated or where the
state is modified by the unsafe operation), the undo system
can walk the history forward, propagating the “tainted”
status to operations that use it as input, and so on. If the
undo system finds an operation that externalizes the
tainted state, then the potential external inconsistency rep-
resented by the original unsafe operation is realized.
Knowing this, the undo system can make a decision of
how to manage the inconsistency, for example by rewrit-
ing the history to insert compensation around the original
unsafe operation. 

As a concrete illustration of how the detection and
compensation process might work, consider the following
scenario, which begins when a message containing a virus
is delivered to a user’s inbox. Before opening the message
contents, the user copies the message into a folder, then
moves the copy into a second folder. At this time, the sys-
tem operator realizes that the system is being attacked by a
mail virus, and invokes undo. After rolling time back to
before the point where our user’s message was delivered,
the operator installs a filter that discards virus-laden mes-
sages, then invokes replay. 

During replay, the undo system first executes the
deliver operation, which, because of the filter, now dis-
cards the message. When replay reaches the copy opera-
tion, its preconditions are violated because the message in
question was never delivered, and hence it is an unsafe
operation. Furthermore, the copy operation externalizes
the existence of the message, so the history is replay-
unsafe and a compensating action is needed, perhaps
inserting a placeholder message into the user’s inbox with
an explanation for the missing original message. With this
compensation, the original replay-unsafe history has been
transformed into replay-acceptability, and thus the now-
safe copy operation can be executed (on the placeholder
message), as can the subsequent move operation. A variant
on this scenario would be a system where the operator is
willing to accept greater inconsistency by not considering
the copy operation as externalizing the message; in this
case, the entire history would be replay-safe since there is



no externalizing operation that depends on the unsafe
deliver operation.

5.3. Supporting multiple-granularity undo

So far, we have laid out an undo system architecture
that addresses two of the three major challenges intro-
duced in Section 4: tracking recoverable state and manag-
ing external inconsistency. While at this point we have not
yet developed a general solution to the remaining chal-
lenge of multiple-granularity undo, we believe that the
architecture developed in the previous sections may offer
many of the tools needed to analyze and solve the multi-
ple-granularity problem. In particular, the same mecha-
nisms used for detecting unsafe actions, tracing dependen-
cies, and counteracting inconsistency can be used to
manage undo dependencies that cross granules of system
state.

For example, consider a system supporting per-user
undo and a scenario where user A wants to replay an oper-
ation that updates state from user B (or globally-shared
state). The replay system can detect this using the depen-
dency information in the augmented undo log, and,
depending on the system policy, can either initiate a cas-
cading undo of user B’s state or can treat the operation as
unsafe and apply the appropriate compensations to A’s
state. To support such analyses, the architecture needs only
the extensions of divvying up system state into indepen-
dently-undoable per-user state repositories and of logically
splitting the system history into per-user histories; the
approach to multi-level undo used by Edwards et al. in the
Flatland system [5] may prove useful here, although it will
need significant adaptation to remove the assumption that
operation side-effects are tracked in the history.

5.4. Implications for applications

As we have defined it, our undo architecture imposes
some constraints on the applications that can be wrapped
with undo functionality. We can treat these constraints as
essentially defining a template for undoable applications;
besides helping to identify existing applications/services
that can be easily extended with undo, the template pro-
vides implementors with a guide to constructing new
undoable services.

The template for an undo-wrappable service is charac-
terized by a set of properties that must be met for our
architecture to be applicable:

• Clients must access the service through well-defined,
narrow verb-based interfaces that identify state with
logical names; the undo wrapper imposes on this
interface to provide 3R functionality.

• All state in the service must be uniquely named by
logical identifiers that are assigned when the state is
created and never changed. These unique IDs (UIDs)
are used to specify the state accessed, modified, or
externalized by tracked operations, and are essential
in the analysis of external inconsistency.

