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Abstract—A hierarchical automated design flow for low-energy
direct-mapped signal processing integrated circuits is presented.
A modular framework based on a combined dataflow graph and
floorplan description drives automatic layout generation with com-
mercial CAD tools. Automatic characterization of layout improves
system-level estimates. Simplified physical design methodologies
for low supply voltages are discussed. The flow is demonstrated on
a 300-k transistor test-chip, a time-division multiple-access base-
band receiver, and a soft-output Viterbi decoder. An example of
architectural comparison of energy efficiency is presented.

Index Terms—Application specific integrated circuits, design au-
tomation, design methodology, integrated circuit design, parallel
architectures, system analysis and design.

I. INTRODUCTION

T HE architectures commonly used to implement signal-pro-
cessing algorithms in hardware differ most significantly

in terms of efficiency and flexibility. General purpose proces-
sors are the least energy- and area-efficient, while slightly more
specialized architectures, such as programmable digital signal
processors, can often accomplish the same task with an order
of magnitude less energy. The most efficient architectures in
terms of power and area can be obtained by directly mapping the
algorithms into hardware. Computational energy and area effi-
ciencies that can be achieved with this approach are 100–1000
MOPS/mW and 100–1000 MOPS/mm. These efficiencies can
be two to three orders of magnitude higher than the efficiency
achieved by software processors [1].

A direct-mapped architecture can be obtained by mapping
the operations of a dataflow graph directly into functional units
and hard-wiring the connections between them. In this way, the
maximum parallelism can be obtained, allowing the minimum
clock rate and supply voltage to be used, resulting in reduced en-
ergy per operation [2]. The ability to exploit a high level of par-
allelism allows computational rates that far exceed uniproces-
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Fig. 1. A simple data-flow graph for: (a) a three-tap FIR filter, (b) a
direct-mapped implementation, and (c) a resource-shared implementation.

sors without requiring high clock rates. For example, a direct-
mapped implementation of the three-tap finite-impulse response
(FIR) filter graph shown in Fig. 1(a) would contain a delay line,
three multipliers, and two adders as shown in Fig. 1(b). In con-
trast, a resource-shared architecture such as the one shown in
Fig. 1(c) alters the dataflow graph in order to reduce the de-
sign to a single multiplier and adder. The energy required for
the computation can be modeled with the equation

(1)
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TABLE I
ARCHITECTURAL COMPARISON OFENERGY EFFICIENCY FORCOMMON METHODS OFALGORITHM IMPLEMENTATION, SCALED TO 0.18-�m TECHNOLOGY

where is the intrinsic amount of capacitance that must
be switched and is the supply voltage. The serial, re-
source-shared architecture has reduced area but does not
reduce the capacitance to be switched for the FIR computation.
Furthermore, the multiplier and adder must be clocked three
times as fast, requiring a higher supply voltage and ultimately
more energy than the parallel, direct-mapped architecture for
the same throughput.

The efficiency of direct-mapped architectures makes them es-
pecially attractive for many digital signal processing (DSP) ap-
plications. DSP algorithms can be extremely complex with very
high processing rates but are highly parallel. Consider the per-
formance of direct-mapped architectures compared to FPGA
and programmable DSP implementations of the fast Fourier
transform (FFT) and Viterbi decoder algorithms, two important
parts of a wireless orthogonal frequency-division multiplexing
(OFDM) system [3]. Table I shows the comparison between
vendor-published benchmark data for the industry-leading high-
performance and low-power programmable DSPs1 and FPGA2

and post-layout simulations of direct-mapped hardware [4]. The
results were calculated for constant throughput rates of 50 Ms/s
for the FFT and 100 Mb/s for the Viterbi decoder and have
been scaled to a common technology (0.18m) to support a
meaningful architectural comparison. The table shows roughly
a three-orders-of-magnitude energy penalty for the high-perfor-
mance programmable approach and more than two orders of
magnitude for the low-power approaches.

In spite of the enormous advantage of direct-mapped archi-
tectures, they are not commonly used unless the application
cannot be accomplished by any other means. Direct-mapped
IP cores for some communication system components (such
as Viterbi decoders) are readily available, but most of today’s
wireless devices are based on programmable solutions. It is
doubtful that programmable solutions will ever “catch up” to
the energy efficiency of direct mapping, because sequential
execution destroys the parallelism inherent in algorithms and
wastes the opportunity to save power by lowering the supply
voltage. Furthermore, because of the poor mapping between
the algorithm and the architecture, it is becoming difficult for
programmable architectures to even meet the performance
requirements of today’s wireless systems. For example, even

1Numbers taken for the Texas Instruments TMS320C6x and the TMS320C5x
architectures using assembly code, posted benchmarks for the C5000 and C6000
platforms [5], Viterbi decoder application notes [6] and measured power con-
sumption data [7].

