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FOREWORD 
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In 35 years of teaching mathematics to Engineers and Scientists, I

have frequently been made aware (by students) of a common 

cry for help. "We're coping, generally, with our courses", they may

say, "but it's Just the Maths". This is the title chosen for the package

herein.

Traditional text-books and programmed learning texts can 

sometimes include a large amount of material which is not always

needed for a particular course; and which can leave students

feeling that there is too much to cope with. Many such texts are

biased towards the mathematics required for specific engineering

or scientific disciplines and emphasise the associated practical

applications in their lists of tutorial examples. There can also be a

higher degree of mathematical rigor than would be required by

students who are not intending to follow a career in mathematics

itself.

"Just the Maths" is a collection of separate units, in chronological

topic-order, intended to service foundation level and first year 

degree level courses in higher education, especially those

delivered in a modular style. Each unit represents, on average, the

work to be covered in a typical two-hour session consisting of a

lecture and a tutorial. However, since each unit attempts to deal

with self-contained and, where possible, independent topics, it

may sometimes require either more than or less than two hours

spent on it.

"Just the Maths" does not have the format of a traditional 

text-book or a course of programmed learning; but it is written in a

traditional pure-mathematics style with the minimum amount of

formal rigor. By making use of the well-worn phrase, "it can be

shown that", it is able to concentrate on the core mathematical

techniques required by any scientist or engineer. The techniques

are demonstrated by worked examples and reinforced by

exercises that are few enough in number to allow completion, or

near-completion, in a one-hour tutorial session. Answers to 

exercises are supplied at the end of each unit of work.

A.J. Hobson 

January 2002
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Tony Hobson was, until retirement in November 2001, a Senior 

Lecturer in Mathematics of the School of Mathematical and

Information Sciences at Coventry University. He graduated from

the University College of Wales, Aberystwyth in 1964, with a BSc.

Degree 2(i) in Pure Mathematics, and from Birmingham University

in 1965, with an MSc. Degree in Pure Mathematics. His Dissertation
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meant that much of the time he spent on research and personal

development was in the area of curriculum development. In 1982
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The set of teaching units for "Just the Maths" has been the result of 
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four or five years) of many years' personal teaching materials, into 

a form which may be easily accessible to students of Science and

Engineerng in the future.

Page last changed: 17 January 2003

Contact for this page: C J Judd



“JUST THE MATHS”

UNIT NUMBER

1.1

ALGEBRA 1
(Introduction to algebra)

by

A.J. Hobson

1.1.1 The Language of Algebra
1.1.2 The Laws of Algebra
1.1.3 Priorities in Calculations
1.1.4 Factors
1.1.5 Exercises
1.1.5 Answers to exercises



UNIT 1.1 - ALGEBRA 1 - INTRODUCTION TO ALGEBRA

DEFINITION
An “Algebra” is any Mathematical system which uses the concepts of Equality (=), Addi-
tion (+), Subtraction (-), Multiplication (× or .) and Division (÷).

Note:
The Algebra of Numbers is what we normally call “Arithmetic” and, as far as this unit is
concerned, it is only the algebra of numbers which we shall be concerned with.

1.1.1 THE LANGUAGE OF ALGEBRA

Suppose we use the symbols a, b and c to denote numbers of arithmetic; then

(a) a + b is called the “sum of a and b”.

Note:
a + a is usually abbreviated to 2a,
a + a + a is usually abbreviated to 3a and so on.

(b) a− b is called the “difference between a and b”.

(c) a× b, a.b or even just ab is called the “product” of a and b.

Notes:
(i)
a.a is usually abbreviated to a2,
a.a.a is usually abbreviated to a3 and so on.

(ii) −1× a is usually abbreviated to −a and is called the “negation” of a.

(d) a÷ b or a
b

is called the “quotient” or “ratio” of a and b.

(e) 1
a
, [also written a−1], is called the “reciprocal” of a.

(f) | a | is called the “modulus”, “absolute value” or “numerical value” of a. It can
be defined by the two statements

| a |= a when a is positive or zero;
| a |= −a when a is negative or zero.

Note:
Further work on fractions (ratios) will appear later, but we state here for reference the rules
for combining fractions together:
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Rules for combining fractions together

1.

a

b
+

c

d
=

ad + bc

bd

2.

a

b
− c

d
=

ad− bc

bd

3.
a

b
.
c

d
=

a.c

b.d

4.

a

b
÷ c

d
=

a

b
× d

c
=

a.d

b.c

EXAMPLES

1. How much more than the difference of 127 and 59 is the sum of 127 and 59 ?

Solution
The difference of 127 and 59 is 127−59 = 68 and the sum of 127 and 59 is 127+59 = 186.
The sum exceeds the difference by 186− 68 = 118.

2. What is the reciprocal of the number which is 5 multiplied by the difference of 8 and 2
?

Solution
We require the reciprocal of 5.(8 − 2); that is, the reciprocal of 30. The answer is
therefore 1

30
.

3. Calculate the value of 42
3
− 51

9
expressing the answer as a fraction.

Solution
Converting both numbers to a single fraction, we require

14

3
− 46

9
=

126− 138

27
= −12

27
= −4

9
.

We could also have observed that the ‘lowest common multiple’ (see later) of the two
denominators, 3 and 9, is 9; hence we could write the alternative solution

42

9
− 46

9
= −4

9
.
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4. Remove the modulus signs from the expression | a−2 | in the cases when (i) a is greater
than (or equal to) 2 and (ii) a is less than 2.

Solution
(i) If a is greater than or equal to 2,

| a− 2 |= a− 2;

(ii) If a is less than 2,
| a− 2 |= −(a− 2) = 2− a.

1.1.2 THE LAWS OF ALGEBRA

If the symbols a, b and c denote numbers of arithmetic, then the following Laws are obeyed
by them:

(a) The Commutative Law of Addition a + b = b + a

(b) The Associative Law of Addition a + (b + c) = (a + b) + c

(c) The Commutative Law of Multiplication a.b = b.a

(d) The Associative Law of Multipication a.(b.c) = (a.b).c

(e) The Distributive Laws a.(b + c) = a.b + a.c and (a + b).c = a.c + b.c

Notes:

(i) A consequence of the Distributive Laws is the rule for multiplying together a pair of
bracketted expressions. It will be encountered more formally later, but we state it here for
reference:

(a + b).(c + d) = a.c + b.c + a.d + b.d

(ii) The alphabetical letters so far used for numbers in arithmetic have been taken from the
beginning of the alphabet. These tend to be reserved for fixed quantities called constants.
Letters from the end of the alphabet, such as w, x, y, z are normally used for quantities
which may take many values, and are called variables.

1.1.3 PRIORITIES IN CALCULATIONS

Suppose that we encountered the expression 5 × 6 − 4. It would seem to be ambiguous,
meaning either 30− 4 = 26 or 5× 2 = 10.

3



However, we may remove the ambiguity by using brackets where necessary, together with a
rule for precedence between the use of the brackets and the symbols +, −, × and ÷.

The rule is summarised in the abbreviation

B.O.D.M.A.S.

which means that the order of precedence is

B brackets ( ) First Priority

O of × Joint Second Priority
D division ÷ Joint Second Priority
M multiplication × Joint Second Priority

A addition + Joint Third Priority
S subtraction − Joint Third Priority

Thus, 5× (6− 4) = 5× 2 = 10
but 5× 6− 4 = 30− 4 = 26.

Similarly, 12÷ 3− 1 = 4− 1 = 3
whereas 12÷ (3− 1) = 12÷ 2 = 6.

1.1.4 FACTORS

If a number can be expressed as a product of other numbers, each of those other numbers is
called a “factor” of the original number.

EXAMPLES

1. We may observe that
70 = 2× 7× 5

so that the number 70 has factors of 2, 7 and 5. These three cannot be broken down into
factors themselves because they are what are known as “prime” numbers (numbers
whose only factors are themselves and 1). Hence the only factors of 70, apart from 70
and 1, are 2, 7 and 5.

2. Show that the numbers 78 and 182 have two common factors which are prime numbers.

The two factorisations are as follows:

78 = 2× 3× 13,
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182 = 2× 7× 13.

The common factors are thus 2 and 13, both of which are prime numbers.

Notes:

(i) If two or more numbers have been expressed as a product of their prime factors, we may
easily identify the prime factors which are common to all the numbers and hence obtain the
“highest common factor”, h.c.f.

For example, 90 = 2×3×3×5 and 108 = 2×2×3×3×3. Hence the h.c.f = 2×3×3 = 18

(ii) If two or more numbers have been expressed as a product of their prime factors, we may
also identify the “lowest common multiple”, l.c.m.

For example, 15 = 3× 5 and 20 = 2× 2× 5. Hence the smallest number into which both 15
and 20 will divide requires two factors of 2 (for 20), one factor of 5 (for both 15 and 20) and
one factor of 3 (for 15). The l.c.m. is thus 2× 2× 3× 5 = 60.

(iii) If the numerator and denominator of a fraction have factors in common, then such
factors may be cancelled to leave the fraction in its “lowest terms”.

For example 15
105

= 3×5
3×5×7

= 1
7
.

1.1.5 EXERCISES

1. Find the sum and product of

(a) 3 and 6; (b) 10 and 7; (c) 2, 3 and 6;

(d) 3
2

and 4
11

; (e) 12
5

and 73
4
; (f) 21

7
and 5 4

21
.

2. Find the difference between and quotient of

(a) 18 and 9; (b) 20 and 5; (c) 100 and 20;

(d) 3
5

and 7
10

; (e) 31
4

and 22
9
; (f) 12

3
and 55

6
.

3. Evaluate the following expressions:

(a) 6− 2× 2; (b) (6− 2)× 2;
(c) 6÷ 2− 2; (d) (6÷ 2)− 2;
(e) 6− 2 + 3× 2; (f) 6− (2 + 3)× 2;
(g) (6− 2) + 3× 2; (h) 16

−2
; (i) −24

−3
; (j) (−6)× (−2).
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4. Place brackets in the following to make them correct:

(a) 6× 12− 3 + 1 = 55; (b) 6× 12− 3 + 1 = 68;
(c) 6× 12− 3 + 1 = 60; (d) 5× 4− 3 + 2 = 7;
(e) 5× 4− 3 + 2 = 15; (f) 5× 4− 3 + 2 = −5.

5. Express the following as a product of prime factors:

(a) 26; (b) 100; (c) 27; (d) 71;

(e) 64; (f) 87; (g) 437; (h) 899.

6. Find the h.c.f of

(a) 12, 15 and 21; (b) 16, 24 and 40; (c) 28, 70, 120 and 160;

(d) 35, 38 and 42; (e) 96, 120 and 144.

7. Find the l.c.m of

(a) 5, 6, and 8; (b) 20 and 30; (c) 7, 9 and 12;

(d) 100, 150 and 235; (e) 96, 120 and 144.

1.1.6 ANSWERS TO EXERCISES

1. (a) 9, 18; (b) 17,70; (c) 11,36; (d) 41
22

, 6
11

; (e) 183
20

, 217
20

; (f) 154
21

, 545
49

.

2. (a) 9,2; (b) 15,4; (c) 80,5; (d) − 1
10

, 6
7
; (e) 37

36
, 117

80
; (f) −25

6
, 2

7
.

3. (a) 2; (b) 8; (c) 1; (d) 1; (e) 10;
(f) −4; (g) 10; (h) −8; (i) 8; (j) 12;

4. (a) 6× (12− 3) + 1 = 55; (b) 6× 12− (3 + 1) = 68;
(c) 6× (12− 3 + 1) = 60; (d) 5× (4− 3) + 2 = 7;
(e) 5× 4− (3 + 2) = 15; (f) 5× (4− [3 + 2]) = −5.

5. (a) 2× 13; (b) 2× 2× 5× 5; (c) 3× 3× 3; (d) 71× 1;

(e) 2× 2× 2× 2× 2× 2; (f) 3× 29; (g) 19× 23; (h) 29× 31.

6. (a) 3; (b) 8; (c) 2; (d) 1; (e) 24.

7. (a) 120; (b) 60; (c) 252; (d) 14100; (e) 1440.
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UNIT 1.2 - - ALGEBRA 2 - NUMBERWORK

1.2.1 TYPES OF NUMBER

In this section (and elsewhere) the meaning of the following types of numerical quantity will
need to be appreciated:

(a) NATURAL NUMBERS
These are the counting numbers 1, 2, 3, 4, .......

(b) INTEGERS
These are the positive and negative whole numbers and zero;
i.e. ......−5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, ......

(c) RATIONALS
These are the numbers which can be expressed as the ratio of two integers but can also be
written as a terminating or recurring decimal (see also next section)

For example
2

5
= 0.4

and
3

7
= 0.428714287142871....

(d) IRRATIONALS
These are the numbers which cannot be expressed as either the ratio of two integers or a
recurring decimal (see also next section)

Typical examples are numbers like

π ' 3.1415926.....

e ' 2.71828.....
√

2 ' 1.4142135....
√

5 ' 2.2360679....

The above four types of number form the system of “real numbers”.

1



1.2.2 DECIMAL NUMBERS

(a) Rounding to a specified number of decimal places
Most decimal quantities used in scientific work need to be approximated by “rounding”
them (up or down as appropriate) to a specified number of decimal places, depending on the
accuracy required.

When rounding to n decimal places, the digit in the n-th place is left as it is when the one
after it is below 5; otherwise it is taken up by one digit.

EXAMPLES

1. 362.5863 = 362.586 to 3 decimal places;
362.5863 = 362.59 to 2 decimal places;
362.5863 = 362.6 to 1 decimal place;
362.5863 = 363 to the nearest whole number.

2. 0.02158 = 0.0216 to 4 decimal places;
0.02158 = 0.022 to three decimal places;
0.02158 = 0.02 to 2 decimal places.

(b) Rounding to a specified number of significant figures
The first significant figure of a decimal quantity is the first non-zero digit from the left,
whether it be before or after the decimal point.

Hence when rounding to a specified number of significant figures, we use the same principle
as in (a), but starting from the first significant figure, then working to the right.

EXAMPLES

1. 362.5863 = 362.59 to 5 significant figures;
362.5863 = 362.6 to 4 significant figures;
362.5863 = 363 to 3 significant figures;
362.5863 = 360 to 2 significant figures;
362.5863 = 400 to 1 significant figure.

2. 0.02158 = 0.0216 to 3 significant figures; 0.02158 = 0.022 to 2 significant figures;
0.02158 = 0.02 to 1 significant figure.
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1.2.3 THE USE OF ELECTRONIC CALCULATORS

(a) B.O.D.M.A.S.
The student will normally need to work to the instruction manual for the particular calculator
being used; but care must be taken to remember the B.O.D.M.A.S. rule for priorities in
calculations when pressing the appropriate buttons.

For example, in working out 7.25+3.75×8.32, the multiplication should be carried out first,
then the addition. The answer is 38.45, not 91.52.

Similarly, in working out 6.95÷ [2.43− 1.62], it is best to evaluate 2.43− 1.62, then generate
its reciprocal with the 1

x
button, then multiply by 6.95. The answer is 8.58, not 1.24

(b) Other Useful Numerical Functions
Other useful functions to become familiar with for scientific work with numbers are those
indicated by labels such as

√
x, x2, xy and x

1
y , using, where necessary, the “shift” control

to bring the correct function into operation.

For example:

√
173 ' 13.153;

1732 = 29929;

233 = 12167;

23
1
3 ' 2.844

(c) The Calculator Memory
Familiarity with the calculator’s memory facility will be essential for more complicated cal-
culations in which various parts need to be stored temporarily while the different steps are
being carried out.

For example, in order to evaluate

(1.4)3 − 2(1.4)2 + 5(1.4)− 3 ' 2.824

we need to store each of the four terms in the calculation (positively or negatively) then
recall their total sum at the end.
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1.2.4 SCIENTIFIC NOTATION

(a) Very large numbers, especially decimal numbers are customarily written in the form

a× 10n

where n is a positive integer and a lies between 1 and 10.

For instance,
521983677.103 = 5.21983677103× 108.

(b) Very small decimal numbers are customarily written in the form

a× 10−n

where n is a positive integer and a lies between 1 and 10.

For instance,
0.00045938 = 4.5938× 10−4.

Note:
An electronic calculator will allow you to enter numbers in scientific notation by using the
EXP or EE buttons.

EXAMPLES

1. Key in the number 3.90816× 1057 on a calculator.

Press 3.90816 EXP 57

In the display there will now be 3.90816 57 or 3.90816×1057
.

2. Key in the number 1.5× 10−27 on a calculator

Press 1.5 EXP 27 +/-

In the display there will now be 1.5 - 27 or 1.5×10−27
.

Notes:

(i) On a calculator or computer, scientific notation is also called floating point notation.

(ii) When performing a calculation involving decimal numbers, it is always a good idea to
check that the result is reasonable and that a major arithmetical error has not been made
with the calculator.
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For example,
69.845× 196.574 = 6.9845× 101 × 1.96574× 103.

This product can be estimated for reasonableness as:

7× 2× 1000 = 14000.

The answer obtained by calculator is 13729.71 to two decimal places which is 14000 when
rounded to the nearest 1000, indicating that the exact result could be reasonably expected.

(iii) If a set of measurements is made with an accuracy to a given number of significant
figures, then it may be shown that any calculation involving those measurements will be
accurate only to one significant figure more than the least number of significant figures in
any measurement.

For example, the edges of a rectangular piece of cardboard are measured as 12.5cm and
33.43cm respectively and hence the area may be evaluated as

12.5× 33.43 = 417.875cm2.

Since one of the edges is measured only to three significant figures, the area result is accurate
only to four significant figures and hence must be stated as 417.9cm2.

1.2.5 PERCENTAGES

Definition
A percentage is a fraction whose denominator is 100. We use the per-cent symbol, %, to
represent a percentage.

For instance, the fraction 17
100

may be written 17%

EXAMPLES

1. Express 2
5

as a percentage.

Solution

2

5
=

2

5
× 20

20
=

40

100
= 40%

2. Calculate 27% of 90.

Solution

27% of 90 =
27

100
× 90 =

27

10
× 9 = 24.3

5



3. Express 30% as a decimal.

Solution

30% =
30

100
= 0.3

1.2.6 RATIO

Sometimes, a more convenient way of expressing the ratio of two numbers is to use a colon
(:) in place of either the standard division sign (÷) or the standard notation for fractions.

For instance, the expression 7:3 could be used instead of either 7 ÷ 3 or 7
3
. It denotes that

two quantities are “in the ratio 7 to 3” which implies that the first number is seven thirds
times the second number or, alternatively, the second number is three sevenths times the
first number. Although more cumbersome, the ratio 7:3 could also be written 7

3
:1 or 1:3

7
.

EXAMPLES

1. Divide 170 in the ratio 3:2

Solution

We may consider that 170 is made up of 3 + 2 = 5 parts, each of value 170
5

= 34.

Three of these make up a value of 3 × 34 = 102 and two of them make up a value of
2× 34 = 68.

Thus 170 needs to be divided into 102 and 68.

2. Divide 250 in the ratio 1:3:4

Solution

This time, we consider that 250 is made up of 1 + 3 + 4 = 8 parts, each of value
250
8

= 31.25. Three of these make up a value of 3 × 31.25 = 93.75 and four of them
make up a value of 4× 31.25 = 125.

Thus 250 needs to be divided into 31.25, 93.75 and 125.
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1.2.7 EXERCISES

1. Write to 3 s.f.

(a) 6962; (b) 70.406; (c) 0.0123;
(d) 0.010991; (e) 45.607; (f) 2345.

2. Write 65.999 to

(a) 4 s.f. (b) 3 s.f. (c) 2 s.f.
(d) 1 s.f. (e) 2 d.p. (f) 1 d.p.

3. Compute the following in scientific notation:

(a) (0.003)2 × (0.00004)× (0.00006)× 5, 000, 000, 000;

(b) 800× (0.00001)2 ÷ (200, 000)4.

4. Assuming that the following contain numbers obtained by measurement, use a calculator
to determine their value and state the expected level of accuracy:

(a)
(13.261)0.5(1.2)

(5.632)3
;

(b)
(8.342)(−9.456)3

(3.25)4
.

5. Calculate 23% of 124.

6. Express the following as percentages:

(a) 9
11

; (b) 15
20

; (c) 9
10

; (d) 45
50

; (e) 75
90

.

7. A worker earns £400 a week, then receives a 6% increase. Calculate the new weekly
wage.

8. Express the following percentages as decimals:

(a) 50% (b) 36% (c) 75% (d) 100% (e) 12.5%

9. Divide 180 in the ratio 8:1:3

10. Divide 930 in the ratio 1:1:3

11. Divide 6 in the ratio 2:3:4

12. Divide 1200 in the ratio 1:2:3:4

13. A sum of £2600 is to be divided in the ratio 23
4

: 11
2

: 21
4
. Calculate the amount of

money in each part of the division.
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1.2.8. ANSWERS TO EXERCISES

1. (a) 6960; (b) 70.4; (c) 0.0123;
(d) 0.0110; (e) 45.6; (f) 2350.