• Any state affected by an interface verb must be acces-
sible via the interface; this gives the undo system a
mechanism for recording the original value of a piece
of state, needed to generate the preconditions used to
detect inconsistency during replay.

• The interface must offer a complete set of actions on
state; it should be possible to generate the inverse of a
given verb either with another verb or a sequence of
other verbs. This property makes it possible to build
compensating actions.

• The service must support relaxed consistency seman-
tics, since external inconsistency is unavoidable with
a repair-based undo. Services that demand perfect
external consistency and do not allow compensations
provide little flexibility for repair during undo.

While these properties may not capture the full set of
important service applications today, in many cases only
small changes are required to make popular services undo-
wrappable. Our target e-mail service is one such example:
it already supports relaxed consistency and uses verb-
based interfaces (IMAP and SMTP), and with simple
extensions (adding an IMAP command to modify message
bodies and defining globally-unique message IDs) would
fit our undo-wrapping criteria.

5.5. Status

As of this writing, we have just begun a new imple-
mentation of the 3R undo architecture described above; we
have already built and discarded a partial throw-away
implementation of a 3R-undoable e-mail system whose
failings inspired many of the design decisions in the archi-
tecture presented herein. One of the most significant les-
sons learned from that early prototype was that it was dif-
ficult to have confidence in the implementation because of
the mental gymnastics required to anticipate potential
external inconsistency and track the state needed to com-
pensate for it. In response, an important goal of our new
implementation is to explore the possibility of producing a
generic undo wrapper that implements the logging, exter-
nal consistency management, and 3R functionality in an
application-independent manner; it may still be complex,
but it will only have to be developed and debugged once.
To achieve this goal, we are investigating ways to separate
application policy from generic undo mechanism, perhaps
by allowing the application to supply specifications of its



verbs and their properties along with callbacks to evaluate
preconditions and invoke compensating actions.

6. Conclusions and Future Directions

Traditional approaches to dependability have not erad-
icated failure and they do not address the problems of
operator-induced and operator-compounded failures. To
meet the demand for dependable infrastructure systems,
we must consider these unavoidable human factors and
develop recovery mechanisms that address them. Our sys-
tem-level undo mechanism does just that: it provides a
tool that compensates for the weaknesses of human opera-
tors, allows them to erase the effects of their mistakes, and
harnesses hindsight to enable retroactive repair, all while
preserving the data that users care about. 

Although we have taken the first steps toward explor-
ing the issues and challenges associated with implement-
ing system-level undo, there is a great deal more to be
done, ranging from a further exploration of the issues
raised in Section 4 and their solutions, to extending and
formalizing the framework introduced in Section 5, to
studying the applicability of the 3R undo model to a
broader range of applications, to examining the feasibility
of exporting the 3R undo abstraction at a finer granularity
to the end-user, to developing a generic implementation of
3R undo as a pluggable framework for services that want
undo-based recovery. 

There is also great potential for progress in other
domains related to undo. One example is problem detec-
tion: while psychology shows that humans can quickly
self-detect about 70% of problems that they create [15],
undo-based recovery would become even more powerful
given some mechanism for detecting the remaining 30%.
Another example is in techniques to provide virtualized,
isolated clones of active systems, allowing the operator to
experiment with undo and carry out “what-if” scenarios
without affecting the live system. A final area is in bench-
marking: new types of recovery benchmarks are needed to
evaluate the utility of techniques like undo. We are pursu-
ing many of these areas as we develop an implementation
of our undo architecture, and would welcome company in
further advancing what we see as an essential mechanism
for the dependability of tomorrow’s computer systems.

Acknowledgements

The ideas in this paper would not have developed with-
out the input of the members of the UC Berkeley/Stanford
ROC research group. Special thanks go to Jim Gray for
insightful feedback and inspiration for the framework of
Section 5, and to the anonymous reviewers for their com-
ments. This work was supported in part by DARPA under
contract DABT63-96-C-0056, the NSF under grant CCR-

0085899 and infrastructure grant EIA-9802069, and the
California State MICRO Program.