2Numbers taken for the Xilinx Vertex-E using the Xilinx LogiCORE product
specifications [8] and online Vertex Power Estimation Worksheet [9].

Fig. 2. Standard design flow for hardware implementation of algorithms.

the highest performance programmable DSP today would need
to spend roughly 50% of its cycles on a 64-point FFT to meet
the throughput requirements of the IEEE 802.11a wireless
networking standard, leaving very little room to implement the
remainder of the algorithm. Programmable architectures, like
direct-mapped, must seek to exploit parallelism to close the
performance gap.

Direct-mapped architectures are seen as unattractive pri-
marily because the tremendous design effort involved is not
economically viable given the lack of flexibility of the final
hardware. This paper presents our solution for achieving the
benefits of direct mapping with drastically reduced design effort
in order to make hardware flexibility less of an issue. The paper
begins with an examination of existing methodologies and the
factors that frustrate the design of direct-mapped architectures.
Next, our design methodology will be presented, followed by
a discussion of physical issues which enable designs in the
low-power domain. Lastly, we present several design examples
that use this flow.

II. CURRENTMETHODS FORALGORITHM IMPLEMENTATION

A standard design flow for hardware implementation of
algorithms has four phases which are typically handled by
four different designers, as shown in Fig. 2. Algorithm de-
signers conceive the chip and deliver a specification to system
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designers, often in the form of a floating-point simulation.
This simulation can be used to generate system characteriza-
tions such as a bit-error-rate (BER) versus SNR curve for a
communications chip. The system or architecture designers
begin to add structure to this simulation, partitioning the design
into functional units. They must also convert the data types
from floating to fixed-point and verify that finite word-length
effects and pipeline depth do not compromise the algorithm.
The hardware (or front-end) designers map the simulation to
register-transfer level (RTL) code (usually VHDL or Verilog)
and verify that the code matches the specified functionality and
pipeline depth. Physical designers take standard-cell netlists
synthesized from the RTL code and use place-and-route tools
to generate layout mask patterns for fabrication while verifying
that all timing constraints are met, commonly referred to as
reaching timing closure. This flow requires three translations
of the design, expressing the functionality as gradually less
sequential and more structural with requirements for reverifica-
tion at each stage. Opportunities for algorithmic modifications
to reduce power and area are often lost due to the separation
of engineering decisions. Performance bottlenecks discovered
during the physical design phase are unknown to the algorithm
designer. Aggressive system requirements may require new
and unusual architectures, which can stall the flow, leading
to uncontrolled looping back to earlier stages of the design
process and extending the design time indefinitely.

The main problem with this flow is that it attempts to avoid
feeding back information to algorithm designers. The tech-
nique of reducing power through algorithmic transformations
to permit voltage reduction [2] is well understood. However,
today’s CAD environments do not support this kind of design.
The flow we need would allow algorithm designers to explore
the design space as thoroughly as possible by creating mask
layout and obtaining performance estimates. This exploration
should allow refinement of fixed-point types, be constrained by
libraries of efficient hardware blocks, and be carried out by an
automated design flow. This encourages feedback of physical
design issues to algorithm designers by allowing them to
maintain ownership of the design data at all times. It also would
encourage interaction with system, hardware, and physical
designers by reducing the design process to a single phase.

Recent efforts have identified the gaps between algorithm,
system, hardware, and physical design but have yet to encom-
pass the complete problem. Some attempt to close the gap be-
tween algorithm and hardware design by basing synthesis tools
on C/C++ descriptions [10]. However, these solutions require a
style of C code that is very similar to RTL code and is unattrac-
tive to algorithm designers. Commercial tools from design au-
tomation companies offer RTL code generation solutions from
block diagrams. However, these tools are targeted mostly for
hardware designers and obscure the information about the al-
gorithm and architecture through the code generation process.
Much attention has been given also to the problem of closing the
gap between hardware and physical design by giving the hard-
ware designer control over physical structure [11] and floor-
planning early in the design process [12]. However, these con-
cepts need to be pushed into the algorithm design phase as well.
To accomplish this, a design environment is needed which of-

fers fast, automatic generation of physical information from a
system-level description.