2. (a) 66.00; (b) 66.0; (c) 66;
(d) 70; (e) 66.00; (f) 66.0

3. (a) 1.08 - 04 or 1.08×10−4
(b) 5 - 29 or 5×10−29

;

4. (a) 0.0245, accurate to three sig. figs. (b) −63.22, accurate to four sig. figs.

5. 28.52

6. (a) 81.82% (b) 75% (c) 90% (d) 90% (e) 83.33%

7. £424.

8. (a) 0.5; (b) 0.36; (c) 0.75; (d) 1; (e) 0.125

9. 120, 15, 45.

10. 186, 186, 558.

11. 1.33, 2, 2.67

12. 120, 240, 360, 480

13. £1100, £600 £900.
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UNIT 1.3 - ALGEBRA 3 - INDICES AND RADICALS (or Surds)

1.3.1 INDICES

(a) Positive Integer Indices

It was seen earlier that, for any number a, a2 denotes a.a, a3 denotes a.a.a, a4 denotes a.a.a.a
and so on.

Suppose now that a and b are arbitrary numbers and that m and n are natural numbers (i.e.
positive whole numbers)

Then the following rules are the basic Laws of Indices:

Law No. 1
am × an = am+n

Law No. 2
am ÷ an = am−n

assuming, for the moment, that m is greater than n.

Note:
It is natural to use this rule to give a definition to a0 which would otherwise be meaningless.

Clearly am

am = 1 but the present rule for indices suggests that am

am = am−m = a0.
Hence, we define a0 to be equal to 1.

Law No. 3
(am)n = amn

ambm = (ab)m

EXAMPLE

Simplify the expression,
x2y3

z
÷ xy

z5
.

Solution

The expression becomes
x2y3

z
× z5

xy
= xy2z4.

1



(b) Negative Integer Indices

Law No. 4

a−1 =
1

a

Note:
It has already been mentioned that a−1 means the same as 1

a
; and the logic behind this

statement is to maintain the basic Laws of Indices for negative indices as well as positive
ones.

For example am

am+1 is clearly the same as 1
a

but, using Law No. 2 above, it could also be

thought of as am−[m+1] = a−1.

Law No. 5

a−n =
1

an

Note:
This time, we may observe that am

am+n is clearly the same as 1
an ; but we could also use Law

No. 2 to interpret it as am−[m+n] = a−n

Law No. 6
a−∞ = 0

Note:
Strictly speaking, no power of a number can ever be equal to zero, but Law No. 6 asserts that
a very large negative power of a number a gives a very small value; the larger the negative
power, the smaller will be the value.

EXAMPLE

Simplify the expression,
x5y2z−3

x−1y4z5
÷ z2x2

y−1
.

Solution

The expression becomes

x5y2z−3xy−4z−5y−1z−2x−2 = x4y−3z−10.
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(c) Rational Indices

(i) Indices of the form 1
n

where n is a natural number.

In order to preserve Law No. 3, we interpret a
1
n to mean a number which gives the value a

when it is raised to the power n. It is called an “n-th Root of a” and, sometimes there is
more than one value.

ILLUSTRATION

81
1
4 = ±3 but (−27)

1
3 = −3 only.

(ii) Indices of the form m
n

where m and n are natural numbers with no common
factor.

The expression y
m
n may be interpreted in two ways as either (ym)

1
n or (y

1
n )m. It may be shown

that both interpretations give the same result but, sometimes, the arithmetic is shorter with
one rather than the other.

ILLUSTRATION

27
2
3 = 32 = 9 or 27

2
3 = 729

1
3 = 9.

Note:
It may be shown that all of the standard laws of indices may be used for fractional indices.

1.3.2 RADICALS (or Surds)

The symbol “
√

” is called a “radical” (or “surd”). It is used to indicate the positive or
“principal” square root of a number. Thus

√
16 = 4 and

√
25 = 5.

The number under the radical is called the “radicand”.

Most of our work on radicals will deal with square roots, but we may have occasion to use
other roots of a number. For instance the principal n-th root of a number a is denoted by
n
√

a, and is a number x such that xn = a. The number n is called the index of the radical
but, of course, when n = 2 we usually leave the index out.
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ILLUSTRATIONS

1. 3
√

64 = 4 since 43 = 64.

2. 3
√
−64 = −4 since (−4)3 = −64.

3. 4
√

81 = 3 since 34 = 81.

4. 5
√

32 = 2 since 25 = 32.

5. 5
√
−32 = −2 since (−2)5 = −32.

Note:
If the index of the radical is an odd number, then the radicand may be positive or negative;
but if the index of the radical is an even number, then the radicand may not be negative
since no even power of a negative number will ever give a negative result.

(a) Rules for Square Roots

In preparation for work which will follow in the next section, we list here the standard rules
for square roots:

(i) (
√

a)2 = a

(ii)
√

a2 = |a|

(iii)
√

ab =
√

a
√

b

(iv)
√

a
b

=
√

a√
b

assuming that all of the radicals can be evaluated.

ILLUSTRATIONS

1.
√

9× 4 =
√

36 = 6 and
√

9×
√

4 = 3× 2 = 6.

2.
√

144
36

=
√

4 = 2 and
√

144√
36

= 12
6

= 2.

4



(b) Rationalisation of Radical (or Surd) Expressions.

It is often desirable to eliminate expressions containing radicals from the denominator of a
quotient. This process is called

rationalising the denominator.

The process involves multiplying numerator and denominator of the quotient by the same
amount - an amount which eliminates the radicals in the denominator (often using the fact
that the square root of a number multiplied by itself gives just the number;
i.e.

√
a.
√

a = a). We illustrate with examples:

EXAMPLES

1. Rationalise the surd form 5
4
√

3

Solution

We simply multiply numerator and denominator by
√

3 to give

5

4
√

3
=

5

4
√

3
×
√

3√
3

=
5
√

3

12
.

2. Rationalise the surd form
3√a
3
√

b

Solution

Here we observe that, if we can convert the denominator into the cube root of bn, where
n is a whole multiple of 3, then the square root sign will disappear.

We have
3
√

a
3
√

b
=

3
√

a
3
√

b
×

3
√

b2

3
√

b2
=

3
√

ab2

3
√

b3
=

3
√

ab2

b
.

If the denominator is of the form
√

a +
√

b, we multiply the numerator and the denom-

inator by the expression
√

a−
√

b because

(
√

a +
√

b)(
√

a−
√

b) = a− b.

3. Rationalise the surd form 4√
5+
√

2
.

Solution

Multiplying numerator and denominator by
√

5−
√

2 gives

4√
5 +

√
2
×
√

5−
√

2√
5−

√
2

=
4
√

5− 4
√

2

3
.

5



4. Rationalise the surd form 1√
3−1

.

Solution

Multiplying numerator and denominator by
√

3 + 1 gives

1√
3− 1

×
√

3 + 1√
3 + 1

=

√
3 + 1

2
.

(c) Changing numbers to and from radical form

The modulus of any number of the form a
m
n can be regarded as the principal n-th root of

am; i.e.
| a

m
n |= n

√
am.

If a number of the type shown on the left is converted to the type on the right, we are said
to have expressed it in radical form.

If a number of the type on the right is converted to the type on the left, we are said to have
expressed it in exponential form.

Note:
The word “exponent” is just another word for “power” or “index” and the standard
rules of indices will need to be used in questions of the type discussed here.

EXAMPLES

1. Express the number x
2
5 in radical form.

Solution

The answer is just
5
√

x2.

2. Express the number 3
√

a5b4 in exponential form.

Solution

Here we have
3
√

a5b4 = (a5b4)
1
3 = a

5
3 b

4
3 .
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1.3.3 EXERCISES

1. Simplify

(a) 57 × 513; (b) 98 × 95; (c) 112 × 113 × 114.

2. Simplify

(a) 153

152 ; (b) 418

49 ; (c) 520

519 .

3. Simplify

(a) a7a3; (b) a4a5;

(c) b11b10b; (d) 3x6 × 5x9.

4. Simplify

(a) (73)2; (b) (42)8; (c) (79)2.

5. Simplify

(a) (x2y3)(x3y2); (b) (2x2)(3x4);

(c) (a2bc2)(b2ca); (d) 6c2d3

3cd2 .

6. Simplify

(a) (4−3)
2

(b) a13a−2;

(c) x−9x−7; (d) x−21x2x;

(e) x2y−1

z3 ÷ z2

x−1y3 .

7. Without using a calculator, evaluate the following:

(a) 4−8

4−6 ; (b) 3−5

3−8 .

8. Evaluate the following:

(a) 64
1
3 ; (b) 144

1
2 ;

(c) 16−
1
4 ; (d) 25−

1
2 ;

(e) 16
3
2 ; (f) 125−

2
3 .

9. Simplify the following radicals:

(a) −3
√
−8; (b)

√
36x4; (c)

√
9a2

36b2
.

10. Rationalise the following surd forms:

(a)
√

2√
3
; (b)

3
√

18
3
√

2
; (c) 2+

√
5√

3−2
; (d)

√
a√

a+3
√

b
.

11. Change the following to exponential form:

(a) 4
√

72; (b) 5
√

a2b; (c) 3
√

95.
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12. Change the following to radical form:

(a) b
3
5 ; (b) r

5
3 ; (c) s

7
3 .

1.3.4 ANSWERS TO EXERCISES

1. (a) 520; (b) 913; (c) 119.

2. (a) 15; (b) 49; (c) 5.

3. (a) a10; (b) a9; (c) b22; (d) 15x15.

4. (a) 76; (b) 416; (c) 718.

5. (a) x5y5; (b) 6x6; (c) a3b3c3; (d) 2cd.

6. (a) 4−6; (b) a11; (c) x−16; (d) x−18; (e) xy2z−5.

7. (a) 1
16

; (b) 27.

8. (a) 4; (b) ±12; (c) ±1
2
;

(d) ±1
5
; (e) ±64; (f) 1

25
;

9. (a) 2; (b) 6x2; (c)
∣∣∣ a
2b

∣∣∣.
10. (a)

√
6

3
; (b)

3
√

72
2

= 3
√

9; (c) −(2 +
√

5)(2 +
√

3); (d) a−3
√

ab
a−9b

.

11. (a)
∣∣∣7 1

2

∣∣∣; (b) a
2
5 b

1
5 ; (c) 9

5
3 .

12. (a) 5
√

b3; (b) 3
√

r5; (c) 3
√

s7.
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UNIT 1.4 - ALGEBRA 4 - LOGARITHMS

1.4.1 COMMON LOGARITHMS

The system of numbers with which we normally count and calculate has a base of 10; this
means that each of the successive digits of a particular number correspond to that digit
multiplied by a certain power of 10.

For example
73, 520 = 7× 104 + 3× 103 + 5× 102 + 2× 101.

Note:
Other systems (not discussed here) are sometimes used - such as the binary system which
uses successive powers of 2.

The question now arises as to whether a given number can be expressed as a single power
of 10, not necessarily an integer power. It will certainly need to be a positive number since
powers of 10 are not normally negative (or even zero).

It can easily be verified by calculator, for instance that

1.99526 ' 100.3

and
2 ' 100.30103.

DEFINITION
In general, when it occurs that

x = 10y,

for some positive number x, we say that y is the “logarithm to base 10” of x
(or “ common logarithm” of x) and we write

y = log10 x.

EXAMPLES

1. log10 1.99526 = 0.3 from the illustrations above.

2. log10 2 = 0.30103 from the illustrations above.

3. log10 1 = 0 simply because 100 = 1.
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1.4.2 LOGARITHMS IN GENERAL

In practice, with scientific work, only two bases of logarithms are ever used; but it will be
useful to include here a general discussion of the definition and properties of logarithms to
any base so that unnecessary repetition may be avoided. We consider only positive bases of
logarithms in the general discussion.

DEFINITION
If B is a fixed positive number and x is another positive number such that

x = By,

we say that y is the “logarithm to base B” of x and we write

y = logB x.

EXAMPLES

1. logB 1 = 0 simply because B0 = 1.

2. logB B = 1 simply because B1 = B.

3. logB 0 doesn’t really exist because no power of B could ever be equal to zero. But, since
a very large negative power of B will be a very small positive number, we usually write

logB 0 = −∞.

1.4.3 USEFUL RESULTS

In preparation for the general properties of logarithms, we note the following two results
which can be obtained directly from the definition of a logarithm:

(a) For any positive number x,
x = BlogB x.

In other words, any positive number can be expressed as a power of B without necessarily
using a calculator.

We have simply replaced the y in the statement x = By by logB x in the equivalent statement
y = logB x.

(b) For any number y,
y = logB By.
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In other words, any number can be expressed in the form of a logarithm without necessarily
using a calculator.

We have simply replaced x in the statement y = logB x by By in the equivalent statement
x = By.

1.4.4 PROPERTIES OF LOGARITHMS

The following properties were once necessary for performing numerical calculations before
electronic calculators came into use. We do not use logarithms for this purpose nowadays;
but we do need their properties for various topics in scientific mathematics.

(a) The Logarithm of Product.

logB p.q = logB p + logB q.

Proof:
We need to show that, when p.q is expressed as a power of B, that power is the expression
on the right hand side of the above formula.

From Result (a) of the previous section,

p.q = BlogB p.BlogB q = BlogB p+logB q,

by elementary properties of indices.

The result therefore follows.

(b) The Logarithm of a Quotient

logB

p

q
= logB p− logB q.

Proof:
The proof is along similar lines to that in (i).

From Result (a) of the previous section,

p

q
=

BlogB p

BlogB q
= BlogB p−logB q,

by elementary properties of indices.

The result therefore follows.
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(c) The Logarithm of an Exponential

logB pn = n logB p,

where n need not be an integer.

Proof:
From Result (a) of the previous section,

pn =
(
BlogB p

)n
= Bn logB p,

by elementary properties of indices.

(d) The Logarithm of a Reciprocal

logB

1

q
= − logB q.

Proof:
This property may be proved in two ways as follows:

Method 1.
The left-hand side = logB 1− logB q = 0− logB q = − logB q.

Method 2.
The left-hand side = logB q−1 = − logB q.

(e) Change of Base

logB x =
logA x

logA B
.

Proof:
Suppose y = logB x, then x = By and hence

logA x = logA By = y logA B.

Thus,

y =
logA x

logA B

and the result follows.

Note:
The result shows that the logarithms of any set of numbers to a given base will be directly

4



proportional to the logarithms of the same set of numbers to another given base. This is
simply because the number logA B is a constant.

1.4.5 NATURAL LOGARITHMS

It was mentioned earlier that, in scientific work, only two bases of logarithms are ever used.
One of these is base 10 and the other is a base which arises naturally out of elementary
calculus when discussing the simplest available result for the “derivative” (rate of change)
of a logarithm.

This other base turns out to be a non-recurring, non-terminating decimal quantity (irrational
number) which is equal to 2.71828.....and clearly this would be inconvenient to write into
the logarithm notation.

We therefore denote it by e to give the “natural logarithm” of a number, x, in the form
loge x, although most scientific books use the alternative notation ln x.

Note:
From the earlier change of base formula we can say that

log10 x =
loge x

loge 10
and loge x =

log10 x

log10 e
.

EXAMPLES

1. Solve for x the indicial equation

43x−2 = 26x+1.

Solution

The secret of solving an equation where an unknown quantity appears in a power (or
index or exponent) is to take logarithms of both sides first.

Here we obtain
(3x− 2) log10 4 = (x + 1) log10 26;

(3x− 2)0.6021 = (x + 1)1.4150;

1.8063x− 1.2042 = 1.4150x + 1.4150;

(1.8603− 1.4150)x = 1.4150 + 1.2042;

0.3913x = 2.6192;

x =
2.6192

0.3913
' 6.6936

5



2. Rewrite the expression

4x + log10(x + 1)− log10 x− 1

2
log10(x

3 + 2x2 − x)

as the common logarithm of a single mathematical expression.

Solution

The secret here is to make sure that every term in the given expression is converted,
where necessary, to a logarithm with no multiple in front of it or behind it. In this case,
we need first to write 4x = log10 104x and 1

2
log10(x

3 + 2x2− x) = log10 (x3 + 2x2 − x)
1
2 .

We can then use the results for the logarithms of a product and a quotient to give

log10

104x(x + 1)

x
√

(x3 + 2x2 − x)
.

3. Rewrite without logarithms the equation

2x + ln x = ln(x− 7).

Solution

This time, we need to convert both sides to the natural logarithm of a single mathe-
matical expression in order to remove the logarithms completely.

2x + ln x = ln e2x + ln x = ln xe2x.

Hence,
xe2x = x− 7.

4. Solve for x the equation
6 ln 4 + ln 2 = 3 + ln x.

Solution

In view of the facts that 6 ln 4 = ln 46 and 3 = ln e3, the equation can be written

ln 2(46) = ln xe3.

Hence,
2(46) = xe3,

so that

x =
2(46)

e3
' 407.856
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1.4.6 GRAPHS OF LOGARITHMIC AND EXPONENTIAL FUNCTIONS

In the applications of mathematics to science and engineering, two commonly used “func-
tions” are y = ex and y = loge x. Their graphs are as follows:

-

6

x

y = ex

O

1

-

6

x

y = loge x

O
1

They are closely linked with each other by virtue of the two equivalent statements:

P = loge Q and Q = eP

for any number P and any postive number Q.

Because of these statements, we would expect similarities in the graphs of the equations

y = loge x and y = ex.
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1.4.7 LOGARITHMIC SCALES

In a certain kind of graphical work (see Unit 5.3), some use is made of a linear scale along
which numbers can be allocated according to their logarithmic distances from a chosen origin
of measurement.

Considering firstly that 10 is the base of logarithms, the number 1 is always placed at the
zero of measurement (since log10 1 = 0); 10 is placed at the first unit of measurement (since
log10 10 = 1), 100 is placed at the second unit of measurement (since log10 100 = 2), and so
on.

Negative powers of 10 such as 10−1 = 0.1, 10−2 = 0.01 etc. are placed at the points
corresponding to −1 and −2 etc. respectively on an ordinary linear scale.

The logarithmic scale appears therefore in “cycles”, each cycle corresponding to a range of
numbers between two consecutive powers of 10.

Intermediate numbers are placed at intervals which correspond to their logarithm values.

An extract from a typical logarithmic scale would be as follows:

0.1 0.2 0.3 0.4 1 2 3 4 10

Notes:
(i) A given set of numbers will determine how many cycles are required on the logarithmic
scale. For example .3, .6, 5, 9, 23, 42, 166 will require four cycles.

(ii) Commercially printed logarithmic scales do not specify the base of logarithms; the change
of base formula implies that logarithms to different bases are proportional to each other and
hence their logarithmic scales will have the same relative shape.
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1.4.8 EXERCISES

1. Without using tables or a calculator, evaluate

(a) log10 27÷ log10 3;

(b) (log10 16− log10 2)÷ log10 2.

2. Using properties of logarithms where possible, solve for x the following equations:

(a) log10
7
2

+ 2 log10
4
3
− log10

7
45

= 1 + log10 x;

(b) 2 log10 6− (log10 4 + log10 9) = log10 x.

(c) 10x = 5(210).

3. From the definition of a logarithm or the change of base formula, evaluate the following:

(a) log2 7;

(b) log3 0.04;

(c) log5 3;

(d) 3 log3 2− log3 4 + log3
1
2
.

4. Obtain y in terms of x for the following equations:

(a) 2 ln y = 1− x2;

(b) ln x = 5− 3 ln y.

5. Rewrite the following statements without logarithms:

(a) ln x = −1
2
ln(1− 2v3) + ln C;

(b) ln(1 + y) = 1
2
x2 + ln 4;

(c) ln(4 + y2) = 2 ln(x + 1) + ln A.

6. (a) If I0
I

= 10ac, find c in terms of the other quantities in the formula.

(b) If yp = Cxq, find q in terms of the other quantities in the formula.
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1.4.9 ANSWERS TO EXERCISES

1. (a) 3; (b) 3.

2. (a) 4; (b) 1; (c) 3.70927

3. (a) 2.807; (b) −2.930; (c) 0.683; (d) 0

4. (a)

y = e
1
2
(1−x2);

(b)

y = 3

√
e5

x
.

5. (a)

x =
C√

1− 2v3
;

(b)

1 + y = 4e
x2

2 ;

(c)

4 + y2 = A(x + 1)2.

6. (a)

c =
1

a
log10

I0

I
;

(b)

q =
p log y − log C

log x
,

using any base.
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UNIT 1.5 - ALGEBRA 5
MANIPULATION OF ALGEBRAIC EXPRESSIONS

1.5.1 SIMPLIFICATION OF EXPRESSIONS

An algebraic expression will, in general, contain a mixture of alphabetical symbols together
with one or more numerical quantities; some of these symbols and numbers may be bracketted
together.