References

[1] A. Borg, W. Blau et al. Fault Tolerance Under UNIX. ACM
TOCS, 7(1):1–24, February 1989.

[2] A. Brown and D. A. Patterson. To Err is Human. Proc. 2001
Workshop on Evaluating and Architecting System depend-
abilitY, Göteborg, Sweden, July 2001.

[3] W. K. Edwards. Flexible Conflict Detection and Manage-
ment in Collaborative Applications. Proc. 10th ACM Symp.
on User Interface Software and Technology. Banff, Canada,
October 1997.

[4] W. K. Edwards and E. D. Mynatt. Timewarp: Techniques
for Autonomous Collaboration. Proc ACM Conf. on Human
Factors in Computing Systems. Atlanta, GA, March 1997.

[5] W. K. Edwards, T. Igarashi, et al. A Temporal Model for
Multi-Level Undo and Redo. Proc 13th ACM Symp. on
User Interface Software and Technology. San Diego, CA,
November 2000.

[6] E. N. Elnozahy, D. B. Johnson, and Y. M. Wang. A Survey
of Rollback-Recovery Protocols in Message-Passing Sys-
tems. CMU TR 96-181, Carnegie Mellon, 1996.

[7] P. Enriquez, A. Brown, and D. A. Patterson. Lessons from
the PSTN for Dependable Computing. Proc. 2002 Work-
shop on Self-Healing, Adaptive and self-MANaged Systems
(SHAMAN), New York, June 2001.

[8] E. Freeman and D. Gelernter. Lifestreams: A Storage Model
for Personal Data. ACM SIGMOD Bulletin 25(1):80–86,
March 1996.

[9] E. Gamma, R. Helm, et al. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1995.

[10] H. Korth, E. Levy, and A. Silberschatz. A Formal Approach
to Recovery by Compensating Transactions. Proc 16th
VLDB Conference, Brisbane, Australia, 1990.

[11] D. Kurlander and S. Feiner. Editable Graphical Histories.
Proc 1988 IEEE Workshop on Visual Languages, Pitts-
burgh, PA, October 1988.

[12] D. E. Lowell, S. Chandra, and P. Chen. Exploring Failure
Transparency and the Limits of Generic Recovery. Proc. 4th
OSDI. San Diego, CA, October 2000.

[13] C. Mohan, D. Haderle, et al. ARIES: A Transaction Recov-
ery Method Supporting Fine-Granularity Locking and Par-
tial Rollbacks Using Write-Ahead Logging. ACM Trans.
Database Systems, 17(1): 94–162, 1992.

[14] D. Oppenheimer and D. A. Patterson. Why do Internet ser-
vices fail, and what can be done about it? Proc. 10th ACM
SIGOPS European Workshop. Saint-Emilion, France, Sep-
tember 2002.

[15] J. Reason. Human Error. Cambridge University Press,
1990.

[16] J. Rekimoto. Time-Machine Computing: A Time-Centric
Approach for the Information Environment. Proc 12th ACM
Symp. on User Interface Software and Technology, 1999.

[17] Roxio, Inc. GoBack3. http://www.roxio.com/en/products/
goback/index.jhtml.


	Rewind, Repair, Replay: Three R’s to Dependability
	Abstract
	1. Introduction
	2. The Three R’s: an Undo Model Akin to Time Travel
	3. Related Work
	4. Challenges in the 3R Undo Model
	4.1. Tracking recoverable state for replay
	4.2. External inconsistency
	4.3. Granularity of undo

	5. An Architecture for 3R-Undo
	5.1. Basic structure
	Figure 1: Basic undo architecture

	5.2. Managing external inconsistency
	5.3. Supporting multiple-granularity undo
	5.4. Implications for applications
	5.5. Status

	6. Conclusions and Future Directions
	Acknowledgements
	References