Work on automating the design process began with silicon
compilers in the early 1980s [13], leading to research projects
such as FIRST [14], LAGER [15], and many others and
commercial products such as Genesil [16]. The limitations of
process technology limited their usefulness, however, since
it was easy to create large designs but expensive to fabricate
them. Furthermore, these systems required extensive physical
libraries which were difficult to create and maintain. However,
the efficiency of the present-day standard-cell methodology
allows the designer to work above the physical level during
library creation, and current process technologies allow fabri-
cation of much larger designs. Another limitation of the silicon
compilers of the past is that they were driven by input languages
which were structural and not easy to simulate, making it diffi-
cult to drive the flow from the algorithm designer’s perspective.
The VOV system [17] took an entirely different approach to
design by automating flows comprised of generic tools. VOV
was focused mainly on repeating flow traces generated by a
single user on a single design. We need a system that automates
the flow for all users on any design.

III. CHIP-IN-A-DAY DESIGN FLOW

A. Capturing Design Decisions

In order to provide a well-integrated design flow, we must be
very specific about how we make and capture design decisions.
Our goal with this flow was to get algorithm designers to drive
the entire design process from the same description they used to
develop the algorithms. This goal therefore requires them to use
dataflow graphs instead of writingor Matlab code. By starting
with a dataflow graph, we avoid the difficulty of inferring par-
allelism from a procedural description and can derive a parallel
architecture directly from the graph. All of the decisions neces-
sary to create mask layout and get performance estimates would
be entered refinements of the original dataflow graph. These de-
sign decisions are divided into the following types:

• Function decisions: input–output behavior of the dataflow
graph, specified by the simulator associated with dataflow
graph editor.

• Signal decisions: physical signals, such as word lengths,
specified as edge properties.

• Circuit decisions: transistors to implement each block,
specified as node properties.

• Floorplan decisions: physical locations of functional
units, specified with a companion floorplan view.

The choice of a dataflow graph editor depends mainly on the
model of computation used to express function decisions [18].
We chose a discrete-time computation model because it can be
made cycle-accurate and bit-true with respect to the hardware,
which is necessary to verify that hardware generated by the
flow faithfully represents the functional description. There are a
number of dataflow graph editors that support the discrete-time
model, and we chose MathWorks’ Simulink [19] because of its
familiarity to algorithm designers, due to its close integration
with Matlab. It is important to make it as easy as possible for al-
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Fig. 3. (a) Dataflow graphs of a time-multiplexed FIR filter with (b) a detail of the multiply-accumulate block and (c) detail of the control logic finite state-machine.

gorithm developers to approach the design environment in order
to ease the use of hardware dependent optimization early in the
design process. Fig. 3 illustrates a cycle-accurate dataflow graph
example of a time-multiplexed FIR filter. Fig. 3(a) shows a mul-
tiply-accumulate block being fed by an input data stream, tap
coefficients from an SRAM, and some control logic.

In signal processing architectures, datapath logic typically
amounts for more than 90% of the area and power. The dataflow
graphs are therefore built on primitives which are common in
digital datapaths. Floating-point primitives are swapped with
fixed-point primitives to explore finite word-length effects.
These fixed-point types express the signal decisions for the
automated flow and are needed in order for the simulation to
be bit-true. Fig. 3(a) shows a multiply-accumulate block with
a fixed-point multiplier, adder, register, and multiplexer. The
goal is to specify functionality and signals with this dataflow
graph so completely that RTL simulation is not a necessary
part of the design process.

Since it is inefficient to specify control with dataflow graphs,
we chose a different strategy for these functions by adding an
extended finite state-machine primitive. These state-machines
are co-simulated with the dataflow graphs but require a different
editor. Fig. 3 shows our approach to this specification with an
example of a time-multiplexed FIR filter. Fig. 3(b) shows a mul-
tiply-accumulate block being fed by an input data stream, tap co-
efficients from an SRAM, and control signals from a state-ma-
chine. Fig. 3(c) shows the address generator and MAC reset con-
trol state-machine. This chart has an initial loop to load tap co-
efficients, with successive loops reading the coefficients and re-
setting the accumulator.

The leaf-nodes (primitives) of the dataflow graph hierarchy
will correspond to functional units in the hardware and are thus

called “macros.” Circuit decisions are encapsulated through
the specification of a parameterized generator for each macro.
Fixed-point types and other parameters can be passed to the
macro generators, thus allowing exploration of design tradeoffs
from the dataflow graph representation. Each generator pro-
duces a netlist of cells for which layout and schematic views
exist. There are four main types of macros currently supported
by our flow:

• datapath macros: ranging in complexity from arithmetic
blocks (such as adders, registers, and multpliers) to com-
plex pipelines such as an FFT or Viterbi decoder, imple-
mented with VHDL code, datapath generators or semi-
custom tiled layout modules;

• state-machine macros: VHDL code generated from each
state-machine which is synthesized;

• black-box macros: cells which have schematic and layout-
views already defined, such as a vendor-supplied SRAM;

• composite macros: portions of a design hierarchy that have
been routed.