Using the Language of Algebra and the Laws of Algebra discussed earlier, the method of
simplification is to remove brackets and collect together any terms which have the same
format

Some elementary illustrations are as follows:

1. a + a + a + 3 + b + b + b + b + 8 ≡ 3a + 4b + 11.

2. 11p2 + 5q7 − 8p2 + q7 ≡ 3p2 + 6q7.

3. a(2a− b) + b(a + 5b)− a2 − 4b2 ≡ 2a2 − ab + ba + 5b2 − a2 − 4b2 ≡ a2 + b2.

More frequently, the expressions to be simplified will involve symbols which represent both
the constants and variables encountered in scientific work. Typical examples in pure math-
ematics use symbols like x, y and z to represent the variable quantities.

Further illustrations use this kind of notation and, for simplicity, we shall omit the full-stop
type of multiplication sign between symbols.

1. x(2x + 5) + x2(3− x) ≡ 2x2 + 5x + 3x2 − x3 ≡ 5x2 + 5x− x3.

2. x−1(4x− x2)− 6(1− 3x) ≡ 4− x− 6 + 18x ≡ 17x− 2.

We need also to consider the kind of expression which involves two or more brackets multi-
plied together; but the routine is just an extension of what has already been discussed.

For example consider the expression

(a + b)(c + d).

Taking the first bracket as a single item for the moment, the Distributive Law gives

(a + b)c + (a + b)d.
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Using the Distributive Law a second time gives

ac + bc + ad + bd.

In other words, each of the two terms in the first bracket are multiplied by each of the two
terms in the second bracket, giving four terms in all.

Again, we illustrate with examples:

EXAMPLES

1. (x + 3)(x− 5) ≡ x2 + 3x− 5x− 15 ≡ x2 − 2x− 15.

2. (x3 − x)(x + 5) ≡ x4 − x2 + 5x3 − 5x.

3. (x + a)2 ≡ (x + a)(x + a) ≡ x2 + ax + ax + a2 ≡ x2 + 2ax + a2.

4. (x + a)(x− a) ≡ x2 + ax− ax− a2 ≡ x2 − a2.

The last two illustrations above are significant for later work because they incorporate,
respectively, the standard results for a “perfect square” and “the difference between
two squares”.

1.5.2 FACTORISATION

Introduction
In an algebraic context, the word “factor” means the same as “multiplier”. Thus, to
factorise an algebraic expression, is to write it as a product of separate multipliers or factors.

Some simple examples will serve to introduce the idea:

EXAMPLES

1.

3x + 12 ≡ 3(x + 4).

2.

8x2 − 12x ≡ x(8x− 12) ≡ 4x(2x− 3).

3.

5x2 + 15x3 ≡ x2(5 + 15x) ≡ 5x2(1 + 3x).
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4.

6x + 3x2 + 9xy ≡ x(6 + 3x + 9y) ≡ 3x(2 + x + 3y).

Note:
When none of the factors can be broken down into simpler factors, the original expression
is said to have been factorised into “irreducible factors”.

Factorisation of quadratic expressions

A “quadratic expression” is an expression of the form

ax2 + bx + c,

where, usually, a, b and c are fixed numbers (constants) while x is a variable number. The
numbers a and b are called, respectively, the “coefficients” of x2 and x while c is called
the “constant term”; but, for brevity, we often say that the quadratic expression has
coefficients a, b and c.

Note:
It is important that the coefficient a does not have the value zero otherwise the expression
is not quadratic but “linear”.

The method of factorisation is illustrated by examples:

(a) When the coefficient of x2 is 1

EXAMPLES

1.

x2 + 5x + 6 ≡ (x + m)(x + n) ≡ x2 + (m + n)x + mn.

This implies that 5 = m + n and 6 = mn which, by inspection gives m = 2 and n = 3.
Hence

x2 + 5x + 6 ≡ (x + 2)(x + 3).

2.

x2 + 4x− 21 ≡ (x + m)(x + n) ≡ x2 + (m + n)x + mn.

This implies that 4 = m + n and −21 = mn which, by inspection, gives m = −3 and
n = 7. Hence

x2 + 4x− 21 ≡ (x− 3)(x + 7).
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Notes:
(i) In general, for simple cases, it is better to try to carry out the factorisation entirely
by inspection. This avoids the cumbersome use of m and n in the above two examples as
follows:

x2 + 2x− 8 ≡ (x+?)(x+?).

The two missing numbers must be such that their sum is 2 and their product is −8. The
required values are therefore −2 and 4. Hence

x2 + 2x− 8 ≡ (x− 2)(x + 4).

(ii) It is necessary, when factorising a quadratic expression, to be aware that either a perfect
square or the difference of two squares might be involved. In these cases, the factorisation
is a little simpler. For instance:

x2 + 10x + 25 ≡ (x + 5)2

and
x2 − 64 ≡ (x− 8)(x + 8).

(iii) Some quadratic expressions will not conveniently factorise at all. For example, in the
expression

x2 − 13x + 2,

we cannot find two whole numbers whose sum is −13 while, at the same time, their product
is 2.

(b) When the coefficient of x2 is not 1

Quadratic expressions of this kind are usually more difficult to factorise than those in the
previous paragraph. We first need to determine the possible pairs of factors of the coefficient
of x2 and the possible pairs of factors of the constant term; then we need to consider the
possible combinations of these which provide the correct factors of the quadratic expression.

EXAMPLES

1. To factorise the expression
2x2 + 11x + 12,
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we observe that 2 is the product of 2 and 1 only, while 12 is the product of either 12 and
1, 6 and 2 or 4 and 3. All terms of the quadratic expression are positive and hence we
may try (2x+1)(x+12), (2x+12)(x+1), (2x+6)(x+2), (2x+2)(x+6), (2x+4)(x+3)
and (2x + 3)(x + 4) . Only the last of these is correct and so

2x2 + 11x + 12 ≡ (2x + 3)(x + 4).

2. To factorise the expression
6x2 + 7x− 3,

we observe that 6 is the product of either 6 and 1 or 3 and 2 while 3 is the product
of 3 and 1 only. A negative constant term implies that, in the final result, its two
factors must have opposite signs. Hence we may try (6x + 3)(x − 1), (6x − 3)(x + 1),
(6x + 1)(x − 3), (6x − 1)(x + 3), (3x + 3)(2x − 1), (3x − 3)(2x + 1), (3x + 1)(2x − 3)
and (3x− 1)(2x + 3). Again, only the last of these is correct and so

6x2 + 7x− 3 ≡ (3x− 1)(2x + 3).

Note:
The more factors there are in the coefficients considered, the more possibilities there are to
try of the final factorisation.

1.5.3 COMPLETING THE SQUARE IN A QUADRATIC EXPRESSION

The following work is based on the standard expansions

(x + a)2 ≡ x2 + 2ax + a2

and
(x− a)2 ≡ x2 − 2ax + a2.

Both of these last expressions are called “complete squares” (or “perfect squares”) in
which we observe that one half of the coefficient of x, when multiplied by itself, gives the
constant term. That is

(
1

2
× 2a)2 = a2.

ILLUSTRATIONS

1.

x2 + 6x + 9 ≡ (x + 3)2.
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2.

x2 − 8x + 16 ≡ (x− 4)2.

3.

4x2 − 4x + 1 ≡ 4
[
x2 − x +

1

4

]
≡ 4

(
x− 1

2

)2

.

Of course it may happen that a given quadratic expression is NOT a complete square; but,
by using one half of the coefficient of x, we may express it as the sum or difference of a
complete square and a constant. This process is called “completing the square”, and the
following examples illustrate it:

EXAMPLES

1.

x2 + 6x + 11 ≡ (x + 3)2 + 2.

2.

x2 − 8x + 7 ≡ (x− 4)2 − 9.

3.

4x2 − 4x + 5 ≡ 4
[
x2 − x +

5

4

]

≡ 4

[(
x− 1

2

)2

− 1

4
+

5

4

]

≡ 4

[(
x− 1

2

)2

+ 1

]

≡ 4
(
x− 1

2

)2

+ 4.

1.5.4 ALGEBRAIC FRACTIONS

We first recall the basic rules for combining fractions, namely

a

b
± c

d
=

ad± bc

bd
,

a

b
× c

d
=

ac

bd
,

a

b
÷ c

d
=

ad

bc
.
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We also note that a single algebraic fraction may sometimes be simplified by the cancellation
of common factors between the numerator and the denominator.

EXAMPLES

1.

5

25 + 15x
≡ 1

5 + 3x
, assuming that x 6= −5

3
.

2.

4x

3x2 + x
≡ 4

3x + 1
, assuming that x 6= 0 or − 1

3
.

3.

x + 2

x2 + 3x + 2
≡ x + 2

(x + 2)(x + 1)
≡ 1

x + 1
, assuming that x 6= −1 or − 2.

These elementary principles may now be used with more advanced combinations of algebraic
fractions

EXAMPLES

1. Simplify the expression
3x + 6

x2 + 3x + 2
× x + 1

2x + 8
.

Solution

Using factorisation where possible, together with the rule for multiplying fractions, we
obtain

3(x + 2)(x + 1)

2(x + 4)(x + 1)(x + 2)
≡ 3

2(x + 4)
,

assuming that x 6= −1,−2 or −4.

2. Simplify the expression
3

x + 2
÷ x

2x + 4
.

Solution

Using factorisation where possible together with the rule for dividing fractions, we
obtain

3

x + 2
× 2x + 4

x
≡ 3

x + 2
× 2(x + 2)

x
≡ 6

x
,

assuming that x 6= 0 or −2.
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3. Express
4

x + y
− 3

y

as a single fraction.

Solution

From the basic rule for adding and subtracting fractions, we obtain

4y − 3(x + y)

(x + y)y
≡ y − 3x

(x + y)y
,

assuming that y 6= 0 and x 6= −y.

4. Express
x

x + 1
+

4− x2

x2 − x− 2

as a single fraction.

Solution

This example could be tackled in the same way as the previous one but it is worth
noticing that x2 − x − 2 ≡ (x + 1)(x − 2). Consequently, it is worth putting both
fractions over the simplest common denominator, namely (x + 1)(x − 2). Hence we
obtain, if x 6= 2 or − 1,

x(x− 2)

(x + 1)(x− 2)
+

4− x2

(x + 1)(x− 2)
≡ x2 − 2x + 4− x2

(x + 1)(x− 2)
≡ 2(2− x)

(x + 1)(x− 2)
≡ − 2

x + 1
.

1.5.5 EXERCISES

1. Write down in their simplest forms

(a) 5a− 2b− 3a + 6b; (b) 11p + 5q − 2q + p.

2. Simplify the following expressions:

(a) 3x2 − 2x + 5− x2 + 7x− 2; (b) x3 + 5x2 − 2x + 1 + x− x2.

3. Expand and simplify the following expressions:

(a) x(x2 − 3x) + x2(4x + 7); (b) (2x− 1)(2x + 1)− x2 + 5x;

(c) (x + 3)(2x2 − 5); (d) 2(3x + 1)2 + 5(x− 7)2.

4. Factorise the following expressions:

(a) xy + 4x2y; (b) 2abc− 6ab2;

(c) πr2 + 2πrh; (d) 2xy2z + 4x2z.
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5. Factorise the following quadratic expressions:

(a) x2 + 8x + 12; (b) x2 + 11x + 18; (c) x2 + 13x− 30;

(d) 3x2 + 11x + 6; (e) 4x2 − 12x + 9; (f) 9x2 − 64.

6. Complete the square in the following quadratic expressions:

(a) x2 − 10x− 26; (b) x2 − 5x + 4; (c) 7x2 − 2x + 1.

7. Simplify the following:

(a) x2+4x+4
x2+5x+6 ; (b) x2−1

x2+2x+1 ,

assuming the values of x to be such that no denominators are zero.

8. Express each of the following as a single fraction:

(a) 3
x + 4

y ; (b) 4
x −

6
2x ;

(c) 1
x+1 + 1

x+2 ; (d) 5x
x2+5x+4 −

3
x+4 ,

assuming that the values of x and y are such that no denominators are zero.

1.5.6 ANSWERS TO EXERCISES

1. (a) 2a + 4b; (b) 12p + 3q.

2. (a) 2x2 + 5x + 3; (b) x3 + 4x2 − x + 1.

3. (a) 5x3 + 4x2; (b) 3x2 + 5x− 1.

(c) 2x3 + 6x2 − 5x− 15; (d) 23x2 − 58x + 247.

4. (a) xy(1 + 4x); (b) 2ab(c− 3b);

(c) πr(r + 2h); (d) 2xz(y2 + 2x).

5. (a) (x + 2)(x + 6); (b) (x + 2)(x + 9); (c) (x− 2)(x + 15;

(d) (3x + 2)(x + 3); (e) (2x− 3)2; (f) (3x− 8)(3x + 8).

6. (a) (x− 5)2 − 51; (b) (x− 5
2)

2 − 9
4 ; (c) 7

[
(x− 1

7)
2 + 6

49

]
.

7. (a) x+2
x+3 ; (b) x−1

x+1 .

8. (a)
3y+4x

xy ; (b) 1
x ;

(c) 2x+3
(x+1)(x+2) ; (d) 2x−3

x2+5x+4 .
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UNIT 1.6 - ALGEBRA 6 - FORMULAE AND ALGEBRAIC EQUATIONS

1.6.1 TRANSPOSITION OF FORMULAE

In dealing with technical formulae, it is often required to single out one of the quantities
involved in terms of all the others. We are said to “transpose the formula” and make
that quantity “the subject of the equation”.

In order to do this, steps of the following types may be carried out on both sides of a given
formula:

(a) Addition or subtraction of the same value;

(b) Multiplication or division by the same value;

(c) The raising of both sides to equal powers;

(d) Taking logarithms of both sides.

EXAMPLES

1. Make x the subject of the formula

y = 3(x + 7).

Solution
Dividing both sides by 3 gives y

3
= x + 7; then subtracting 7 gives x = y

3
− 7.

2. Make y the subject of the formula

a = b + c
√

x2 − y2.

Solution
(i) Subtracting b gives a− b = c

√
x2 − y2;

(ii) Dividing by c gives a−b
c

=
√

x2 − y2;

(iii) Squaring both sides gives
(

a−b
c

)2
= x2 − y2;

(iv) Subtracting x2 gives
(

a−b
c

)2
− x2 = −y2;

(v) Multiplying throughout by −1 gives x2 −
(

a−b
c

)2
= y2;
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(vi) Taking square roots of both sides gives

y = ±

√√√√x2 −
(

a− b

c

)2

.

3. Make x the subject of the formula

e2x−1 = y3.

Solution

Taking natural logarithms of both sides of the formula

2x− 1 = 3 ln y.

Hence

x =
3 ln y + 1

2
.

Note:
A genuine scientific formula will usually involve quantities which can assume only positive
values; in which case we can ignore the negative value of a square root.

1.6.2 SOLUTION OF LINEAR EQUATIONS

A Linear Equation in a variable quantity x has the general form

ax + b = c.

Its solution is obtained by first subtracting b from both sides then dividing both sides by a.
That is

x =
c− b

a
.

EXAMPLES

1. Solve the equation
5x + 11 = 20.

Solution

The solution is clearly x = 20−11
5

= 9
5

= 1.8

2



2. Solve the equation
3− 7x = 12.

Solution

This time, the solution is x = 12−3
−7

= 9
−7
' −1.29

1.6.3 SOLUTION OF QUADRATIC EQUATIONS

The standard form of a quadratic equation is

ax2 + bx + c = 0,

where a, b and c are constants and a 6= 0.

We shall discuss three methods of solving such an equation related very closely to the previous
discussion on quadratic expressions. The first two methods can be illustrated by examples.

(a) By Factorisation
This method depends on the ability to determine the factors of the left hand side of the
given quadratic equation. This will usually be by trial and error.

EXAMPLES

1. Solve the quadratic equation
6x2 + x− 2 = 0.

Solution
In factorised form, the equation can be written

(3x + 2)(2x− 1) = 0.

Hence, x = −2
3

or x = 1
2
.

2. Solve the quadratic equation
15x2 − 17x− 4 = 0.

Solution
In factorised form, the equation can be written

(5x + 1)(3x− 4) = 0.

Hence, x = −1
5

or x = 4
3

3



(b) By Completing the square

By looking at some numerical examples of this method, we shall be led naturally to a third
method involving a universal formula for solving any quadratic equation.

EXAMPLES

1. Solve the quadratic equation
x2 − 4x− 1 = 0.

Solution
On completing the square, the equation can be written

(x− 2)2 − 5 = 0.

Thus,
x− 2 = ±

√
5.

That is,
x = 2±

√
5.

Left as it is, this is an answer in “surd form” but it could, of course, be expressed in
decimals as 4.236 and −0.236.

2. Solve the quadratic equation
4x2 + 4x− 2 = 0.

Solution
The equation may be written

4
[
x2 + x− 1

2

]
= 0

and, on completing the square,

4

[(
x +

1

2

)2

− 3

4

]
= 0.

Hence, (
x +

1

2

)2

=
3

4
,

giving

x +
1

2
= ±

√
3

4
.
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That is,

x = −1

2
±
√

3

4
or

x =
−1±

√
3

2
.

(c) By the Quadratic Formula

Starting now with an arbitrary quadratic equation

ax2 + bx + c = 0,

we shall use the method of completing the square in order to establish the general solution.

The sequence of steps is as follows:

a

[
x2 +

b

a
x +

c

a

]
= 0;

a

(x +
b

2a

)2

− b2

4a2
+

c

a

 = 0;

(
x +

b

2a

)2

=
b2

4a2
− c

a
;

x +
b

2a
= ±

√
b2

4a2
− c

a
;

x = − b

2a
±
√

b2 − 4ac

4a2
;

x =
−b±

√
b2 − 4ac

2a
.

Note:
The quantity b2 − 4ac is called the “discriminant” of the equation and gives either two
solutions, one solution or no solutions according as its value is positive, zero or negative.

The single solution case is usually interpreted as a pair of coincident solutions while the no
solution case really means no real solutions. A more complete discussion of this case arises
in the subject of “complex numbers” (see Unit 6.1).
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EXAMPLES

Use the quadratic formula to solve the following:

1.

x2 + 2x− 35 = 0.

Solution

x =
−2±

√
4 + 140

2
=
−2± 12

2
= 5 or − 7.

2.

2x2 − 3x− 7 = 0.

Solution

x =
3±

√
9 + 56

4
=

3±
√

65

4
=

3± 8.062

4
' 2.766 or − 1.266

3.

9x2 − 6x + 1 = 0.

Solution

x =
6±

√
36− 36

18
=

6

18
=

1

3
only.

4.

5x2 + x + 1 = 0.

Solution

x =
−1±

√
1− 20

10
.

Hence, there are no real solutions
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1.6.4 EXERCISES

1. Make the given symbol the subject of the following formulae

(a) x: a(x− a) = b(x + b);

(b) b: a = 2−7b
3+5b

;

(c) r: n = 1
2L

√
r
p
;

(d) x: yex2+1 = 5.

2. Solve, for x, the following equations

(a) 14x = 35;

(b) 3x− 4.7 = 2.8;

(c) 4(2x− 5) = 3(2x + 8).

3. Solve the following quadratic equations by factorisation:

(a) x2 + 5x− 14 = 0;

(b) 8x2 + 2x− 3 = 0.

4. Where possible, solve the following quadratic equations by the formula:

(a) 2x2 − 3x + 1 = 0; (b) 4x = 45− x2;

(c) 16x2 − 24x + 9 = 0; (d) 3x2 + 2x + 11 = 0.

1.6.5 ANSWERS TO EXERCISES

1. (a) x = b2+a2

a−b ;

(b) b = 2−3a
7+5a ;

(c) r = 4n2L2p;

(d) x = ±
√

ln 5− ln y − 1.

2. (a) 2.5; (b) 2.5; (c) 22.

3. (a) x = −7, x = 2;

(b) x = −3
4
, x = 1

2
.

4. (a) x = 1, x = 1
2
;

(b) x = 5, x = −9;

(c) x = 3
4

only;

(d) No solutions.
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UNIT 1.7 - ALGEBRA 7 - SIMULTANEOUS LINEAR EQUATIONS

Introduction
When Mathematics is applied to scientific work, it is often necessary to consider several
statements involving several variables which are required to have a common solution for
those variables. We illustrate here the case of two simultaneous linear equations in two
variables x and y and three simultaneous linear equations in three unknowns x, y and z.

1.7.1 TWO SIMULTANEOUS LINEAR EQUATIONS IN TWO UNKNOWNS

Consider the simultaneous linear equations:

ax + by = p,

cx + dy = q.