Though several mechanisms can be used for macro imple-
mentation, the most popular method has been the use of a com-
mercial datapath generator [20]. The description language for
this generator has a highly restrictive set of operators that is
very similar to the set of primitives used by the dataflow graph
simulator, which minimizes the effort involved in creating new
library elements. This approach does result in a second func-
tional specification for a block that must be made equivalent to
its corresponding dataflow graph model. At present, this is ac-
complished with cross-check simulations between the dataflow
graph and RTL code created by the datapath generator. Equiva-
lence could also be checked with formal methods. Equivalence
checking is considered to be part of the library creation process
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Fig. 4. Hardening the hierarchy.

TABLE II
RESULTS OFHARDENING BASEBAND RECEIVER SYSTEM MACROS IN A

0.25-�m TECHNOLOGY

and facilitates reuse of complex functional blocks. However, this
task is difficult, and a much better approach would be to ensure
equivalence through automatic translation of datapath generator
code from the dataflow graph.

B. Hardening the Hierarchy

One of the most important parts of our environment is the
ability to quickly route and characterize these macros, turning
them into “hard macros” as illustrated in Fig. 4. The perfor-
mance of these “hard macros” is well understood, meaning
that estimates for the entire system performance will have less
variance as more macros are hardened. The higher levels of
the hierarchy can then be adjusted to compensate for any in-
correct assumptions. In using this flow, we find that the design
process tends to progress by routing and characterizing the
entire hierarchy from the macros to the top-level. We call this
process “hierarchy hardening,” and once the entire hierarchy is
hardened, the design is done. This contrasts sharply with the
standard flow in Fig. 2 where the phases of the design process
are determined by which designer’s expertise is currently being
used rather than which level of the functional hierarchy is
currently being hardened. Table II shows a sample of the types
of data obtained from the process of hardening three datapath
generator macros from the basband receiver design example
discussed later. These estimates are obtained after the flow has
synthesized, routed, performed parasitic extraction, and run
switch-level static-timing and transient simulations on each
macro using test vectors generated from the dataflow graph.
The essential price of push-button automation is execution

time and disk space, shown in the table for a 400-MHz Ul-
traSPARC-II system with 2 MB of L2 cache, 4 GB of RAM,
8 GB of swap, and a NetApp F630 filer available over Gigabit
Ethernet. This information is stored in order to provide fast
estimates of performance and required resources and ultimately
should be available from within the dataflow graph editor to
provide information for reuse.

C. Signal Optimizations

The flow supports a number of special signal-level optimiza-
tions in the dataflow graph which can reduce the power and area
of the design. Certain primitives are recognized to be reordering
of wires rather than circuit macros. For example, the use of the
“Enable” block, which can be used to turn off blocks when not
in use, corresponds to a gated clock in the physical design. An-
other approach would be to translate multiple sample times for
unit-delay primitives into synchronized clock-trees with mul-
tiple rates. Simpler optimizations which are supported include
multiplication by a constant power of 2 (a hard-wired shift) and
comparison to zero (the sign bit). In addition, the flow permits
certain signals to be denoted as “simulation only,” meaning that
they will not appear in the final circuit. This allows the algorithm
designer to create debugging signals in their dataflow graphs
freely without worrying about how they affect the hardware and
eliminates the need to translate the design when creating mask
layout. The critical requirement to facilitate our goal is that the
same description be used for both algorithmic and hardware ex-
ploration.

D. Physical Design

In order to provide scalability to large designs and to allow the
use of heterogeneous macros, it was found that a floorplan was
required in addition to the functional description. Floorplan de-
cisions are captured with commercial physical design tools. The
initial skeleton floorplan is generated by the automated flow,
and then the algorithm designers edit the floorplan, placing in-
stances and boundary pins using simplified commands. Instance
names in the floorplan are constrained to match the block names
in the dataflow graph to minimize confusion from the translation
of design data. Furthermore, the floorplan hierarchy matches
the hierarchy of the dataflow graph. Blocks which are repeated
in the dataflow graph become repeated in the floorplan. This
minimizes the floorplanning effort and the execution time of
the later routing steps. Fig. 5 shows a portion of the top-level
dataflow graph and floorplan for a parallel, pipelined FIR dec-
imation filter which reuses large filter blocks. Once the floor-
plan is complete, the design can be routed and characterized by
the automated flow. This floorplan could also be used to im-
prove fast performance estimates from the dataflow graph ed-
itor by predicting the parasitics of global wires with Manhattan
distances.

E. Design Flow Automation

An abstract view of the automated design flow is shown in
Fig. 6. The “elaboration” step translates the dataflow graph into
an electronic design framework. This step also invokes macro
generators and stitches their output into a single netlist of
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(a)

(b)

Fig. 5. (a) Dataflow graph and (b) floorplan for a parallel pipelined FIR filter.

routable objects. The next step merges placement information
from the floorplan views with the netlist, creating “autoLayout”
views. Designers modify these autoLayout views and save them
as floorplans for the next invocation of the flow. This allows
the dataflow graph and floorplan to be developed side by side.
As new blocks are added to the dataflow graph, new unplaced
blocks appear in the floorplan after the merge step. After
merging, the flow proceeds to a series of steps which route the
hierarchy from the macros to the top level. As illustrated in
the figure, the design flow is described as a dependency graph
and uses a method of automation similar to the UNIX MAKE
program.

Several new programs were developed to support the design
flow. First, we wrote a new program to translate the hierarchical
dataflow graphs into EDIF files. Translation is accomplished
by tagging different portions of dataflow graph as “macros”
and annotating fixed-point types for the edges between the
macros. Each macro then defines an instance and each edge
defines a group of nets. Handling hierarchy was the main
challenge in writing this translator, because it both expands the
hierarchy and preserves block references. The hierarchy must
be expanded to ensure that primitives with different parameters

Fig. 6. High-level dependency graph for the automated design flow.

become different cells in the physical hierarchy. For example,
8-bit and 12-bit adders are instances of the same primitive in
the dataflow graph but must be instances of different master
cells in the physical design. On the other hand, the translator
must preserve block references to allow repetition of complex
blocks. For example, if an FIR filter block is to be routed once
and repeated several times in the layout, each instance must
have the same master cell. Our EDIF translator preserves the
block references and expands the hierarchy only if the macros
have different parameters.

Next, we developed a program to translate designs from State-
flow [19], the finite state-machine editor bundled with Simulink,
into synthesizable VHDL code. Stateflow allows the description
of transition behavior with action statements annotated as la-
bels. The action syntax is almost identical to C and also follows
the same sequential execution model. The primary goal of our
translator is to systematically generate hardware with the same
cycle-accurate behavior as the software-based model. This helps
us to meet our goal of eliminating RTL simulations from the de-
sign flow. To make the hardware more efficient, our translator
maps the data types from the action syntax into IEEE standard
logic vectors with word lengths based on minimum and max-
imum range limits specified in the chart. Once the designer has
chosen these limits and verified them in simulation, the resulting
hardware is guaranteed to have adequate precision and range.
Comparisons of synthesized area and speed for generated code
and hand-authored code show that the tool produces efficient
hardware when used on large, complex state-machines. Charts
with fewer than 10 states tend to be inefficient and slow due to
the overhead of maintaining cycle-accuracy with the dataflow
graph simulator. Due to the small ratio of control logic to data-
path logic in our designs of interest, this inefficiency is negli-
gible.

IV. ENABLING PHYSICAL DESIGN ISSUES

One of the greatest difficulties of standard ASIC design flows
is timing closure. Timing closure is the process of verifying that
the layout meets the timing constraints assumed in the initial
description. The difficulty arises from the fact that interconnect
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(a)

(b)

Fig. 7. (a) FO4 inverter and wire delay measurement setup and (b) simulated
results of voltage scaling for isolated 1-mm and 5-mm metal 6 wires in a
0.18-�m technology.

capacitance is unknown at design time. The most common prob-
lems that arise during hardening are failure to meet cycle-time
goals and generation of clock-trees with excessive skew. The
low-voltage and low-power nature of direct-mapped architec-
tures simplifies these issues and allows us to deal with them in
ways that are easy to automate.

A. Reduced Impact of Interconnect

The impact of interconnect on the design process is reduced
at low supply voltages, since the logic speed has been decreased.
This effect can be illustrated by measuring the ratio of logic
delay to wire delay as illustrated in Fig. 7(a). Wire delay is mea-
sured from input to output nodes of a distributedRCwire while
logic delay is measured from input to output nodes of an inverter.
The inverter is sized so that the lumped capacitance of the wire
is a fan-out of 4 (FO4) load. The graph in Fig. 7(b) shows that,
at the standard supply voltage for the technology, the wire delay
is close to half of the logic delay for a 5-mm isolated metal 6
wire. As the supply voltage drops, however, the wire delay does
not change while the logic delay rises, causing the wire/logic
delay ratio to drop considerably. This means that, at low volt-
ages, long wires can be accurately modeled as lumped capaci-
tances, making it easier to predict delay from simple Manhattan
distances measured in the floorplan. It also means that we can
design much larger blocks without worrying about repeater in-
sertion, making it considerably easier to design large systems.