To obtain the solution we first eliminate one of the variables in order to calculate the other.
For instance, to eliminate x, we try to make coefficient of x the same in both equations so
that, subtracting one statement from the other, x disappears. In this case, we multiply the
first equation by c and the second equation by a to give

cax + cby = cp,

acx + ady = aq.

Subtracting the second equation from the first, we obtain

y(cb− ad) = cp− aq

which, in turn, means that

y =
cp− aq

cb− ad
provided cb− ad 6= 0.

Having found the value of y, we could then either substitute back into one of the original
equations to find x or begin again by eliminating y.

However, it is better not to think of the above explanation as providing a formula for solving
two simultaneous linear equations. Rather, a numerical example should be dealt with from
first principles with the numbers provided.
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Note:
cb− ad = 0 relates to a degenerate case in which the left hand sides of the two equations are
proportional to each other. Such cases will not be dealt with at this stage.

EXAMPLE

Solve the simultaneous linear equations

6x− 2y = 1, (1)

4x + 7y = 9. (2)

Solution

Multiplying the first equation by 4 and the second equation by 6,

24x− 8y = 4, (4)

24x + 42y = 54. (5)

Subtracting the second of these from the first, we obtain −50y = −50 and hence y = 1.

Substituting back into equation (1), 6x− 2 = 1, giving 6x = 3, and, hence, x = 1
2
.

Alternative Method

Multiplying the first equation by 7 and the second equation by −2, we obtain

42x− 14y = 7, (5)

−8x− 14y = −18. (6)

Subtracting equation (6) from equation (5) gives 50x = 25 and hence, x = 1
2
.

Substituting into equation (1) gives 3− 2y = 1 and hence, −2y = −2; that is y = 1.

2



1.7.2 THREE SIMULTANEOUS LINEAR EQUATIONS IN THREE UNKNOWNS

Here, we consider three simultaneous equations of the general form

a1x + b1y + c1z = k1,

a2x + b2y + c2z = k2,

a3x + b3y + c3z = k3;

but the method will be illustrated by a particular example.

The object of the method is to eliminate one of the variables from two different pairs of
the three equations so that we are left with a pair of simultaneous equations from which to
calculate the other two variables.

EXAMPLE

Solve, for x, y and z, the simultaneous linear equations

x− y + 2z = 9, (1)

2x + y − z = 1, (2)

3x− 2y + z = 8. (3)

Solution

Firstly, we may eliminate z from equations (2) and (3) by adding them together. We obtain

5x− y = 9. (4)

Secondly, we may eliminate z from equations (1) and (2) by doubling equation (2) and adding
it to equation (1). We obtain

5x + y = 11. (5)

If we now add equation (4) to equation (5), y will be eliminated to give
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10x = 20 or x = 2.

Similarly, if we subtract equation (4) from equation (5), x will be eliminated to give

2y = 2 or y = 1.

Finally, if we substitute our values of x and y into one of the original equations [say equation
(3)] we obtain

z = 8− 3x + 2y = 8− 6 + 2 = 4.

Thus,

x = 2, y = 1 and z = 4.

1.7.3 ILL-CONDITIONED EQUATIONS

In the simultaneous linear equations of genuine scientific problems, the coefficients will often
be decimal quantitities that have already been subjected to rounding errors; and the solving
process will tend to amplify these errors. The result may be that such errors swamp the
values of the variables being solved for; and we have what is called an “ill-conditioned”
set of equations. The opposite of this is a “well-conditioned” set of equations and all of
those so far discussed have been well-conditioned. But let us consider, now, the following
example:

EXAMPLE

The simultaneous linear equations

x + y = 1,

1.001x + y = 2

have the common solution x = 1000, y = −999.
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However, suppose that the coefficient of x in the second equation is altered to 1.000, which
is a mere 0.1%. Then the equations have no solution at all since x + y cannot be equal to 1
and 2 at the same time.

Secondly, suppose that the coefficient of x in the second equation is altered to 0.999 which
is still only a 0.2% alteration.

The solutions obtained are now x = −1000, y = 1001 and so a change of about 200% has
occurred in original values of x and y.

1.7.4 EXERCISES

1. Solve, for x and y, the following pairs of simultaneous linear equations:

(a)

x− 2y = 5,

3x + y = 1;

(b)

2x + 3y = 42,

5x− y = 20.

2. Solve, for x, y and z, the following sets of simultaneous equations:

(a)

x + y + z = 0,

2x− y − 3z = 4,

3x + 3y = 7;

(b)

x + y − 10 = 0,

y + z − 3 = 0,

x + z + 1 = 0;

(c)

2x− y − z = 6,

x + 3y + 2z = 1,

3x− y − 5z = 1;
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(d)

2x− 5y + 2z = 14,

9x + 3y − 4z = 13,

7x + 3y − 2z = 3;

(e)

4x− 7y + 6z = −18,

5x + y − 4z = −9,

3x− 2y + 3z = 12.

3. Solve the simultaneous linear equations

1.985x− 1.358y = 2.212,

0.953x− 0.652y = 1.062,

and compare with the solutions obtained by changing the constant term, 1.062, of the
second equation to 1.061.

1.7.5 ANSWERS TO EXERCISES

1. (a) x = 1, y = −2; (b) x = 6, y = 10.

2. (a) x = −2
9
, y = 23

9
, z = −7

3
;

(b) x = 3, y = 7, z = −4;

(c) x = 3, y = −2, z = 2;

(d) x = 1, y = −4, z = −4;

(e) x = 3, y = 12, z = 9.

3.

x ' 0.6087, y ' −0.7391

compared with

x ' 30.1304, y ' 42.413

a change of 4850% in x and 5839% in y.
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UNIT 1.8 - ALGEBRA 8 - POLYNOMIALS

Introduction

The work already covered in earlier units has frequently been concerned with mathemati-
cal expressions involving constant quantities together positive integer powers of a variable
quantity (usually x). The general form of such expressions is

a0 + a1x + a2x
2 + a3x

3 + ...... + anx
n

which is called a
“polynomial of degree n in x”, having “coefficients” a0, a1, a2, a3, ......an, usually con-
stant.

Note:
Polynomials of degree 1, 2 and 3 are called respectively “linear”, “quadratic” and “cubic”
polynomials.

1.8.1 THE FACTOR THEOREM

If P (x) denotes an algebraic polynomial which has the value zero when x = α, then x−α is
a factor of the polynomial and
P (x) ≡ (x− α)× another polynomial, Q(x), of one degree lower.

Notes:
(i) The statement of this Theorem includes some functional notation (i.e. P (x), Q(x)) which
will be discussed fully as an introduction to the subject of Calculus in Unit 10.1.

(ii) x = α is called a “root” of the polynomial.

1.8.2 APPLICATION TO QUADRATIC AND CUBIC EXPRESSIONS

(a) Quadratic Expressions

Suppose we are given a quadratic expression where we suspect that at least one of the values
of x making it zero is a whole number. We may systematically try

x = 0, 1,−1, 2,−2, 3,−3, 4,−4, ......

until such a value of x (say x = α) is located. Then one of the factors of the quadratic
expression is x− α enabling us to determine the other factor(s) easily.
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EXAMPLES

1. By trial and error, the quadratic expression

x2 + 2x− 3

has the value zero when x = 1; hence, x− 1 is a factor.

By further trial and error, the complete factorisation is

(x− 1)(x + 3).

2. By trial and error, the quadratic expression

3x2 + 20x− 7

has the value zero when x = −7; hence, (x + 7) is a factor.

By further trial and error, the complete factorisation is

(x + 7)(3x− 1).

(b) Cubic Expressions

The method just used for the factorisation of quadratic expressions may also be used for
polynomials having powers of x higher than two. In particular, it may be used for cubic
expressions whose standard form is

ax3 + bx2 + cx + d,

where a, b, c and d are constants.

EXAMPLES

1. Factorise the cubic expression
x3 + 3x2 − x− 3

assuming that there is at least one whole number value of x for which the expression
has the value zero.

Solution

By trial and error, the cubic expression has the value zero when x = 1. Hence, by the
Factor Theorem, (x− 1) is a factor.

Thus,
x3 + 3x2 − x− 3 ≡ (x− 1)Q(x)

2



where Q(x) is some quadratic expression to be found and, if possible, factorised further.
In other words,

x3 + 3x2 − x− 3 ≡ (x− 1)(px2 + qx + r)

for some constants p, q and r.

Usually, it is fairly easy to determine Q(x) using trial and error by comparing, initially,
the highest and lowest powers of x on both sides of the above identity; then comparing
any intermediate powers as necessary. We obtain

x3 + 3x2 − x− 3 ≡ (x− 1)(x2 + 4x + 3).

In this example, the quadratic expression does factorise even further giving

x3 + 3x2 − x− 3 ≡ (x− 1)(x + 1)(x + 3).

2. Factorise the cubic expression

x3 + 4x2 + 4x + 1.

Solution

By trial and error, we discover that the cubic expression has value zero when x = −1,
and so x + 1 must be a factor.
Hence,

x3 + 4x2 + 4x + 1 ≡ (x + 1)Q(x),

where Q(x) is a quadratic expression to be found. In other words,

x3 + 4x2 + 4x + 1 ≡ (x + 1)(px2 + qx + r)

for some constants p, q and r.

Comparing the relevant coefficients, we obtain

x3 + 4x2 + 4x + 1 ≡ (x + 1)(x2 + 3x + 1)

but, this time, the quadratic part of the answer will not conveniently factorise further.

1.8.3 CUBIC EQUATIONS

There is no convenient general method of solving a cubic equation; hence, the discussion
here will be limited to those equations where at least one of the solutions is known to be a
fairly small whole number, that solution being obtainable by trial and error.

We illustrate with examples.
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EXAMPLES

1. Solve the cubic equation
x3 + 3x2 − x− 3 = 0.

Solution

By trial and error, one solution is x = 1 and so (x−1) must be a factor of the left hand
side. In fact, we obtain the new form of the equation as

(x− 1)(x2 + 4x + 3) = 0.

That is,
(x− 1)(x + 1)(x + 3) = 0.

Hence, the solutions are x = 1, x = −1 and x = −3.

2. Solve the cubic equation
2x3 − 7x2 + 5x + 54 = 0.

Solution

By trial and error, one solution is x = −2 and so (x + 2) must be a factor of the left
hand side. In fact we obtain the new form of the equation as

(x + 2)(2x2 − 11x + 27) = 0.

The quadratic factor will not conveniently factorise, but we can use the quadratic for-
mula to determine the values of x, if any, which make it equal to zero.They are

x =
11±

√
121− 216

4
.

The discriminant here is negative so that the only (real) solution to the cubic equation
is x = −2.

1.8.4 LONG DIVISION OF POLYNOMIALS

(a) Exact Division

Having used the Factor Theorem to find a linear factor of a polynomial expression, there
will always be a remaining factor, Q(x), which is some other polynomial whose degree is one
lower than that of the original; but the determination of Q(x) by trial and error is not the
only method of doing so. An alternative method is to use the technique known as “long
division of polynomials”; and the working is illustrated by the following examples:
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EXAMPLES

1. Factorise the cubic expression
x3 + 3x2 − x− 3.

Solution

By trial and error, the cubic expression has the value zero when x = 1 so that (x− 1)
is a factor.

Dividing the given cubic expression (called the “dividend”) by (x − 1) (called the
“divisor”), we have the following scheme:

x2 + 4x + 3
x− 1)x3 + 3x2 − x− 3

x3 − x2

4x2 − x− 3
4x2 − 4x

3x− 3
3x− 3

0

Note:
At each stage, using positive powers of x or constants only, we examine what the highest
power of x in the divisor would have to be multiplied by in order to give the highest
power of x in the dividend. The results are written in the top line as the “quotient”
so that, on multiplying down, we can subtract to find each “remainder”.
The process stops when, to continue would need negative powers of x; the final remain-
der will be zero when the divisor is a factor of the original expression.

We conclude here that

x3 + 3x2 − x− 3 ≡ (x− 1)(x2 + 4x + 3).

Further factorisation leads to the complete result,

x3 + 3x2 − x− 3 ≡ (x− 1)(x + 1)(x + 3).

2. Solve, completely, the cubic equation

x3 + 4x2 + 4x + 1 = 0.

Solution

By trial and error, one solution is x = −1 so that (x + 1) is a factor of the left hand
side.
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Dividing the left hand side of the equation by (x + 1), we have the following scheme:

x2 + 3x + 1
x + 1)x3 + 4x2 + 4x + 1

x3 + x2

3x2 + 4x + 1
3x2 + 3x

x + 1
x + 1

0

Hence, the equation becomes

(x + 1)(x2 + 3x + 1) = 0,

giving x = −1 and x = −3±
√

9−4
2

' −0.382 or − 2.618

(b) Non-exact Division

The technique for long division of polynomials may be used to divide any polynomial by
another polynomial of lower or equal degree, even when this second polynomial is not a
factor of the first.

The chief difference in method is that the remainder will not be zero; but otherwise we
proceed as before.

EXAMPLES

1. Divide the polynomial 6x + 5 by the polynomial 3x− 1.

Solution

2
3x− 1)6x + 5

6x− 2
7

Hence,
6x + 5

3x− 1
≡ 2 +

7

3x− 1
.
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2. Divide 3x2 + 2x by x + 1.

Solution

3x− 1
x + 1)3x2 + 2x

3x2 + 3x
−x
−x− 1

1

Hence,
3x2 + 2x

x + 1
≡ 3x− 1 +

1

x + 1
.

3. Divide x4 + 2x3 − 2x2 + 4x− 1 by x2 + 2x− 3.

Solution

x2 + 1
x2 + 2x− 3)x4 + 2x3 − 2x2 + 4x− 1

x4 + 2x3 − 3x2

x2 + 4x− 1
x2 + 2x− 3

2x + 2

Hence,
x4 + 2x3 − 2x2 + 4x− 1

x2 + 2x− 3
≡ x2 + 1 +

2x + 2

x2 + 2x− 3
.

1.8.5 EXERCISES

1. Use the Factor Theorem to factorise the following quadratic expressions: assuming that
at least one root is an integer:

(a) 2x2 + 7x + 3;

(b) 1− 2x− 3x2.

2. Factorise the following cubic polynomials assuming that at least one root is an integer:

(a) x3 + 2x2 − x− 2;

(b) x3 − x2 − 4;

(c) x3 − 4x2 + 4x− 3.
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3. Solve completely the following cubic equations assuming that at least one solution is an
integer:

(a) x3 + 6x2 + 11x + 6 = 0;

(b) x3 + 2x2 − 31x + 28 = 0.

4. (a) Divide 2x3 − 11x2 + 18x− 8 by x− 2;

(b) Divide 3x3 + 12x2 + 13x + 4 by x + 1.

5. (a) Divide x2− 2x+1 by x2 +3x− 2, expressing your answer in the form of a constant
plus a ratio of two polynomials.

(b) Divide x5 by x2 − 2x− 8, expressing your answer in the form of a polynomial plus
a ratio of two other polynomials.

1.8.6 ANSWERS TO EXERCISES

1. (a) (2x + 1)(x + 3); (b) (x + 1)(1− 3x).

2. (a) (x− 1)(x + 1)(x + 2); (b) (x− 2)(x2 + x + 2); (c) (x− 3)(x2 − x + 1).

3. (a) x = −1, x = −2, x = −3; (b) x = 1, x = 4, x = −7.

4. (a) 2x2 − 7x + 4; (b) 3x2 + 9x + 4.

5. (a)

1 +
3− 5x

x2 + 3x− 2
;

(b)

x3 + 2x2 + 12x + 40 +
176x + 320

x2 − 2x− 8
.
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UNIT 1.9 - ALGEBRA 9 - THE THEORY OF PARTIAL FRACTIONS

1.9.1 INTRODUCTION
The theory of partial fractions applies chiefly to the ratio of two polynomials in which the
degree of the numerator is strictly less than that of the denominator. Such a ratio is called
a “proper rational function”.

For a rational function which is not proper, it is necessary first to use long division of
polynomials in order to express it as the sum of a polynomial and a proper rational function.

RESULT
A proper rational function whose denominator has been factorised into its irreducible factors
can be expressed as a sum of proper rational functions, called “partial fractions”; the
denominators of the partial fractions are the irreducible factors of the denominator in the
original rational function.

ILLUSTRATION
From previous work on fractions, it can be verified that

1

2x + 3
+

3

x− 1
≡ 7x + 8

(2x + 3)(x− 1)

and the expression on the left hand side may be interpretted as the decomposition into
partial fractions of the expression on the right hand side.

1.9.2 STANDARD TYPES OF PARTIAL FRACTION PROBLEM

(a) Denominator of the given rational function has all linear factors.

EXAMPLE

Express the rational function
7x + 8

(2x + 3)(x− 1)

in partial fractions.

Solution

There will be two partial fractions each of whose numerator must be of lower degree than 1;
i.e. it must be a constant

We write
7x + 8

(2x + 3)(x− 1)
≡ A

2x + 3
+

B

x− 1
.
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Multiplying throughout by (2x + 3)(x− 1), we obtain

7x + 8 ≡ A(x− 1) + B(2x + 3).

In order to determine A and B, any two suitable values of x may be substituted on both
sides; and the most obvious values in this case are x = 1 and x = −3

2
.

It may, however, be argued that these two values of x must be disallowed since they cause
denominators in the first identity above to take the value zero.

Nevertheless, we shall use these values in the second identity above since the arithmetic
involved is negligibly different from taking values infinitesimally close to x = 1 and x = −3

2
.

Substituting x = 1 gives
7 + 8 = B(2 + 3).

Hence,

B =
7 + 8

2 + 3
=

15

5
= 3.

Substituting x = −3
2

gives

7×−3

2
+ 8 = A(−3

2
− 1).

Hence,

A =
7×−3

2
+ 8

−3
2
− 1

=
−5

2

−5
2

= 1.

We conclude that
7x + 8

(2x + 3)(x− 1)
=

1

2x + 3
+

3

x− 1
.

The “Cover-up” Rule
A useful time-saver when the factors in the denominator of the given rational function are
linear is to use the following routine which is equivalent to the method described above:

To obtain the constant numerator of the partial fraction for a particular linear factor, ax+b,
in the original denominator, cover up ax + b in the original rational function and then
substitute x = − b

a
into what remains.

ILLUSTRATION
In the above example, we may simply cover up x− 1, then substitute x = 1 into the fraction

7x + 8

2x + 3
.

2



Then we may cover up 2x + 3 and substitute x = −3
2

into the fraction

7x + 8

x− 1
.

Note:
We shall see later how the cover-up rule can also be brought into effective use when not all
of the factors in the denominator of the given rational function are linear.

(b) Denominator of the given rational function contains one linear and one
quadratic factor

EXAMPLE

Express the rational function
3x2 + 9

(x− 5)(x2 + 2x + 7)

in partial fractions.

Solution

We should observe firstly that the quadratic factor will not reduce conveniently into two
linear factors. If it did, the method would be as in the previous paragraph. Hence we may
write

3x2 + 9

(x− 5)(x2 + 2x + 7)
≡ A

x− 5
+

Bx + C

x2 + 2x + 7
,

noticing that the second partial fraction may contain an x term in its numerator, yet still
be a proper rational function.

Multiplying throughout by (x− 5)(x2 + 2x + 7), we obtain

3x2 + 9 ≡ A(x2 + 2x + 7) + (Bx + C)(x− 5).

A convenient value of x to substitute on both sides is x = 5 which gives

3× 52 + 9 = A(52 + 2× 5 + 7).

That is, 84 = 42A or A = 2.

No other convenient values of x may be substituted; but two polynomial expressions can be
identical only if their corresponding coefficients are the same in value. We therefore equate

3



suitable coefficients to find B and C; usually, the coefficients of the highest and lowest powers
of x.

Equating coefficients of x2, 3 = A + B and hence B = 1.

Equating constant terms (the coefficients of x0), 9 = 7A− 5C = 14− 5C and hence C = 1.

The result is therefore

3x2 + 9

(x− 5)(x2 + 2x + 7)
≡ 2

x− 5
+

x + 1

x2 + 2x + 7
.

Observations
It is easily verified that the value of A may be calculated by means of the cover-up rule,
as in paragraph (a); and, having found A, the values of B and C could be found by cross
multiplying the numerators and denominators in the expression

2

x− 5
+

?x+?

x2 + 2x + 7

in order to arrive at the numerator of the original rational function. This process essentially
compares the coefficients of x2 and x0 as before.

(c) Denominator of the given rational function contains a repeated linear factor

In general, examples of this kind will not be more complicated than for a rational func-
tion with one repeated linear factor together with either a non-repeated linear factor or a
quadratic factor.

EXAMPLE

Express the rational function
9

(x + 1)2(x− 2)

in partial fractions.