B. Race-Immune Clock-Tree Generation

Clock-tree design in the standard ASIC flow typically con-
sists of running automated clock-tree insertion tools on a flat
netlist. If the resulting clock-tree violates hold-time constraints,

then it can be back-annotated into the synthesis tool and resyn-
thesized to add delay to paths with excessive skew. Once hi-
erarchy is added to the physical design, it becomes harder for
clock-tree insertion tools to control the skew, and the back-anno-
tation/resynthesis flow becomes problematic. Our design flow
avoids this problem by exploiting the low supply voltages to
pursue race-immune clock-tree synthesis. We define the quan-
tity “race margin” for a given technology to be the minimum
clock-to- delay of all clocked elements minus the maximum
hold time

(2)

If the absolute skew of the clock tree is less than the race margin,
then no back-annotation and resynthesis flow is required to pre-
vent races. Transmission-gate flip-flops (TGFFs), also called
master–slave latch pairs, are the preferable clocked element for
this methodology because they are the most energy efficient and
have large internal race margins [21].

The gating of the clock is determined in the dataflow graph
by disabling blocks of the algorithm. Because the physical hi-
erarchy matches the dataflow graph hierarchy, it is sufficient to
build balanced clock trees for the subblocks of the design and
gate clocks at the top level of routing hierarchy. Our method-
ology is to use a commercial tool to build a clock tree for the
largest subblock with a bounded clock slope and skew less than
the race margin. Then, trees for the other subblocks are gener-
ated to match the first tree. The clock-tree insertion and char-
acterization process is automated by the flow, however, the user
must choose which block’s clock tree is to be matched by the
other blocks’ trees. Table III shows the results of this method-
ology for a design with three subblocks of different sizes in a
0.18- m technology. The race margin was simulated to be 580
ps, which is safely larger than the 340 ps of skew between the
blocks. Table III also shows the clock-tree power relative to the
logic power at 1 V, indicating that only limited additional power
is required to achieve race immunity.

C. Simplified Power Routing

Another barrier to full layout automation is power routing,
since supply and ground rails are typically hand routed. The
floorplan view for our flow allows specification of hand-routed
critical net segments in addition to placement information.
However, since the power dissipation of direct-mapped archi-
tectures is very low (100 mW can provide 10-100 GOPS/s),
the standard-cell row rails have sufficient capacity to support a
much larger area than with high-speed ASICs. Also, the stan-
dard-cell junction capacitances provide sufficient decoupling
capacitance to suppress rail-bouncing. In order to take advan-
tage of this simplification, supply rings are not automatically
drawn around the lower levels of hierarchy. Instead, the flow
inserts filler cells to abut the lower levels of hierarchy and
connect power through the standard-cell rows.

V. DESIGN EXAMPLES

A. FIR Filter Test Chip

To verify the approach of this flow, a test chip was developed
based on the parallel, pipelined FIR decimation filter shown in
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TABLE III
EXAMPLE HIERARCHICAL CLOCK-TREE STATISTICS IN A 0.18-�m TECHNOLOGY

Fig. 8. Die photo of the decimation filter test chip.

TABLE IV
COMPARISON OFTEST-CHIP PERFORMANCEESTIMATES IN A 0.25-�m

TECHNOLOGY

Fig. 5. This chip investigated another approach for race immu-
nity through the use of a two-phase clock. This was found to
be inefficient and unnecessary, however, and the strategy previ-
ously described has been used in all other designs. A die photo
is shown in Fig. 8.

The test chip was designed with several hundred hard
macros with roughly the complexity of adders and registers.
These macros were placed manually in three levels of phys-
ical hierarchy. This was more levels than necessary, but it
allowed us to exercise our hierarchical place-and-route flow
more thoroughly. The design contained 307 K transistors and
was fabricated in a 0.25-m technology. Table IV shows the
performance evaluation of the chip at 1.0 V and 25 MHz. The
dataflow-graph-based estimates are very close to the layout
estimates due to the fact that power and delay numbers from
characterized hard macros were used. The area discrepancy
between dataflow-graph-based estimates and layout arises from
the fact that the hard macros could not be abutted in this version
of the flow, leading to a wasted space. From this design, it was
determined that the multiplier and adder macro granularity
is too high. The number of these objects quickly becomes
unmanageable in submicrometer technologies (a multiplier

Fig. 9. Block diagram for the 1.6-Mb/s TDMA-DSSS digital baseband timing
recovery chip.