Solution

First we observe that, from paragraph (b), the partial fraction corresponding to the repeated
linear factor would be of the form

Ax + B

(x + 1)2
;
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but this may be written

A(x + 1) + B − A

(x + 1)2
≡ A

x + 1
+

B − A

(x + 1)2
≡ A

x + 1
+

C

(x + 1)2
.

Thus, a better form of statement for the problem as a whole, is

9

(x + 1)2(x− 2)
≡ A

x + 1
+

C

(x + 1)2
+

D

x− 2
.

Eliminating fractions, we obtain

9 ≡ A(x + 1)(x− 2) + C(x− 2) + D(x + 1)2.

Putting x = −1 gives 9 = −3C so that C = −3.

Putting x = 2 gives 9 = 9D so that D = 1.

Equating coefficients of x2 gives 0 = A + D so that A = −1.

Therefore,
9

(x + 1)2(x− 2)
≡ − 1

x + 1
− 3

(x + 1)2
+

1

x− 2
.

Notes:
(i) Similar partial fractions may be developed for higher repeated powers so that, for a
repeated linear factor of power of n, there will be n corresponding partial fractions, each
with a constant numerator. The labels for these numerators in future will be taken as A, B,
C, etc. in sequence.

(ii) We observe that the numerator above the repeated factor itself (D in this case) could
actually have been obtained by the cover-up rule; covering up (x + 1)2 in the original rational
function, then substituting x = −1 into the rest.

(d) Keily’s Method

A useful method for repeated linear factors is to use these factors one at a time, keeping the
rest outside the expression as a factor.

EXAMPLE

Express the rational function

9

(x + 1)2(x− 2)
≡ 1

x + 1

[
9

(x + 1)(x− 2)

]
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in partial fractions.

Solution

Using the cover-up rule inside the square brackets,

9

(x + 1)2(x− 2)
≡ 1

x + 1

[ −3

x + 1
+

3

x− 2

]

≡ − 3

(x + 1)2
+

3

(x + 1)(x− 2)
;

and, again by cover-up rule,

≡ − 3

(x + 1)2
− 1

x + 1
+

1

x− 2

as before.

Warning
Care must be taken with Keily’s method when, even though the original rational function
is proper, the resulting expression inside the square brackets is improper. This would have
occurred, for instance, if the problem given had been

9x2

(x + 1)2(x− 2)
,

leading to
1

x + 1

[
9x2

(x + 1)(x− 2)

]
.

In this case, long division would have to be used inside the square brackets before proceeding
with Keily’s method.

For such examples, it is probably better to use the method of paragraph (c).

1.9.3 EXERCISES

Express the following rational functions in partial fractions:

1.
3x + 5

(x + 1)(x + 2)
.
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2.
17x + 11

(x + 1)(x− 2)(x + 3)
.

3.

3x2 − 8

(x− 1)(x2 + x− 7)
.

4.
2x + 1

(x + 2)2(x− 3)
.

5.

9 + 11x− x2

(x + 1)2(x + 2)
.

6.

x5

(x + 2)(x− 4)
.

1.9.4 ANSWERS TO EXERCISES

1.
2

x + 1
+

1

x + 2
.

2.
1

x + 1
+

3

x− 2
− 4

x + 3
.

3.
1

x− 1
+

2x + 1

x2 + x− 7
.

4.
3

5(x + 2)2
− 7

25(x + 2)
+

7

25(x− 3)
.

5.

− 3

(x + 1)2
+

16

x + 1
− 17

x + 2
.

6.

x3 + 2x2 + 12x + 40 +
16

3(x + 2)
+

512

3(x− 4)
.
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UNIT 1.10 - ALGEBRA 10 - INEQUALITIES 1.

1.10.1 INTRODUCTION

If the symbols a and b denote numerical quantities, then the statement

a < b

is used to mean “a is less than b” while the statement

b > a

is used to mean “b is greater than a”

These are called “strict inequalities” because there is no allowance for the possibilty that
a and b might be equal to each other. For example, if a is the number of days in a particular
month and b is the number of hours in that month, then b > a.

Some inequalities do allow the possibility of a and b being equal to each other and are called
“weak inequalities” written in one of the forms

a ≤ b b ≤ a a ≥ b b ≥ a

For example, if a is the number of students who enrolled for a particular module in a
university and b is the number of students who eventually passed that module, then a ≥ b.

1.10.2 ALGEBRAIC RULES FOR INEQUALITIES

Given two different numbers, one of them must be strictly less than the other. Suppose a is
the smaller of the two and b the larger; i.e.

a < b

Then
1. a + c < b + c for any number c.

2. ac < bc when c is positive but ac > bc when c is negative.

3. 1
a

> 1
b

provided a and b are both positive.

Note:
The only other situation in 3. which is consistent with a < b will occur if a is negative and
b is positive. In this case, 1

a
< 1

b
because a negative number is always less than a positive

number.

1



EXAMPLES

1. Simplify the inequality
2x + 3y > 5x− y + 7.

Solution

We simply deal with this in the same way as we would deal with an equation by adding
appropriate quantities to both sides or subtracting appropriate quantities from both
sides. We obtain

−3x + 4y > 7 or 3x− 4y + 7 < 0.

2. Solve the inequality
1

x− 1
< 2,

assuming that x 6= 1.

Solution

Here we must be careful in case x−1 is negative; the argument is therefore in two parts:
(a) If x > 1, i.e. x− 1 is positive, then the inequality can be rewritten as

1 < 2(x− 1) or x− 1 >
1

2
.

Hence,

x >
3

2
.

(b) If x < 1, i.e. x − 1 is negative, then the inequality is automatically true since a
negative number is bound to be less than a positive number.

Conclusion:
The given inequality is satisfied when x < 1 and when x > 3

2
.

3. Solve the inequality
2x− 7 ≤ 3.

Solution

Adding 7 to both sides, then dividing both sides by 2 gives

x ≤ 5.

4. Solve the inequality
x− 1

x− 6
≥ 0.

2



Solution

We first observe that the fraction on the left of the inequality can equal zero only when
x = 1.

Secondly, the only way in which a fraction can be positive is for both numerator and
denominator to be positive or both numerator and denominator to be negative.

(a) Suppose x− 1 > 0 and x− 6 > 0; these two are covered by x > 6.

(b) Suppose x− 1 < 0 and x− 6 < 0; these two are covered by x < 1.

Note:
The value x = 6 is problematic because the given expression becomes infinite; in fact,
as x passes through 6 from values below it to values above it, there is a sudden change
from −∞ to +∞.

Conclusion:
The inequality is satisfied when either x > 6 or x ≤ 1.

1.10.3 INTERVALS

In scientific calculations, a variable quantity x may be restricted to a certain range of values
called an “interval” which may extend to ∞ or −∞; but, in many cases, such intervals
have an upper and a lower “bound”. The standard types of interval are as follows:

(a) a < x < b denotes an “open interval” of all the values of x between a and b but
excluding a and b themselves. The symbol (a, b) is also used to mean the same thing. For
example, if x is a purely decimal quantity, it must lie in the open interval

−1 < x < 1.

(b) a ≤ x ≤ b denotes a “closed interval” of all the values of x from a to b inclusive. The
symbol [a, b] is also used to mean the same thing. For example, the expression

√
1− x2 has

real values only when
−1 ≤ x ≤ 1.

Note:
It is possible to encounter intervals which are closed at one end but open at the other; they
may be called either “half open” or “half closed”. For example

a < x ≤ b or a ≤ x < b,

which can also be denoted respectively by (a, b] and [a, b).
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(c) Intervals of the types
x > a x ≥ a x < a x ≤ a

are called “infinite intervals”.

1.10.4 EXERCISES

1. Simplify the following inequalities:

(a)

x + y ≤ 2x + y + 1;

(b)

2a− b > 1 + a− 2b− c.

2. Solve the following inequalities to find the range of values of x.

(a)

x + 3 < 6;

(b)

−2x ≥ 10;

(c)

2

x
> 18;

(d)

x + 3

2x− 1
≤ 0.

3. Classify the following intervals as open, closed, or half-open/half-closed:

(a)

(5, 8);

(b)

(−3,−2);
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(c)

[2, 4);

(d)

[8, 23];

(e)

(−∞,∞);

(f)

(0,∞);

(g)

[0,∞).

1.10.5 ANSWERS TO EXERCISES

1. (a) x ≥ −1;

(b) a + b + c > 1.

2. (a) x < 3;

(b) x ≤ −5;

(c) x < 1
9

since x > 0;

(d) −3 ≤ x < 1
2
.

3. (a) open;

(b) open;

(c) half-open/half-closed;

(d) closed;

(e) open;

(f) open;

(g) half-open/half-closed.
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UNIT 1.11 - ALGEBRA 11 - INEQUALITIES 2.

1.11.1 RECAP ON MODULUS, ABSOLUTE VALUE OR NUMERICAL VALUE

As seen in Unit 1.1, the Modulus of a numerical quantity ignores any negative signs if there
are any. For example, the modulus of −3 is 3, but the modulus of 3 is also 3.

The modulus of an unspecified numerical quantity x is denoted by the symbol

| x |

and is defined by the two statements:

| x |= x if x ≥ 0;

| x |= −x if x ≤ 0.

Notes:
(i) An alternative, but less convenient formula for the modulus of x is

| x |= +
√

x2.

(ii) It is possible to show that, for any two numbers a and b,

| a + b |≤| a | + | b | .

This is called the “triangle inequality” and can be linked to the fact that the length of
any side of a triangle is never greater than the sum of the lengths of the other two sides.

The proof is a little involved since it is necessary to consider all possible cases of a and b
being positive, negative or zero together with a consideration of their relative sizes. It will
not be included here.

1.11.2 INTERVAL INEQUALITIES

(a) Using the Modulus notation

In this section, we investigate the meaning of the inequality

| x− a |< k,

where a is any number and k is a positive number.
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Case 1. x− a > 0.

The inequality can be rewritten as

x− a < k i.e. x < a + k.

Case 2. x− a < 0.

The inequality can be rewritten as

−(x− a) < k i.e. a− x < k i.e. x > a− k.

Combining the two cases, we conclude that

| x− a |< k means a− k < x < a + k,

which is an open interval having x = a at the centre and extending to a distance of a either
side of the centre. A similar interpretation could be given of | x− a |≤ k.

EXAMPLE

Obtain the closed interval represented by the statement

| x + 3 |≤ 10.

Solution

Using a = −3 and k = 10, we have

−3− 10 ≤ x ≤ −3 + 10.

That is,
−13 ≤ x ≤ 7.

(b) Using Factorised Polynomials

Suppose a polynomial in x has been factorised into a number of linear factors corresponding
to the degree of the polynomial. Then, if certain values of x are substituted in, the polynomial
will be positive (or zero) as long as the number of individual factors which become negative is
even. Similarly, the polynomial will be negative (or zero) as long as the number of individual
factors which become negative is odd.

These observations enable us to find the ranges of values of x for which a factorised polyno-
mial is positive or negative.
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EXAMPLE

Find the range of values of x for which the polynomial

(x + 3)(x− 1)(x− 2)

is strictly positive.

Solution

The first task is to find what are called the “critical values”. These are the values of x at
which the polynomial becomes equal to zero. In our case, the critical values are x = −3, 1, 2.

Next, the critical values divide the x-line into separate intervals where, for the moment, we
exclude the critical values themselves. In this case, we obtain

x < −3, −3 < x < 1, 1 < x < 2, x > 2.

All that is now necessary is to select a value from each of these intervals and investigate how
it affects the signs of the factors of the polynomial and hence the sign of the polynomial
itself.

x < −3 gives (neg)(neg)(neg) and therefore < 0;

−3 < x < 1 gives (pos)(neg)(neg) and therefore > 0;

1 < x < 2 gives (pos)(pos)(neg) and therefore < 0;

x > 2 gives (pos)(pos)(pos) and therefore > 0.

Clearly the critical values will not be included in the answer for this example because they
cause the polynomial to have the value zero.

The required ranges are thus

−3 < x < 1 and x > 2.

Note:
An alternative method is to sketch the graph of the polynomial as a smooth curve passing
through all the critical values on the x-axis. One point only between each critical value will
make it clear whether the graph is on the positive side of the x-axis or the negative side. For
the above example, the graph is as follows:
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1.11.3 EXERCISES

1. Determine the precise ranges of values of x which satisfy the following inequalities:

(a) | x |< 2;

(b) | x |> 3;

(c) | x− 3 |< 1;

(d) | x + 6 |< 4;

(e) | x + 1 |≥ 2;

(f) 0 <| x + 3 |< 5.

2. Determine the precise ranges of values of x which satisfy the following inequalities:

(a) (x− 4)(x + 2) ≥ 0;

(b) (x + 3)(x− 2)(x− 4) < 0;

(c) (x + 1)2(x− 3) > 0;

(d) 18x− 3x2 > 0.

3. By considering the expansion of (a2 − b2)2, show that

a4 + b4 ≥ 2a2b2.
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1.11.4 ANSWERS TO EXERCISES

1. (a) −2 < x < 2;

(b) x < −3 and x > 3;

(c) 2 < x < 4;

(d) −10 < x < −2;

(e) x ≥ 1 and x ≤ −3;

(f) −8 < x < −3 and −3 < x < 2.

2. (a) x ≤ −2 and x ≥ 4;

(b) x < −3 and 2 < x < 4;

(c) x > 3;

(d) 0 < x < 6.
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UNIT 2.1 - SERIES 1 - ELEMENTARY PROGRESSIONS AND SERIES

2.1.1 ARITHMETIC PROGRESSIONS

The “sequence” of numbers,

a, a + d, a + 2d, a + 3d, ...

is said to form an “arithmetic progression”.

The symbol a represents the “first term”, the symbol d represents the “common differ-
ence” and the “n-th term” is given by the expression

a + (n− 1)d

EXAMPLES

1. Determine the n-th term of the arithmetic progression 15, 12, 9, 6,...

Solution

The n-th term is
15 + (n− 1)(−3) = 18− 3n.

2. Determine the n-th term of the arithmetic progression

8, 8.125, 8.25, 8.375, 8.5, ...

Solution

The n-th term is
8 + (n− 1)(0.125) = 7.875 + 0.125n.

3. The 13th term of an arithmetic progression is 10 and the 25th term is 20; calculate
(a) the common difference;
(b) the first term;
(c) the 17th term.

Solution
Letting a be the first term and d be the common difference, we have

a + 12d = 10

and
a + 24d = 20.

(a) Subtracting the first of these from the second gives 12d = 10, so that the common
difference d = 10

12
= 5

6
' 0.83

1



(b) Substituting into the first of the relationships between a and d gives

a + 12× 5

6
= 10.

That is,
a + 10 = 10.

Hence, a = 0.

(c) The 17th term is

0 + 16× 5

6
=

80

6
=

40

3
' 13.3

2.1.2 ARITHMETIC SERIES

If the terms of an arithmetic progression are added together, we obtain what is called an
“arithmetic series”. The total sum of the first n terms of such a series can be denoted by
Sn so that

Sn = a + [a + d] + [a + 2d] + ... + [a + (n− 2)d] + [a + (n− 1)d];

but this is not the most practical way of evaluating the sum of the n terms, especially when
n is a very large number.

A trick which provides us with a more convenient formula for Sn is to write down the existing
formula backwards. That is,

Sn = [a + (n− 1)d] + [a + (n− 2)d] + ... + [a + 2d] + [a + d] + a.

Adding the two statements now gives

2Sn = [2a + (n− 1)d] + [2a + (n− 1)d] + ... + [2a + (n− 1)d] + [2a + (n− 1)d],

where, on the right hand side, there are n repetitions of the same expression.

Hence,
2Sn = n[2a + (n− 1)d]

or
Sn =

n

2
[2a + (n− 1)d].

This version of the formula is suitable if we know the values of a, n and d; but an alternative
version can be used if we know only the first term, the last term and the number of terms.
In this case,

Sn =
n

2
[FIRST + LAST]

2



which is simply n times the average of the first and last terms.

EXAMPLES

1. Determine the sum of the natural numbers from 1 to 100.

Solution

The sum is given by
100

2
× [1 + 100] = 5050.

2. How many terms of the arithmetic series

10 + 12 + 14 + ...

must be taken so that the sum of the series is 252 ?

Solution
The first term is clearly 10 and the common difference is 2.

Hence, letting n be the number of terms, we require that

252 =
n

2
[20 + (n− 1)× 2].

That is,

252 =
n

2
[2n + 18] = n(n + 9).

By trial and error, n = 12 will balance this equation; but it is more conclusive to obtain
n as the solution to the quadratic equation

n2 + 9n− 252 = 0

or
(n− 12)(n + 21) = 0,

which gives n = 12 only, since the negative value n = −21 may be ignored.

3. A contractor agrees to sink a well 250 metres deep at a cost of £2.70 for the first metre,
£2.85 for the second metre and an extra 15p for each additional metre. Find the cost
of the last metre and the total cost.

Solution
In this problem we are dealing with an arithmetic series of 250 terms whose first term
is 2.70 and whose common difference is 0.15. The cost of the last metre is the 250-th
term of the series and therefore

£[2.70 + 249× 0.15] = £40.05

The total cost will be

£250
2
× [2.70 + 40.05] = £5343.75
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2.1.3 GEOMETRIC PROGRESSIONS

The sequence of numbers
a, ar, ar2, ar3, ...

is said to form a “geometric progression”.

The symbol a represents the “first term”, the symbol r represents the “common ratio”
and the “n-th term” is given by the expression

arn−1.

EXAMPLES

1. Determine the n-th term of the geometric progression

3,−12, 48,−192, ...

Solution

The progression has n-th term
3(−4)n−1

which will always be positive when n is an odd number and negative when n is an even
number.

2. Determine the seventh term of the geometric progression

3, 6, 12, 24, ...

Solution

The seventh term is
3(26) = 192.

3. The third term of a geometric progression is 4.5 and the ninth term is 16.2. Determine
the common ratio.

Solution
Firstly, we have

ar2 = 4.5

and
ar8 = 16.2

Dividing the second of these by the first gives

ar8

ar2
=

16.2

4.5
.
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Therefore,
r6 = 3.6

and so
r ' 1.238

4. The expenses of a company are £200,000 a year. It is decided that each year they shall
be reduced by 5% of those for the preceding year.
What will be the expenses during the fourth year, the first reduction taking place at
the end of the first year ?

Solution
In this problem, we use a geometric progression with first term 200,000 and common
ratio 0.95.

The expenses during the fourth year will thus be the fourth term of the progression;
that is, £200,000 ×(0.95)3 = £171475.

2.1.4 GEOMETRIC SERIES

If the terms of a geometric progression are added together, we obtain what is called a
“geometric series” . The total sum of a geometric series with n terms may be denoted by
Sn so that

Sn = a + ar + ar2 + ar3 + ... + arn−1

but, as with arithmetic series, this is not the most practical formula for evaluating Sn.

This time, a trick to establish a convenient formula for Sn is to write down both Sn and rSn,
the latter giving

rSn = ar + ar2 + ar3 + ar4 + ... + arn−1 + arn.

Subtracting the second formula from the first gives

Sn − rSn = a− arn,

so that

Sn =
a(1− rn)

1− r
.

This is the version of the formula most commonly used since, in many practical applications,
r will be less than one; but, for examples in which r is greater than one, it may be better to
use the alternative version, namely

Sn =
a(rn − 1)

r − 1
.
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In fact, either version may be used whatever the value of r is.

EXAMPLES

1. Determine the sum of the geometric series

4 + 2 + 1 +
1

2
+

1

4
+

1

8
.

Solution

The sum is given by

S6 =
4(1− (1

2
)6)

1− 1
2

=
4(1− 0.0156)

0.5
' 7.875

2. A sum of money £C is invested for n years at an interest of 100r%, compounded
annually. What will be the total interest earned by the end of the n-th year ?

Solution
At the end of year 1, the interest earned will be Cr.
At the end of year 2, the interest earned will be (C + Cr)r = Cr(1 + r).
At the end of year 3, the interest earned will be C(1 + r)r + C(1 + r)r2 = Cr(1 + r)2.

This pattern reveals that,
at the end of year n, the interest earned will be Cr(1 + r)n−1.

Thus the total interest earned by the end of year n will be

Cr + Cr(1 + r) + Cr(1 + r)2 + ... + Cr(1 + r)n−1,

which is a geometric series of n terms with first term Cr and common ratio 1 + r. Its
sum is therefore

Cr((1 + r)n − 1)

r
= C((1 + r)n − 1).

Note:
The same result can be obtained using only a geometric progression as follows:

At the end of year 1, the total amount will be C + Cr = C(1 + r).
At the end of year 2, the total amount will be C(1 + r) + C(1 + r)r = C(1 + r)2.
At the end of year 3, the total amount will be C(1 + r)2 + C(1 + r)2r = C(1 + r)3.
At the end of year n, the total amount will be C(1 + r)n.

Thus the total interest earned will be C(1 + r)n − C = C((1 + r)n − 1) as before.
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The sum to infinity of a geometric series.

In a geometric series with n terms, suppose that the value of the common ratio, r, is numer-
ically less than 1. Then the higher the value of n, the smaller the numerical value of rn, to
the extent that, as n approaches infinity, rn approaches zero.

We conclude that, although it not possible to reach the end of a geometric series which has
an infinite number of terms, its sum to infinity may be given by

S∞ =
a

1− r
.

EXAMPLES

1. Determine the sum to infinity of the geometric series

5− 1 +
1

5
− . . .

Solution

The sum to infinity is
5

1 + 1
5

=
25

6
' 4.17

2. The yearly output of a silver mine is found to be decreasing by 25% of its previous
year’s output. If, in a certain year, its output was £25,000, what could be reckoned as
its total future output ?

Solution

The total output, in pounds, for subsequent years will be given by

25000× 0.75 + 25000× (0.75)2 + 25000× (0.75)3 + ... =
25000× 0.75

1− 0.75
= 75000.

2.1.5 MORE GENERAL PROGRESSIONS AND SERIES

Introduction

Not all progressions and series encountered in mathematics are either arithmetic or geometric.
For instance:

12, 22, 32, 42, ......, n2
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has a clearly defined pattern but is not arithmetic or geometric.

An arbitrary progression of n numbers which conform to some regular pattern is often
denoted by

u1, u2, u3, u4, ......, un,

and it may or may not be possible to find a simple formula for the sum Sn.

The Sigma Notation (Σ).

If the general term of a series with n terms is known, then the complete series can be written
down in short notation as indicated by the following illustrations:

1.

a + (a + d) + (a + 2d) + ...... + (a + [n− 1]d) =
n∑

r=1

(a + [r − 1]d).

2.

a + ar + ar2 + ......arn−1 =
n∑

k=1

ark−1.

3.

12 + 22 + 32 + ......n2 =
n∑

r=1

r2.

4.

−13 + 23 − 33 + 43 + ......(−1)nn3 =
n∑

r=1

(−1)rr3.

Notes:

(i) It is sometimes more convenient to count the terms of a series from zero rather than 1.
For example:

a + (a + d) + (a + 2d) + ......a + [n− 1]d =
n−1∑
r=0

(a + rd)
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and

a + ar + ar2 + ar3 + ......arn−1 =
n−1∑
k=0

ark.

In general, for a series with n terms starting at u0,

u0 + u1 + u2 + u3 + ....... + un−1 =
n−1∑
r=0

ur.

(ii) We may also use the sigma notation for “infinite series” such as those we encountered
in the sum to infinity of a geometric series. For example

1 +
1

3
+

1

32
+

1

33
+ ....... =

∞∑
r=1

1

3r−1
or

∞∑
r=0

1

3r
.

STANDARD RESULTS

It may be shown that

n∑
r=1

r =
1

2
n(n + 1),

n∑
r=1

r2 =
1

6
n(n + 1)(2n + 1)

and

n∑
r=1

r3 =
[
1

2
n(n + 1)

]2

.

Outline Proofs:

The first of these is simply the formula for the sum of an arithmetic series with first term 1
and last term n.
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The second is proved by summing, from r = 1 to n, the identity

(r + 1)3 − r3 ≡ 3r2 + 3r + 1.

The third is proved by summing, from r = 1 to n, the identity

(r + 1)4 − r4 ≡ 4r3 + 6r2 + 4r + 1.

EXAMPLE

Determine the sum to n terms of the series

1 · 2 · 3 + 2 · 3 · 4 + 3 · 4 · 5 + 4 · 5 · 6 + 5 · 6 · 7 + . . .

Solution

The series is

n∑
r=1

r(r + 1)(r + 2) =
n∑

r=1

r3 + 3r2 + 2r =
n∑

r=1

r3 + 3
n∑

r=1

r2 + 2
n∑

r=1

r.

Using the three standard results, the summation becomes

[
1

2
n(n + 1)

]2

+ 3
[
1

6
n(n + 1)(2n + 1)

]
+ 2

[
1

2
n(n + 1)

]

=
1

4
n(n + 1)[n(n + 1) + 4n + 2 + 4] =

1

4
n(n + 1)[n2 + 5n + 6].

This simplifies to

1

4
n(n + 1)(n + 2)(n + 3).
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2.1.6 EXERCISES

1. Write down the next two terms and also the n-th term of the following sequences of
numbers which are either arithmetic progressions or geometric progressions:

(a) 40, 29, 18, 7, ...;

(b) 13
3
, 17

3
, 7, ...;

(c) 5, 15, 45, ...;

(d) 10, 9.2, 8.4, ...;

(e) 81, −54, 36, ...;

(f) 1
3
, 1

4
, 3

16
, ...

2. The third term of an arithmetic series is 34 and the 17th term is −8. Find the sum of
the first 20 terms.

3. For the geometric series 1 + 1.2 + 1.44 + ..., find the 6th term and the sum of the first
10 terms.

4. A parent places in a savings bank £25 on his son’s first birthday, £50 on his second, £75
on his third and so on, increasing the amount by £25 on each birthday. How much will
be saved up (apart from any accrued interest) when the boy reaches his 16th birthday
if the final amount is added on this day ?

5. Every year, a gardner takes 4 runners from each of his one year old strawberry plants
in order to form 4 additional plants. If he starts with 5 plants, how many new plants
will he take at the end of the 6th year and what will then be his total number of
plants ?

6. A superball is dropped from a height of 10m. At each rebound, it rises to a height
which is 90% of the height from which it has just fallen. What is the total distance
through which the ball will have moved before it finally comes to rest ?

7. Express the series

2

3
+

4

5
+

6

7
+

8

9
+ ......nterms

in both of the forms
n∑

r=1

ur and
n−1∑
r=0

ur.

Hint:
Find the pattern in the numerators and denominators separately
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8. Determine the sum to n terms of the series

1 · 3 + 2 · 5 + 3 · 7 + 4 · 9 + . . .

2.1.7 ANSWERS TO EXERCISES

1. (a) −4, −15; 51− 11n;

(b) 81
3
, 92

3
; 1

3
(9 + 4n);

(c) 135, 405; 5(3)n−1;

(d) 7.6, 6.8; 10.8− 0.8n;

(e) −24, 16; (−1)n−12n−135−n;

(f) 9
64

, 27
256

; 3n−2

4n−1 .

2. a = 40, d = −3, S20 = 230.

3. 6th term = (1.2)5 ' 2.488 and S10 ' 25.96

4. £3400.

5. Number at year 6 = 5× 46 = 20480; Total = 27305.

6. Total distance = 10 + 2×10×0.9
1−0.9

= 190m.

7.

n∑
r=1

2r

2r + 1
and

n−1∑
r=0

2(r + 1)

2r + 3
.

8.

1

6
n(n + 1)(4n + 5).
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UNIT 2.2 - SERIES 2 - BINOMIAL SERIES

INTRODUCTION

In this section, we shall be concerned with the methods of expanding (multiplying out) an
expression of the form

(A + B)n,

where A and B are either mathematical expressions or numerical values, and n is a given
number which need not be a positive integer. However, we shall deal first with the case when
n is a positive integer, since there is a useful aid to memory for obtaining the result.

2.2.1 PASCAL’S TRIANGLE

Initially, we consider some simple illustrations obtainable from very elementary algebraic
techniques in earlier work:

1. (A + B)1 ≡
A + B.

2. (A + B)2 ≡
A2 + 2AB + B2.

3. (A + B)3 ≡
A3 + 3A2B + 3AB2 + B3.

4. (A + B)4 ≡
A4 + 4A3B + 6A2B2 + 4AB3 + B4.

OBSERVATIONS
(i) We notice that, in each result, the expansion begins with the maximum possible
power of A and ends with the maximum possible power of B.

(ii) In the sequence of terms from beginning to end, the powers of A decrease in steps
of 1 while the powers of B increase in steps of 1.
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(iii) The coefficients in the illustrated expansions follow the diagramatic pattern called
PASCAL’S TRIANGLE:

1 1

1 2 1

1 3 3 1

1 4 6 4 1

and this suggests a general pattern where each line begins and ends with the number 1
and each of the other numbers is the sum of the two numbers above it in the previous
line. For example, the next line would be

1 5 10 10 5 1

giving the result

5. (A + B)5 ≡
A5 + 5A4B + 10A3B2 + 10A2B3 + 5AB4 + B5.

(iv) The only difference which occurs in an expansion of the form

(A−B)n

is that the terms are alternately positive and negative. For instance,

6. (A−B)6 ≡

A6 − 6A5B + 15A4B2 − 20A3B3 + 15A2B4 − 6AB5 + B6.

2.2.2 BINOMIAL FORMULAE

In (A + B)n, if n is a large positive integer, then the method of Pascal’s Triangle can become
very tedious. If n is not a positive integer, then Pascal’s Triangle cannot be used anyway.

A more general method which can be applied to any value of n is the binomial formula
whose proof is best obtained as an application of differential calculus and hence will not be
included here.

Before stating appropriate versions of the binomial formula, we need to introduce a standard
notation called a “factorial” by means of the following definition:
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DEFINITION
If n is a positive integer, the product

1.2.3.4.5..........n

is denoted by the symbol n! and is called “n factorial”.

Note:
This definition could not be applied to the case when n = 0, but it is convenient to give a
meaning to 0! We define it separately by the statement

0! = 1

and the logic behind this separate definition can be made plain in the applications of calculus.
There is no meaning to n! when n is a negative integer.

(a) Binomial formula for (A + B)n when n is a positive integer.

It can be shown that

(A + B)n ≡ An + nan−1B +
n(n− 1)

2!
An−2B2 +

n(n− 1)(n− 2)

3!
An−3B3 + ...... + Bn.

Notes:

(i) This is the same as the result which would be given by Pascal’s Triangle.

(ii) The last term in the expansion is really

n(n− 1)(n− 2)(n− 3).......3.2.1

n!
An−nBn = A0Bn = Bn.

(iii) The coefficient of An−rBr in the expansion is

n(n− 1)(n− 2)(n− 3).......(n− r + 1)

r!
=

n!

(n− r)!r!

and this is sometimes denoted by the symbol
(

n
r

)
.

(iv) A commonly used version of the result is given by

(1 + x)n ≡ 1 + nx +
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + ... + xn.
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EXAMPLES

1. Expand fully the expression (1 + 2x)3.

Solution

We first note that

(A + B)3 ≡ A3 + 3A2B +
3.2

2!
AB2 + B3 ≡ A3 + 3A2B + 3AB2 + B3.

If we now replace A by 1 and B by 2x, we obtain

(1 + 2x)3 ≡ 1 + 3(2x) + 3(2x)2 + (2x)3 ≡ 1 + 6x + 12x2 + 8x3.

2. Expand fully the expression (2− x)5.

Solution

We first note that

(A + B)5 ≡ A5 + 5A4B +
5.4

2!
A3B2 +

5.4.3

3!
A2B3 +

5.4.3.2

4!
AB4 + B5.

That is,
(A + B)5 ≡ A5 + 5A4B + 10A3B2 + 10A2B3 + 5AB4 + B5.

We now replace A by 2 and B by −x to obtain

(2− x)5 ≡ 25 + 5(2)4(−x) + 10(2)3(−x)2 + 10(2)2(−x)3 + 5(2)(−x)4 + (−x)5.

That is,

(2− x)5 ≡ 32− 80x + 80x2 − 40x3 + 10x4 − x5.

(b) Binomial formula for (A + B)n when n is negative or a fraction.

It turns out that the binomial formula for a positive integer index may still be used when
the index is negative or a fraction, except that the series of terms will be an infinite series.
That is, it will not terminate.

In order to state the most commonly used version of the more general result, we use the
simplified form of the binomial formula in Note (iii) of the previous section:

RESULT

If n is negative or a fraction and x lies strictly between x = −1 and x = 1, it can be shown
that

(1 + x)n = 1 + nx +
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + ......
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EXAMPLES

1. Expand (1 + x)
1
2 as far as the term in x3.

Solution

(1 + x)
1
2 = 1 +

1

2
x +

1
2
(1

2
− 1)

2!
x2 +

1
2
(1

2
− 1)(1

2
− 2)

3!
x3 + ......

= 1 +
x

2
− x2

8
+

x3

16
− ......

provided −1 < x < 1.

2. Expand (2− x)−3 as far as the term in x3 stating the values of x for which the series is
valid.

Solution

We first convert the expression (2− x)−3 to one in which the leading term in the bracket
is 1. That is,

(2− x)−3 ≡
[
2

(
1− x

2

)]−3

≡ 1

8

(
1 +

[
−x

2

])−3

.

The required binomial expansion is thus:

1

8

[
1 + (−3)

(
−x

2

)
+

(−3)(−3− 1)

2!

(
−x

2

)2

+
(−3)(−3− 1)(−3− 2)

3!

(
−x

2

)3

+ ......

]
.

That is,
1

8

[
1 +

3x

2
+

3x2

2
+

5x3

4
+ ......

]
.

The expansion is valid provided that −x/2 lies strictly between −1 and 1. This will be
so when x itself lies strictly between −2 and 2.
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(c) Approximate Values

The Binomial Series may be used to calculate simple approximations, as illustrated by the
following example:

EXAMPLE

Evaluate
√

1.02 correct to five places of decimals.

Solution

Using 1.02 = 1 + 0.02, we may say that

√
1.02 = (1 + 0.02)

1
2 .

That is,

√
1.02 = 1 +

1

2
(0.02) +

1
2

(
−1

2

)
1.2

(0.02)2 +

1
2

(
−1

2

) (
−3

2

)
1.2.3

(0.02)3 + . . .

= 1 + 0.01− 1

8
(0.0004) +

1

16
(0.000008)− . . .

= 1 + 0.01− 0.00005 + 0.0000005− . . .

' 1.010001− 0.000050 = 1.009951

Hence
√

1.02 ' 1.00995
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2.2.3 EXERCISES

1. Expand the following, using Pascal’s Triangle:

(a)

(1 + x)5;

(b)

(x + y)6;

(c)

(x− y)7;

(d)

(x− 1)8.

2. Use the result of question 1(a) to evaluate

(1.01)5

without using a calculator.

3. Expand fully the following expressions:

(a)

(2x− 1)5;

(b) (
3 +

x

2

)4

;

(c) (
x− 2

x

)3

.

4. Expand the following as far as the term in x3, stating the values of x for which the
expansions are valid:

(a)

(3 + x)−1;
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(b)

(1− 2x)
1
2 ;

(c)

(2 + x)−4.

5. Using the first four terms of the expansion for (1 + x)n, calculate an approximate value
of
√

1.1, stating the result correct to five significant figures.

6. If x is small, show that

(1 + x)−1 − (1− 2x)
1
2 ' 3x2

2
.

2.2.4 ANSWERS TO EXERCISES

1. (a)

1 + 5x + 10x2 + 10x3 + 5x4 + x5;

(b)

x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6;

(c)

x7 − 7x6y + 21x5y2 − 35x4y3 + 35x3y4 − 21x2y5 + 7xy6 − y7;

(d)

x8 − 8x7 + 28x6 − 56x5 + 70x4 − 56x3 + 28x2 − 8x + 1.

2. 1.0510100501 to ten places of decimals.

3. (a)

32x5 − 80x4 + 80x3 − 40x2 + 10x− 1;

(b)

81 + 54x +
27

2
x2 +

3

2
x3 +

1

16
x4;

(c)

x3 − 6x +
12

x
− 8

x3
.
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4. (a)

1

3

[
1− x

3
+

x2

9
− x3

27
+ ......

]
,

provided −3 < x < 3.

(b)

1− x− x2

2
− x3

2
− ......,

provided −1
2

< x < 1
2
.

(c)

1

16

[
1− 2x +

5x2

2
− 5x3

2
+ ......

]
,

provided −2 < x < 2.

5. 1.0488

6. Expand each bracket as far as the term in x2.
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UNIT 2.3 - SERIES 3 - ELEMENTARY CONVERGENCE AND DIVERGENCE

Introduction

In the examination of geometric series in Unit 2.1 and of binomial series in Unit 2.2, the
idea was introduced of series which have a first term but no last term; that is, there are an
infinite number of terms.

The general format of an infinite series may be specified by either

u1 + u2 + u3 + . . . =
∞∑

r=1

ur

or

u0 + u1 + u2 + . . . =
∞∑

r=0

ur.

In the first of these two forms, ur is the r-th term while, in the second, ur is the (r + 1)-th
term.

ILLUSTRATIONS

1.

1 +
1

2
+

1

3
+ . . . =

∞∑
r=1

1

r
=
∞∑

r=0

1

r + 1
.

2.

2 + 4 + 6 + 8 + . . . =
∞∑

r=1

2r =
∞∑

r=0

2(r + 1).

3.

1 + 3 + 5 + 7 + . . . =
∞∑

r=1

(2r − 1) =
∞∑

r=0

(2r + 1).

2.3.1 THE DEFINITIONS OF CONVERGENCE AND DIVERGENCE

It has already been shown in Unit 2.1 (for geometric series) that an infinite series may have
a “sum to infinity” even though it is not possible to reach the end of the series.
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For example, the infinite geometric series

1

2
+

1

4
+

1

8
+ . . . =

∞∑
r=1

1

2r

is such that the sum, Sn, of the first n terms is given by

Sn =
1
2
(1− 1

2

n
)

1− 1
2

= 1− 1

2n
.

As n becomes larger and larger, Sn approaches ever closer to the fixed value, 1.

We say that the “limiting value” of Sn as n “tends to infinity” is 1; and we write

lim
n→∞

Sn = 1.

Since this limiting value is a finite number, we say that the series “converges” to 1.

DEFINITION (A)
For the infinite series

∞∑
r=1

ur,

the expression

u1 + u2 + u3 + . . . + un

is called its “n-th partial sum”.

DEFINITION (B)
If the n-th partial sum of an infinite series tends to a finite limit as n tends to infinity, the
series is said to “converge”. In all other cases, the series is said to “diverge”.
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ILLUSTRATIONS

1.

1

2
+

1

4
+

1

8
+ . . . =

∞∑
r=1

1

2r
converges.

2.

1 + 2 + 3 + 4 + . . . . =
∞∑

r=1

r diverges.

3.

1− 1 + 1− 1 + . . . . =
∞∑

r=1

(−1)n−1 diverges.

Notes:

(i) The third illustration above shows that a series which diverges does not necessarily diverge
to infinity.

(ii) Whether a series converges or diverges depends less on the starting terms than it does
on the later terms. For example

7− 15 + 2 + 39 +
1

2
+

1

4
+

1

8
+

1

16
+ . .

converges to 7− 15 + 2 + 39 + 1 = 33 + 1 = 34.

(iii) It will be seen, in the next section, that it is sometimes possible to test an infinite series
for convergence or divergence without having to try and determine its sum to infinity.

2.3.2 TESTS FOR CONVERGENCE AND DIVERGENCE

In this section, the emphasis will be on the use of certain standard tests, rather than on
their rigorous formal proofs. Only outline proofs will be suggested.

To begin with, we shall consider series of positive terms only.
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TEST 1 - The r-th Term Test

An infinite series,

∞∑
r=1

ur,

cannot converge unless its terms ultimately tend to zero; that is,

lim
r→∞

ur = 0.

Outline Proof:

The series will converge only if the r-th partial sums, Sr, tend to a finite limit, L (say), as
r tends to infinity; hence, if we observe that ur = Sr − Sr−1, then ur must tend to zero as r
tends to infinity since Sr and Sr−1 each tend to L.

ILLUSTRATIONS

1. The convergent series

∞∑
r=1

1

2r
,

discussed earlier, is such that

lim
r→∞

1

2r
= 0.

2. The divergent series

∞∑
r=1

r,

discussed earlier, is such that

lim
r→∞

r 6= 0.
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3. The series

∞∑
r=1

1

r

is such that

lim
r→∞

1

r
= 0,

but it will be shown later that this series is divergent.

That is, the converse of the r-th Term Test is not true. It does not imply that a series
is convergent when its terms do tend to zero; merely that it is divergent when its terms
do not tend to zero.

TEST 2 - The Comparison Test

Given the series

∞∑
r=1

ur,

suppose that

∞∑
r=1

vr

is a second series which is known to converge.

Then the first series converges provided that ur ≤ vr.

Similarly, if

∞∑
r=1

wr

is a series which is known to diverge, then the first series diverges provided that ur ≥ wr.

Note:
It may be necessary to ignore the first few values of r.
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Outline Proof:

Suppose we think of ur and vr as the heights of two sets of rectangles, all with a common
base-length of one unit.

If the series

∞∑
r=1

vr

is convergent it represents a finite total area of an infinite number of rectangles.

The series

∞∑
r=1

ur

represents a smaller area and, hence, is also finite.

A similar argument holds when

∞∑
r=1

wr

is a divergent series and ur ≥ wr.