Fig. 10. Reusable CORDIC slice.

requires only 0.05 mmin a 0.25- m). In contrast, a version
of this decimation filter created with the standard-cell datapath
generator (shown in Table II) implements the same function
with the same critical path delay but is much smaller because it
was placed as a flat netlist. Also, the power consumption of the
flat design is lower due to reduced wire length and transistor
count. The performance of the test chip relative to the datapath
generator macro indicates that such detailed floorplanning is
not necessary for this particular structure. More recent versions
of the flow allow selective flattening of the physical hierarchy
to improve routing density.

B. Baseband Receiver

A 1.6-Mb/s TDMA-DSSS digital baseband timing recovery
unit for use in a low-power wireless network [22] has been de-
signed using this flow. A block diagram for the system is shown
in Fig. 9. This synchronization system is intended to provide
coherent timing recovery and code acquisition for a stream of
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(a)

(b)

Fig. 11. Comparisons of: (a) critical-path delay and (b) energy/symbol for post-layout characterizations of three SOVA architectures.

soft symbols. The white blocks in the figure correspond to the
hardened macros with results given in Table II.

This design uses a single-phase clock with five gated clock
domains to turn off large sections of the chip when not in use.
The algorithm proceeds in stages with each stage’s estimate of
timing being used by the subsequent stage. Each stage of the al-
gorithm needs to operate on only a fraction of the total number
of symbols in a packet. The carrier detection stage, for example,
needs to be active for only two symbols out of every 500. Rather
than developing an architecture that supports all stages of the al-
gorithm, it was much easier from a design standpoint to simply
map each algorithmic stage directly into a hardware block and
then shut off the clock to each block when not in use. While
this approach could be considered wasteful of area, it is optimal
from an energy/symbol standpoint and provides the algorithm
designer with the ability to make a cost-energy tradeoff. This
approach also frees the system designer from the difficulty of
translating the algorithm architecture to a different circuit ar-
chitecture when optimizing the algorithm for energy.

The design of this system was accelerated by a parameterized
CORDIC-slice macro shown in Fig. 10. The slice macro was
parameterized in terms of the bit-widths of inputs and

, the constant shift value, and the constant arctangent value
. The slice was then used 27 times with different parameters

to implement CORDIC angle rotation and polar-to-rectangular
conversion blocks. This indicates the level of reuse which is
possible, since once the CORDIC function was debugged and
verified, no further debugging at the RTL level was necessary.

The first routing pass of this design was performed flat and
ran through the automated flow in 13 h. A level of physical
hierarchy was later added to the design, yielding five blocks
in the top level. This simplification of the physical design data
reduced the overall flow execution time to 2.5 h. Furthermore,
the total area was reduced by 3% due to the increased density
allowed by the simplified blocks.

This design also demonstrates our state-machine translator
with three state machines with 30 total states which requires
1.2% of the total cell-area of the chip. The critical path of the
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TABLE V
COMPARISON OFENERGY EFFICIENCY OFSOVA ARCHITECTURES IN A0.18-�m TECHNOLOGY

generated control logic is 15 ns at 1.2 V which is considerably
less than the overall critical path of 31 ns in the datapath blocks.
This supports our assumption that the control logic is not the
limitation of system performance.

C. SOVA Design Exploration

In this section, we present an example of the type of design
exploration made possible by our flow. The soft-output Viterbi
algorithm (SOVA) has been recently examined as a building
block in high-throughput iterative decoders. Iterative decoders
promise significant SNR performance improvement over
conventional decoders at the expense of increased complexity.
An implementation of this algorithm that uses a modified
register-exchange method for calculating survivor paths [23]
was fabricated in a 0.18-m technology with low-threshold
standard cells and a single-phase clock.

With our flow, resynthesizing the design with high-threshold
cells and rehardening the hierarchy is essentially automated.
This made it possible for us to examine the performance of
various SOVA microarchitectures for both high-throughput and
low-power applications, using the traditional radix-2 add–com-
pare–select (ACS) architecture (with a 0.30 mmarea) as a base-
line.

The traditional bottleneck in Viterbi decoders, the ACS re-
cursion, can be transformed and retimed as compare–select–add
(CSA) operations in order to improve the critical path delay.
Each of the CSA units has one fewer addition in the critical
path [24]. This modification increases the speed at the expense
of doubled numbers of adders and multiplexers, as well as in-
creased routing complexity. This change is quantified with a few
changes to the datapath generator code and re-execution of the
flow. As shown in Fig. 11, a speed increase of 26% is accom-
panied by 31% increase in energy, and 19% increase in area
(0.35 mm . The increased routing complexity was evident from
the fact that the router needed 30% more time to complete with
the same cell density (95%).