A divergent series of positive terms can diverge only to +∞ so that the set of rectangles
determined by ur generates an area that is greater than an area which is already infinite.

EXAMPLES

1. Show that the series

∞∑
r=1

1

r
= 1 +

1

2
+

1

3
+

1

4
+ . .

is divergent.

Solution

The given series may be written as
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1 +
1

2
+
(

1

3
+

1

4

)
+
(

1

5
+

1

6
+

1

7
+

1

8

)
+ . . .,

a series whose terms are all greater than (or, for the second term, equal to) 1
2
.

But the series

1 +
1

2
+

1

2
+

1

2
+ . .

is a divergent series and, hence, the series

∞∑
r=1

1

r

is divergent.

2. Given that

∞∑
r=1

1

r2

is a convergent series, show that

∞∑
r=1

1

r(r + 1)

is also a convergent series.

Solution

First, we observe that, for r = 1, 2, 3, 4, . . .,

1

r(r + 1)
<

1

r.r
=

1

r2
.

Hence, the terms of the series

∞∑
r=1

1

r(r + 1)

are smaller in value than those of a known convergent series. It therefore converges
also.

7



Note:
It may be shown that the series

∞∑
r=1

1

rp

is convergent whenever p > 1 and divergent whenever p ≤ 1. This result provides a useful
standard tool to use with the Comparison Test.

TEST 3 - D’Alembert’s Ratio Test

Given the series

∞∑
r=1

ur,

suppose that

lim
r→∞

ur+1

ur

= L;

Then the series converges if L < 1 and diverges if L > 1.

There is no conclusion if L = 1.

Outline Proof:

(i) If L > 1, all the values of ur+1

ur
will ultimately be greater than 1 and so ur+1 > ur for a

large enough value of r.

Hence, the terms cannot ultimately be decreasing; so Test 1 shows that the series diverges.

(ii) If L < 1, all the values of ur+1

ur
will ultimately be less than 1 and so ur+1 < ur for a

large enough value or r.

We will consider that this first occurs when r = s; and, from this value onwards, the terms
steadily decrease in value.

Furthermore, we can certainly find a positive number, h, between L and 1 such that

8



us+1

us

< h,
us+2

us+1

< h,
us+3

us+2

< h, . . .

That is,

us+1 < hus, us+2 < hus+1, us+3 < hus+2, . . .,

which gives

us+1 < hus, us+2 < h2us, us+3 < h3us, . . .

But, since L < h < 1,

hus + h2us + h3us + . . .

is a convergent geometric series; therefore, by the Comparison Test,

us+1 + us+2 + us+3 + . . . =
∞∑

r=1

us+r converges,

implying that the original series converges also.

(iii) If L = 1, there will be no conclusion since we have already encountered examples of
both a convergent series and a divergent series which give L = 1.

In particular,

∞∑
r=1

1

r

is divergent and gives

lim
r→∞

ur+1

ur

= lim
r→∞

r

r + 1
= lim

r→∞

1

1 + 1
r

= 1.

9



Also,

∞∑
r=1

1

r2

is convergent and gives

lim
r→∞

ur+1

ur

= lim
r→∞

r2

(r + 1)2
= lim

r→∞

(
r

r + 1

)2

= lim
r→∞

(
1

1 + 1
r

)2

= 1.

Note:
A convenient way to calculate the limit as r tends to infinity of any ratio of two polynomials
in r is first to divide the numerator and the denominator by the highest power of r.

For example,

lim
r→∞

3r3 + 1

2r3 + 1
= lim

r→∞

3 + 1
r3

2 + 1
r3

=
3

2
.

ILLUSTRATIONS

1. For the series

∞∑
r=1

ur =
∞∑

r=1

r

2r
,

ur+1

ur

=
r + 1

2r+1
.
2r

r
=

r + 1

2r
.

Thus,

lim
r→∞

ur+1

ur

= lim
r→∞

r + 1

2r
= lim

r→∞

1 + 1
r

2
=

1

2
.

The limiting value is less than 1 so that the series converges.
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2. For the series

∞∑
r=1

ur =
∞∑

r=1

2r,

ur+1

ur

=
2r+1

2r
= 2.

Thus,

lim
r→∞

ur+1

ur

= lim
r→∞

2 = 2.

The limiting value is greater than 1 so that the series diverges.

2.3.3 EXERCISES

1. Use the “r-th Term Test” to show that the following series are divergent:

(a)

∞∑
r=1

r

r + 2
;

(b)

∞∑
r=1

1 + 2r2

1 + r2
.

2. Use the “Comparison Test” to determine whether the following series are convergent or
divergent:

(a)

∞∑
r=1

1

(r + 1)(r + 2)
;

(b)

∞∑
r=1

r√
r6 + 1

;

11



(c)

∞∑
r=1

r

r2 + 1
.

3. Use D’Alembert’s Ratio Test to determine whether the following series are convergent
or divergent:

(a)

∞∑
r=1

2r

r2
;

(b)

∞∑
r=1

1

(2r + 1)!
;

(c)

∞∑
r=1

r + 1

r!
.

4. Obtain an expression for the r-th term of the following infinite series and, hence, inves-
tigate them for convergence or divergence:

(a)

1

1× 2
+

1

2× 22
+

1

3× 23
+

1

4× 24
+ . . ;

(b)

1 +
3

2× 4
+

7

4× 9
+

15

8× 16
+

31

16× 25
+ . . .;

(c)

1√
3− 1

+
1

2−
√

2
+

1√
5−

√
3

+
1√

6− 2
+

1√
7−

√
5

+ . .

12



2.3.4 ANSWERS TO EXERCISES

1. (a)

lim
r→∞

ur+1

ur

= 1 6= 0;

(b)

lim
r→∞

ur+1

ur

= 2 6= 0.

2. (a) Convergent;

(b) Convergent;

(c) Divergent.

3. (a) Divergent;

(b) Convergent;

(c) Convergent.

4. (a)

ur =
1

r × 2r
;

The series is convergent by D’Alembert’s Ratio Test;

(b)

ur =
2r − 1

2r−1r2
;

The series is convergent by Comparison Test;

(c)

ur =
1√

r + 2−
√

r
;

The series is divergent by r-th Term Test.

Note:
For further discussion of limiting values, see Unit 10.1
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UNIT 2.4 - SERIES 4- FURTHER CONVERGENCE AND DIVERGENCE

2.4.1 SERIES OF POSITIVE AND NEGATIVE TERMS

Introduction

In Units 2.2 and 2.3, most of the series considered have included only positive terms. But
now we shall examine the concepts of convergence and divergence in cases where negative
terms are present.

We note here, for example, that the r-th Term Test encountered in Unit 2.3 may be used
for series whose terms are not necessarily all positive. This is because the formula

ur = Sr − Sr−1

is valid for any series.

The series cannot converge unless the partial sums Sr and Sr−1 both tend to the same finite
limit as r tends to infinity which implies that ur tends to zero as r tends to infinity.

A particularly simple kind of series with both positive and negative terms is one whose terms
are alternately positive and negative. The following test is applicable to such series:

Test 4 - The Alternating Series Test

If
u1 − u2 + u3 − u4 + . . , where ur > 0,

is such that

ur > ur+1 and ur → 0 as r →∞,

then the series converges.

Outline Proof:

(a) Suppose we re-group the series as

(u1 − u2) + (u3 − u4) + (u5 − u6) + . . .;

then, it may be considered in the form

1



∞∑
r=1

vr,

where v1 = u1 − u2, v2 = u3 − u4, v3 = u5 − u6, . . . .

This means that vr is positive, so that the corresponding r-th partial sums, Sr = v1 + v2 +
v3 + . . . + vr, steadily increase as r increases.

(b) Alternatively, suppose we re-group the series as

u1 − (u2 − u3)− (u4 − u5)− (u6 − u7)− . . . ;

then, it may be considered in the form

u1 −
∞∑

r=1

wr,

where w1 = u2 − u3, w2 = u4 − u5, w3 = u6 − u7, . . . .

In this case, each partial sum, Sr = u1 − (w1 + w2 + w3 + . . . + wr) is less than u1 since
positive quantities are being subtracted from it.

(c) We conclude that the partial sums of the original series are steadily increasing but are
never greater than u1. They must therefore tend to a finite limit as r tends to infinity; that
is, the series converges.

ILUSTRATION

The series

∞∑
r=1

(−1)r−1 1

r
= 1− 1

2
+

1

3
− 1

4
+ . . .

is convergent since

1

r
>

1

r + 1
and

1

r
→ 0 as r →∞.

2



2.4.2 ABSOLUTE AND CONDITIONAL CONVERGENCE

In this section, a link is made between a series having both positive and negative terms and
the corresponding series for which all of the terms are positive.

By making this link, we shall be able to make use of earlier tests for convergence and
divergence.

DEFINITION (A)
If ∞∑

r=1

ur

is a series with both positive and negative terms, it is said to be “absolutely convergent”
if

∞∑
r=1

|ur|

is convergent.

DEFINITION (B)
If ∞∑

r=1

ur

is a convergent series of positive and negative terms, but

∞∑
r=1

|ur|

is a divergent series, then the first of these two series is said to be “conditionally conver-
gent”.

ILLUSTRATIONS

1. The series

1 +
1

22
− 1

32
− 1

42
+

1

52
+

1

62
+ . . .

converges absolutely since the series

1 +
1

22
+

1

32
+

1

42
+

1

52
+

1

62
+ . . .

converges.

3



2. The series

1− 1

2
+

1

3
− 1

4
+

1

5
− . . .

is conditionally convergent since, although it converges (by the Alternating Series Test),
the series

1 +
1

2
+

1

3
+

1

4
+

1

5
+ . . .

is divergent.

Notes:

(i) It may be shown that any series of positive and negative terms which is absolutely
convergent will also be convergent.

(ii) Any test for the convergence of a series of positive terms may be used as a test for the
absolute convergence of a series of both positive and negative terms.

2.4.3 TESTS FOR ABSOLUTE CONVERGENCE

The Comparison Test

Given the series ∞∑
r=1

ur,

suppose that |ur| ≤ vr where

∞∑
r=1

vr

is a convergent series of positive terms. Then, the given series is absolutely convergent.

D’Alembert’s Ratio Test

Given the series ∞∑
r=1

ur,

suppose that

lim
r→∞

∣∣∣∣ur+1

ur

∣∣∣∣ = L.

4



Then the given series is absolutely convergent if L < 1.

Note:

If L > 1, then |ur+1| > |ur| for large enough values of r showing that the numerical values
of the terms steadily increase. This implies that ur does not tend to zero as r tends to
infinity and, hence, by the r-th Term Test, the series diverges.

If L = 1, there is no conclusion.

EXAMPLES

1. Show that the series

1

1× 2
− 1

2× 3
− 1

3× 4
+

1

4× 5
− 1

5× 6
− 1

6× 7
+ . .

is absolutely convergent.

Solution

The r-th term of the series is numerically equal to

1

r(r + 1)
,

which is always less than 1
r2 , the r-th term of a known convergent series.

2. Show that the series

1

2
− 2

5
+

3

10
− 4

17
+ . .

is conditionally convergent.

Solution

The r-th term of the series is numerically equal to

r

r2 + 1
,

which tends to zero as r tends to infinity.

Also,

r

r2 + 1
>

r + 1

(r + 1)2 + 1

5



since this may be reduced to the true statement r2 + r > 1.

Hence, by the Alternating Series Test, the series converges.

However, it is also true that

r

r2 + 1
>

r

r2 + r
=

1

r + 1
;

and, hence, by the Comparison Test, the series of absolute values is divergent, since

∞∑
r=1

1

r + 1

is divergent.

2.4.4 POWER SERIES

A series of the form

a0 + a1x + a2x
2 + a3x

3 + . . =
∞∑

r=0

arx
r or

∞∑
r=1

ar−1x
r−1,

where x is usually a variable quantity, is called a “power Series in x with coefficients
a0, a1, a2, a3, . . .”.

Notes:

(i) In this kind of series, it is particularly useful to sum the series from r = 0 to infinity
rather than from r = 1 to infinity so that the constant term at the beginning (if there is
one) can be considered as the term in x0.

But the various tests for convergence and divergence still apply in this alternative notation.

(ii) A power series will not necessarily be convergent (or divergent) for all values of x and
it is usually required to determine the specific range of values of x for which the series
converges. This can most frequently be done using D’Alembert’s Ratio Test.

ILLUSTRATION

For the series

x− x2

2
+

x3

3
− x4

4
+ . . =

∞∑
r=1

(−1)r−1xr

r
,
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we have

∣∣∣∣ur+1

ur

∣∣∣∣ =

∣∣∣∣∣(−1)rxr+1

r + 1
.

r

(−1)r−1xr

∣∣∣∣∣ =
∣∣∣∣ r

r + 1
x

∣∣∣∣ ,
which tends to |x| as r tends to infinity.

Thus, the series converges absolutely when |x| < 1 and diverges when |x| > 1.

If x = 1, we have the series

1− 1

2
+

1

3
− 1

4
+ . . ,

which converges by the Alternating Series Test; while, if x = −1, we have the series

−1− 1

2
− 1

3
− 1

4
− . . ,

which diverges.

The precise range of convergence for the given series is therefore −1 < x ≤ 1.

2.4.5 EXERCISES

1. Show that the following alternating series are convergent:

(a)

1− 1

2
+

1

4
− 1

8
+ . . .;

(b)

1

32
− 2

33
+

3

34
− 4

35
+ . .

2. Show that the following series are conditionally convergent:

(a)

1− 1√
2

+
1√
3
− 1√

4
+ . . ;
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(b)

2

1× 3
− 3

2× 4
+

4

3× 5
− 5

4× 6
+ . . .

3. Show that the following series are absolutely convergent:

(a)

3

2
+

4

3
× 1

2
− 5

4
× 1

22
− 6

5
× 1

23
+ . . .;

(b)

1

3
+

1× 2

3× 5
− 1× 2× 3

3× 5× 7
− 1× 2× 3× 4

3× 5× 7× 9
+ . .

4. Obtain the precise range of values of x for which each of the following power series is
convergent:

(a)

1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ . . .;

(b)

x

1× 2
+

x2

2× 3
+

x3

3× 4
+

x4

4× 5
+ . . .;

(c)

2x +
3x2

23
+

4x3

33
+

5x4

43
+ . . .;

(d)

1 +
2x

5
+

3x2

25
+

4x3

125
+ . . .

8



2.4.6 ANSWERS TO EXERCISES

1. (a) Use ur = 1
2r−1 (numerically);

(b) Use ur = r
3r+1 (numerically).

2. (a) Use ur = 1√
r

(numerically);

(b) Use ur = r+1
r(r+2)

(numerically).

3. (a) Use ur = r+2
r+1

× 1
2r−1 - (numerically);

(b) Use ur = 2r(r!)2

(2r+1)!
(numerically).

4. (a) The power series converges for all values of x;

(b) −1 ≤ x ≤ 1;

(c) −1 ≤ x ≤ 1;

(d) −5 < x < 5.

Note:
For further discussion of limiting values, see Unit 10.1
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UNIT 3.1 - TRIGONOMETRY 1
ANGLES AND TRIGONOMETRIC FUNCTIONS

3.1.1 INTRODUCTION
The following results will be assumed without proof:

(i) The Circumference, C, and Diameter, D, of a circle are directly proportional to each
other through the formula

C = πD

or, if the radius is r,
C = 2πr.

(ii) The area, A, of a circle is related to the radius, r, by means of the formula

A = πr2.

3.1.2 ANGULAR MEASURE

(a) Astronomical Units

The “degree” is a 1
360

th part of one complete revolution. It is based on the study of
planetary motion where 360 is approximately the number of days in a year.

(b) Radian Measure

A “radian” is the angle subtended at the centre of a circle by an arc which is equal in
length to the radius.













r

r

B

A

1
C

RESULTS
(i) Using the definition of a radian, together with the second formula for circumference on
the previous page, we conclude that there are 2π radians in one complete revolution. That
is, 2π radians is equivalent to 360◦ or, in other words π radians is equivalent to 180◦.

(ii) In the diagram overleaf, the arclength from A to B will be given by

θ

2π
× 2πr = rθ,

assuming that θ is measured in radians.

1



(iii) In the diagram below, the area of the sector ABC is given by

θ

2π
× πr2 =

1

2
r2θ.
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θ
C

(c) Standard Angles

The scaling factor for converting degrees to radians is

π

180

and the scaling factor for converting from radians to degrees is

180

π
.

These scaling factors enable us to deal with any angle, but it is useful to list the expression,
in radians, of some of the more well-known angles.

ILLUSTRATIONS

1. 15◦ is equivalent to π
180
× 15 = π

12
.

2. 30◦ is equivalent to π
180
× 30 = π

6
.

3. 45◦ is equivalent to π
180
× 45 = π

4
.

4. 60◦ is equivalent to π
180
× 60 = π

3
.

5. 75◦ is equivalent to π
180
× 75 = 5π

12
.

6. 90◦ is equivalent to π
180
× 90 = π

2
.

(d) Positive and Negative Angles

For the measurement of angles in general, we consider the plane of the page to be divided
into four quadrants by means of a cartesian reference system with axes Ox and Oy. The
“first quadrant” is that for which x and y are both positive, and the other three quadrants
are numbered from the first in an anticlockwise sense.

2
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6
y

xO

From the positive x-direction, we measure angles positively in the anticlockwise sense and
negatively in the clockwise sense. Special names are given to the type of angles obtained as
follows:

1. Angles in the range between 0◦ and 90◦ are called “positive acute” angles.

2. Angles in the range between 90◦ and 180◦ are called “positive obtuse” angles.

3. Angles in the range between 180◦ and 360◦ are called “positive reflex” angles.

4. Angles measured in the clockwise sense have similar names but preceded by the word
“negative”.

3.1.3 TRIGONOMETRIC FUNCTIONS

We first consider a right-angled triangle in one corner of which is an angle θ other than
the right-angle itself. The sides of the triangle are labelled in relation to this angle , θ, as
“opposite”, “adjacent” and “hypotenuse” (see diagram below).

��
���

���
����

θ adjacent

opposite
hypotenuse

For future reference, we shall assume, without proof, the result known as “Pythagoras’
Theorem”. This states that the square of the length of the hypotenuse is equal to the sum
of the squares of the lengths of the other two sides.

DEFINITIONS

(a) The “sine” of the angle θ, denoted by sin θ, is defined by

sin θ ≡ opposite

hypotenuse
;

(b) The “cosine” of the angle θ, denoted by cos θ, is defined by

cos θ ≡ adjacent

hypotenuse
;

(c) The “tangent” of the angle θ, denoted by tan θ, is defined by

tan θ ≡ opposite

adjacent
.

3



Notes:
(i) The traditional aid to remembering the above definitions is the abbreviation

S.O.H.C.A.H.T.O.A.
(ii) The definitions of sin θ, cos θ and tan θ can be extended to angles of any size by regarding
the end-points of the hypotenuse, with length h, to be, respectively, the origin and the point
(x, y) in a cartesian system of reference.

6
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O θ

h

x

y (x, y)

For any values of x and y, positive, negative or zero, the three basic trigonometric functions
are defined in general by the formulae

sin θ ≡ y

h
;

cos θ ≡ x

h
;

tan θ ≡ y

x
≡ sin θ

cos θ
.

Clearly these reduce to the original definitions in the case when θ is a positive acute angle.
Trigonometric functions can also be called “trigonometric ratios”.

(iii) It is useful to indicate diagramatically which of the three basic trigonometric functions
have positive values in the various quadrants.

S ine A ll

C osineT an

6

-

(iv) Three other trigonometric functions are sometimes used and are defined as the reciprocals
of the three basic functions as follows:

“Secant”

secθ ≡ 1

cos θ
;

“Cosecant”

cosecθ ≡ 1

sin θ
;

4



“Cotangent”

cot θ ≡ 1

tan θ
.

(v) The values of the functions sin θ, cos θ and tan θ for the particluar angles 30◦, 45◦ and
60◦ are easily obtained without calculator from the following diagrams:

�
�

�
�

�
�

�
�
�

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

AA

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

1 1 1

1

√
2

2 2

√
3

30◦ 30◦

45◦

45◦

60◦ 60◦

The diagrams show that

(a) sin 45◦ = 1√
2
; (b) cos 45◦ = 1√

2
; (c) tan 45◦ = 1;

(d) sin 30◦ = 1
2
; (e) cos 30◦ =

√
3

2
(f) tan 30◦ = 1√

3
;

(g) sin 60◦ =
√

3
2

; (h) cos 60◦ = 1
2
; (i) tan 60◦ =

√
3.

3.1.4 EXERCISES

1. Express each of the following angles as a multiple of π

(a) 65◦; (b) 105◦; (c) 72◦; (d) 252◦;

(e) 20◦; (f) −160◦; (g) 9◦; (h) 279◦.