Another common transformation for increasing throughput of
the ACS unit is to perform two steps of the algorithm at once,
resulting in a radix-4 ACS Viterbi decoder [25]. Critical-path
delay increases but the overall throughput improves. This mod-
ification triples the area of the ACS unit but also increases the
size of the register-exchange unit, making it difficult to predict
the overall change without carrying out the design to comple-
tion. With approximately a week of modification to the dataflow
graphs and datapath generator code and a day of re-executing the
flow, we hardened and characterized a radix-4 version of SOVA
design. Fig. 11 shows that the critical-path delay relative to the
radix-2 ACS design was increased by 25%. Area increased by a

TABLE VI
SUMMARY OF OTHER BLOCKS DEVELOPEDWITH OUR FLOW

factor of 2.4 to 0.72 mm, and power consumption quadrupled,
causing the energy per symbol to double since two symbols are
handled in each cycle.

Lastly, we would like to know which of these three architec-
tures would be the most energy-efficient if we were given com-
plete freedom when scaling supply voltages. The answer can
be approximated by using the voltage-delay characteristic of a
ring-oscillator (obtained with a transistor-level simulation) to
scale the voltage of the CSA and radix-4 designs down until they
match the throughput of the original ACS design. The results
of this scaling are shown in Table V. The results show that the
voltage could be dropped by 0.2 V for the CSA design but only
an additional 0.06 V for the radix-4 design due to the rapidly
increasing delay below 1 V. The energy per symbol was mini-
mized by the CSA, leading us to conclude that for this range of
throughputs, the radix-2 CSA is the most energy efficient archi-
tecture.

D. Other Examples

A considerable number of design examples have been
developed to determine the relationship between algorithm
and architecture. Building blocks have been developed which
include equalizers, polyphase filters, correlators, MAP and
LDPC decoders, Huffman, Lempel–Ziv decoders, DFT, and
FFT blocks. These macros were used to build communications
and signal processing systems, such as iterative decoders for
high throughput or low power, data handling for maskless
lithography, polyphase filter banks, CDMA/TDMA baseband
receivers with RAKE processing, an OFDM receiver with
multi-antenna support, and signal processing for image-reject
mixers. Table VI summarizes the blocks developed with area
and clock frequency as rough measures of complexity [26].
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VI. CONCLUSION

The success of the test chips and ease of the macro hard-
ening flow are encouraging. The next step is to apply the flow
to the design of systems in the 1-M to 10-M transistor range.
The most difficult aspect of this flow is the verification of func-
tional equivalency of macro generators and their dataflow graph
models. As macros become more complex, more opportuni-
ties for discrepancy arise, leading to potential problems when
macros are combined. Future work will focus on comparisons
of the estimates gained from this approach to estimates made
with other system-level design methods. Also, much more in-
vestigation is needed into the level of detail needed during floor-
planning and into which macro granularities scale best to future
process generations.
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Dr. Nikolić received the College of Engineering Best Doctoral Dissertation
Prize and Anil K. Jain Prize for the Best Doctoral Dissertation in Electrical and
Computer Engineering at University of California at Davis in 1999, as well as
the City of Belgrade Award for the Best Diploma Thesis in 1992.

Robert W. Brodersen (M’76–SM’81–F’82)
received the Ph.D. degree from the Massachusetts
Institute of Technology, Cambridge, in 1972.

He was then with the Central Research Laboratory
at Texas Instruments for three years. Following that,
he joined the Electrical Engineering and Computer
Science faculty of the University of California at
Berkeley, where he is now the John Whinnery Chair
Professor. His research is focused in the areas of
low-power design and wireless communications and
the CAD tools necessary to support these activities.

Prof. Brodersen has won best paper awards for a number of journal and con-
ference papers in the areas of integrated circuit design, CAD and communica-
tions, including in 1979 the W.G. Baker Award. In 1983, he was co-recipient of
the IEEE Morris Liebmann Award. In 1986, he received the Technical Achieve-
ment Awards in the IEEE Circuits and Systems Society and in 1991 from the
Signal Processing Society. In 1988, he was elected to be member of the National
Academy of Engineering. In 1996, he received the IEEE Solid-State Circuits So-
ciety Award and in 1999 received an honorary doctorate from the University of
Lund in Sweden. In 2000, he received a Millennium Award from the Circuits
and Systems Society, the Golden Jubilee Award from the IEEE, and was co-re-
cipient of the Lewis Winner Best Paper Award in the ISSCC.