2. On a circle of radius 24cms., find the length of arc which subtends an angle at the centre
of

(a) 2
3

radians.; (b) 3π
5

radians.;

(c) 75◦; (d) 130◦.

3. A wheel is turning at the rate of 48 revolutions per minute. Express this angular speed
in

(a) revolutions per second; (b) radians per minute; (c) radians per second.
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4. A wheel, 4 metres in diameter, is rotating at 80 revolutions per minute. Determine the
distance, in metres, travelled in one second by a point on the rim.

5. A chord AB of a circle, radius 5cms., subtends a right-angle at the centre of the circle.
Calculate, correct to two places of decimals, the areas of the two segments into which
AB divides the circle.

6. If tan θ is positive and cos θ = −4
5
, what is the value of sin θ ?

7. Determine the length of the chord of a circle, radius 20cms., subtending an angle of
150◦ at the centre.

8. A ladder leans against the side of a vertical building with its foot 4 metres from the
building. If the ladder is inclined at 70◦ to the ground, how far from the ground is the
top of the ladder and how long is the ladder ?

3.1.5 ANSWERS TO EXERCISES

1. (a) 13π
36

; (b) 7π
12

; (c) 2π
5

; (d) 7π
5

; (e) π
9
; (f) -8π

9
; (g) π

20
; (h) 31π

20
.

2. (a) 16 cms.; (b) 72π
5

cms.; (c) 10π cms.; (d) 52π
3

cms.

3. (a) 4
5

revs. per sec.; (b) 96π rads. per min.; (c) 8π
5

rads. per sec.

4. 16π
3

metres.

5. 7.13 square cms. and 71.41 square cms.

6. sin θ = −3
5
.

7. The chord has a length of 38.6cms. approximately.

8. The top of ladder is 11 metres from the ground and the length of the ladder is 11.7
metres.

6
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UNIT 3.2 - TRIGONOMETRY 2.
GRAPHS OF TRIGONOMETRIC FUNCTIONS

3.2.1 GRAPHS OF ELEMENTARY TRIGONOMETRIC FUNCTIONS

The following diagrams illustrate the graphs of the basic trigonometric functions sinθ, cosθ
and tanθ,

1. y = sin θ 6
1

−1

π 2π 3π0−π−2π−3π−4π x -

y

The graph illustrates that
sin(θ + 2π) ≡ sin θ

and we say that sinθ is a “periodic function with period 2π”.
Other numbers which can act as a period are ±2nπ where n is any integer; but 2π itself is
the smallest positive period and, as such, is called the “primitive period” or sometimes
the “wavelength”.

We may also observe that
sin(−θ) ≡ − sin θ

which makes sinθ what is called an “odd function”.

2. y = cos θ 6
1

−1

π 2π 3π0−π−2π−3π−4π x

y

-

The graph illustrates that
cos(θ + 2π) ≡ cos θ

1



and so cosθ, like sinθ, is a periodic function with primitive period 2π

We may also observe that
cos(−θ) ≡ cos θ

which makes cosθ what is called an “even function”.

3. y = tan θ

6

π
2 π0−π

2−π x
-

y

This time, the graph illustrates that

tan(θ + π) ≡ tan θ

which implies that tanθ is a periodic function with primitive period π.

We may also observe that
tan(−θ) ≡ − tan θ

which makes tanθ an “odd function”.

3.2.2 GRAPHS OF MORE GENERAL TRIGONOMETRIC
FUNCTIONS

In scientific work, it is possible to encounter functions of the form

Asin(ωθ + α) and Acos(ωθ + α)

where ω and α are constants.

We may sketch their graphs by using the information in the previous examples 1. and 2.

EXAMPLES

1. Sketch the graph of
y = 5 cos(θ − π).

Solution

The important observations to make first are that

2



(a) the graph will have the same shape as the basic cosine wave but will lie between
y = −5 and y = 5 instead of between y = −1 and y = 1; we say that the graph has an
“amplitude” of 5.

(b) the graph will cross the θ-axis at the points for which

θ − π = ±π

2
,±3π

2
,±5π

2
, ......

that is

θ = −3π

2
,−π

2
,
π

2
,
3π

2
,
5π

2
, ......

(c) The y-axis must be placed between the smallest negative intersection with the
θ-axis and the smallest positive intersection with the θ - axis (in proportion to their
values). In this case, the y-axis must be placed half way between θ = −π

2
and θ = π

2
.

6
5

−5

π 2π 3π0−π−2π−3π−4π x

y

-

Of course, in this example, from earlier trigonometry results, we could have noticed
that

5 cos(θ − π) ≡ −5 cos θ

so that graph consists of an “upsidedown” cosine wave with an amplitude of 5. However,
not all examples can be solved in this way.

2. Sketch the graph of
y = 3 sin(2θ + 1).

Solution

This time, the graph will have the same shape as the basic sine wave, but will have an
amplitude of 3. It will cross the θ-axis at the points for which

2θ + 1 = 0,±π,±2π,±3π,±4π, ......

and by solving for θ in each case, we obtain

θ = ...− 6.78,−5.21,−3.64,−2.07,−0.5, 1.07, 2.64, 4.21, 5.78...

Hence, the y-axis must be placed between θ = −0.5 and θ = 1.07 but at about one
third of the way from θ = −0.5

3



6
3

−3

1.07 2.64 4.21−0.5−2.07−3.64−5.21−6.78
x -

y

3.2.3 EXERCISES

1. Make a table of values of θ and y, with θ in the range from 0 to 2π in steps of π
12

, and
hence, sketch the graphs of

(a)

y = sec θ;

(b)

y = cosec θ;

(c)

y = cot θ.

2. Sketch the graphs of the following functions:

(a)

y = 2 sin
(
θ +

π

4

)
;

(b)

y = 2 cos(3θ − 1).

(c)

y = 5 sin(7θ + 2).

(d)

y = − cos
(
θ − π

3

)
.

4



3.2.4 ANSWERS TO EXERCISES

1. (a) The graph is

O -

6

θ

y

−3π
2 −π

2
π
2

3π
2

1

−1

(b) The graph is

O -

6

θ

y

−2π −π π 2π

1

−1

5



(c) The graph is

O -

6

θ

y

−2π −π π 2π

2. (a) The graph is
6
2

−2

3π
4

7π
4

11π
4−π

4− 5π
4− 9π

4− 13π
4− 17π

4

x -

y

(b) The graph is
6
2

−2

0.86 1.91 2.96−0.19−1.24−2.29−3.34−4.39
x -

y

6



(c) The graph is
6
5

−5

0.16 0.61 1.06−0.29−0.74−1.19−1.64−2.09
x -

y

(d) The graph is
6
1

−1

−π
6

5π
6

11π
6− 7π

6− 13π
6− 19π

6− 25π
6− 31π

6

x -

y

7
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UNIT 3.3 - TRIGONOMETRY
APPROXIMATIONS AND INVERSE FUNCTIONS

3.3.1 APPROXIMATIONS FOR TRIGONOMETRIC FUNCTIONS

Three standard approximations for the functions sin θ, cos θ and tan θ respectively can be
obtained from a set of results taken from the applications of Calculus. These are stated
without proof as follows:

sin θ = θ − θ3

3!
+

θ5

5!
− θ7

7!
.....

cos θ = 1− θ2

2!
+

θ4

4!
− θ6

6!
......

tan θ = θ +
θ3

3
+

2θ5

15
+ ......

These results apply only if θ is in radians but, if θ is small enough for θ2 and higher
powers of θ to be neglected, we conclude that

sin θ ' θ,

cos θ ' 1,

tan θ ' θ.

Better approximations are obtainable if more terms of the infinite series are used.

EXAMPLE
Approximate the function

5 + 2 cos θ − 7 sin θ

to a quartic polynomial in θ.

Solution

Using terms of the appropriate series up to and including the fourth power of θ, we deduce
that

5 + 2 cos θ − 7 sin θ ' 5 + 2− θ2 +
θ4

12
− 7θ + 7

θ3

6

=
1

12

[
θ4 + 14θ3 − 12θ2 − 84θ + 84

]
.

1



3.3.2 INVERSE TRIGONOMETRIC FUNCTIONS

It is frequently necessary to determine possible angles for which the value of their sine, cosine
or tangent is already specified. This is carried out using inverse trigonometric functions
defined as follows:

(a) The symbol
Sin−1x

denotes any angle whose sine value is the number x. It is necessary that −1 ≤ x ≤ 1 since
the sine of an angle is always in this range.

(b) The symbol
Cos−1x

denotes any angle whose cosine value is the number x. Again, −1 ≤ x ≤ 1.

(c) The symbol
Tan−1x

denotes any angle whose tangent value is x. This time, x may be any value because the
tangent function covers the range from −∞ to ∞.

We note that because of the A ll , S ine , T angent , C osine diagram, (see Unit 3.1),

there will be two basic values of an inverse function from two different quadrants. But either
of these two values may be increased or decreased by a whole multiple of 360◦ (2π) to yield
other acceptable answers and hence an infinite number of possible answers.

EXAMPLES

1. Evaluate Sin−1(1
2
).

Solution

Sin−1(1
2
) = 30◦ ± n360◦ or 150◦ ± n360◦.

2. Evaluate Tan−1(
√

3).

Solution

Tan−1(
√

3) = 60◦ ± n360◦ or 240◦ ± n360◦.

This result is in fact better written in the combined form
Tan−1(

√
3) = 60◦ ± n180◦

THat is, angles in opposite quadrants have the same tangent.

Another Type of Question

3. Obtain all of the solutions to the equation

cos 3x = −0.432

which lie in the interval −180◦ ≤ x ≤ 180◦.

Solution

This type of question is of a slightly different nature since we are asked for a specified
selection of values rather than the general solution of the equation.

2



We require that 3x be any one of the angles (within an interval −540◦ ≤ 3x ≤ 540◦)
whose cosine is equal to −0.432. Using a calculator, the simplest angle which satisfies
this condition is 115.59◦; but the complete set is

±115.59◦ ± 244.41◦ ± 475.59◦

Thus, on dividing by 3, the possibilities for x are

±38.5◦ ± 81.5◦ ± 158.5◦

Note: The graphs of inverse trigonometric functions are discussed fully in Unit 10.6, but
we include them here for the sake of completeness

6 6

y = Sin−1x y = Cos−1x

x
x

O
O

π

2πq
q π
2

q
−π

2
q -

-

−1 1
−1 1

-

6

x

y = Tan−1x

O

π
2

−π
2

r
r

Of all the possible values obtained for an inverse trigonometric function, one particular one
is called the “Principal Value”. It is the unique value which lies in a specified range
described below, the explanation of which is best dealt with in connection with differential
calculus.

To indicate such a principal value, we use the lower-case initial letter of each inverse function.

(a) θ = sin−1x lies in the range −π
2
≤ θ ≤ π

2
.

(b) θ = cos−1x lies in the range 0 ≤ θ ≤ π.

3



(c) θ = tan−1x lies in the range −π
2
≤ θ ≤ π

2
.

EXAMPLES

1. Evaluate sin−1(1
2
).

Solution

sin−1(1
2
) = 30◦ or π

6
.

2. Evaluate tan−1(−
√

3).

Solution

tan−1(−
√

3) = −60◦ or −π
3
.

3. Write down a formula for u in terms of v in the case when

v = 5 cos(1− 7u).

Solution

Dividing by 5 gives
v

5
= cos(1− 7u).

Taking the inverse cosine gives

Cos−1
(

v

5

)
= 1− 7u.

Subtracting 1 from both sides gives

Cos−1
(

v

5

)
− 1 = −7u.

Dividing both sides by −7 gives

u = −1

7

[
Cos−1

(
v

5

)
− 1

]
.

3.3.3 EXERCISES

1. If powers of θ higher then three can be neglected, find an approximation for the function

6 sin θ + 2 cos θ + 10 tan θ

in the form of a polynomial in θ.

2. If powers of θ higher than five can be neglected, find an approximation for the function

2 sin θ − θ cos θ

in the form of a polynomial in θ.

4



3. If powers of θ higher than two can be neglected, show that the function

θ sin θ

1− cos θ

is approximately equal to 2.

4. Write down the principal values of the following:

(a) Sin−11;

(b) Sin−1
(
−1

2

)
;

(c) Cos−1
(
−
√

3
2

)
;

(d) Tan−15;

(e) Tan−1(−
√

3);

(f) Cos−1
(
− 1√

2

)
.

5. Solve the following equations for x in the interval 0 ≤ x ≤ 360◦:

(a)

tan x = 2.46

(b)

cos x = 0.241

(c)

sin x = −0.786

(d)

tan x = −1.42

(e)

cos x = −0.3478

(f)

sin x = 0.987

Give your answers correct to one decimal place.

6. Solve the following equations for the range given, stating your final answers in degrees
correct to one decimal place:

(a) sin 2x = −0.346 for 0 ≤ x ≤ 360◦;

(b) tan 3x = 1.86 for 0 ≤ x ≤ 180◦;

(c) cos 2x = −0.57 for −180◦ ≤ x ≤ 180◦;

(d) cos 5x = 0.21 for 0 ≤ x ≤ 45◦;

(e) sin 4x = 0.78 for 0 ≤ x ≤ 180◦.

7. Write down a formula for u in terms of v for the following:

(a) v = sin u;

(b) v = cos 2u;

(c) v = tan(u + 1).

5



8. If x is positive, show diagramatically that

(a)

sin−1x + cos−1x =
π

2
;

(b)

sin−1x = cos−1
√

1− x2.

3.3.4 ANSWERS TO EXERCISES

1. 7θ3

3
− θ2 + 16θ + 2.

2. θ + θ3

6
− θ5

40
.

3. Substitute approximations for sin θ and cos θ.

4. (a) π
2
; (b) −π

6
; (c) 5π

6
; (d) 1.373; (e) −π

3
; (f) 3π

4
.

5. (a) 67.9◦ or 247.9◦;

(b) 76.1◦ or 283.9◦;

(c) 231.8◦ or 308.2◦;

(d) 125.2◦ or 305.32◦;

(e) 110.4◦ or 249.6◦;

(f) 80.8◦ or 99.2◦

6. (a) 100.1◦, 169.9◦, 280.1◦, 349.9◦

(b) 20.6◦, 80.6◦, 140.6◦

(c) ±62.4◦, ±117.6◦

(d) 15.6◦

(e) 32.2◦, 102.8◦, 122.2◦

7. (a) u = Sin−1v; (b) u = 1
2
Cos−1v; (c) u = Tan−1v − 1.

8. A suitable diagram is

��
���

����
���

���

√
1− x2

x

1
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UNIT 3.4 - TRIGONOMETRY 4
SOLUTION OF TRIANGLES

3.4.1 INTRODUCTION

The “solution of a triangle” is defined to mean the complete set of data relating to the
lengths of its three sides and the values of its three interior angles. It can be shown that
these angles always add up to 180◦.

If a sufficient amount of information is provided about some of this data, then it is usually
possible to determine the remaining data.

We shall use a standardised type of diagram for an arbitrary triangle whose “vertices” (i.e.
corners) are A,B and C and whose sides have lengths a, b and c. It is as follows:

���
���

���
���

���
���

���
��@

@
@

@
@

@
@

@
@

@
@@A B

C

b a

c

The angles at A,B and C will be denoted by Â, B̂ and Ĉ.

3.4.2 RIGHT-ANGLED TRIANGLES

Right-angled triangles are easier to solve than the more general kinds of triangle because all
we need to use are the relationships between the lengths of the sides and the trigonometric
ratios sine, cosine and tangent. An example will serve to illustrate the technique:

EXAMPLE

From the top of a vertical pylon, 15 meters high, a guide cable is to be secured into the
(horizontal) ground at a distance of 7 meters from the base of the pylon.
What will be the length of the cable and what will be its inclination (in degrees) to the
horizontal ?

1



Solution

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

7m

15m

θ

From Pythagoras’ Theorem, the length of the cable will be
√

72 + 152 ' 16.55m.

The angle of inclination to the horizontal will be θ, where

tanθ =
15

7
.

Hence, θ ' 65◦.

3.4.3 THE SINE AND COSINE RULES

Two powerful tools for the solution of triangles in general may be stated in relation to the
earlier diagram as follows:

(a) The Sine Rule

a

sin Â
=

b

sin B̂
=

c

sin Ĉ
.

(b) The Cosine Rule

a2 = b2 + c2 − 2bc cos Â;

b2 = c2 + a2 − 2ca cos B̂;

c2 = a2 + b2 − 2ab cos Ĉ.

Clearly, the last two of these are variations of the first.

2



We also observe that, whenever the angle on the right-hand-side is a right-angle, the Cosine
Rule reduces to Pythagoras’ Theorem.

The Proof of the Sine Rule

In the diagram encountered earlier, suppose we draw the perpendicular ( of length h) from
the vertex C onto the side AB.

�
���

���
���

����
���

���
���@

@
@

@
@

@
@

@
@

@
@@A B

C

b a

c

x c− x

h

Then h
b

= sin Â and h
a

= sin B̂. In other words,

b sin Â = a sin B̂

or
b

sin B̂
=

a

sin Â
.

Clearly, the remainder of the Sine Rule can be obtained by considering the perpendicular
drawn from a different vertex.

The Proof of the Cosine Rule

Using the same diagram as for the Sine Rule, we can assume that the side AB has lengths
x and c− x either side of the foot of the perpendicular drawn from C. Hence

h2 = b2 − x2

and, at the same time,
h2 = a2 − (c− x)2.

Expanding and equating the two expressions for h2, we obtain

b2 − x2 = a2 − c2 + 2cx− x2

that is
a2 = b2 + c2 − 2xc.

But x = b cos Â, and so
a2 = b2 + c2 − 2bc cos Â.

3



EXAMPLES

1. Solve the triangle ABC in the case when Â = 20◦, B̂ = 30◦ and c = 10cm.

Solution

Firstly, the angle Ĉ = 130◦ since the interior angles must add up to 180◦.

Thus, by the Sine Rule, we have

a

sin 20◦
=

b

sin 30◦
=

10

sin 130◦
.

That is,
a

0.342
=

b

0.5
=

10

0.766

These give the results

a =
10× 0.342

0.766
∼= 4.47cm

b =
10× 0.5

0.766
∼= 6.53cm

2. Solve the triangle ABC in the case when b = 9cm, c = 5cm and Â = 70◦.

Solution

In this case, the information prevents us from using the Sine Rule immediately, but the
Cosine Rule can be applied as follows:

a2 = 25 + 81− 90 cos 70◦

giving
a2 = 106− 30.782 = 75.218

Hence
a ' 8.673cm ' 8.67cm

Now we can use the Sine Rule to complete the solution

8.673

sin 70◦
=

9

sin B̂
=

5

sin Ĉ
.

Thus,

sin B̂ =
9× sin 70◦

8.673
=

9× 0.940

8.673
' 0.975

This suggests that B̂ ' 77.19◦ in which case Ĉ ' 180◦ − 70◦ − 77.19◦ ' 32.81◦ but,
for the moment, we must also allow the possibility that B̂ ' 102.81◦ which would give
Ĉ ' 7.19◦

However, we can show that the alternative solution is unacceptable because it is not
consistent with the whole of the Sine Rule statement for this example. Thus the only
solution is the one for which

a ' 8.67cm, B̂ ' 77.19◦, Ĉ ' 32.81◦

Note: It is possible to encounter examples for which more than one solution does exist.
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3.4.4 EXERCISES

Solve the triangle ABC in the following cases:

1. c = 25cm, Â = 35◦, B̂ = 68◦.

2. c = 23cm, a = 30cm, Ĉ = 40◦.

3. b = 4cm, c = 5cm, Â = 60◦.

4. a = 21cm, b = 23cm, c = 16cm.

3.4.5 ANSWERS TO EXERCISES

1. a ' 14.72cm, b ' 23.79cm, Ĉ ' 77◦.

2. Â ' 56.97◦, B̂ ' 83.03◦, b = 35.52cm;

OR

Â ' 123.03◦, B̂ ' 16.97◦, b ' 10.44cm.

3. a ' 4.58cm, B̂ ' 49.11◦, Ĉ ' 70.89◦.

4. Â ' 62.13◦, B̂ ' 75.52◦, Ĉ ' 42.35◦.
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UNIT 3.5 - TRIGONOMETRY 5
TRIGONOMETRIC IDENTITIES AND WAVE FORMS

3.5.1 TRIGONOMETRIC IDENTITIES

The standard trigonometric functions can be shown to satisfy a certain group of relationships
for any value of the angle θ. They are called “trigonometric identities”.

ILLUSTRATION
Prove that

cos2θ + sin2θ ≡ 1.

Proof:

The following diagram was first encountered in Unit 3.1

6

-�
���

���
�����

O θ

h

x

y (x, y)

From the diagram,

cos θ =
x

h
and sin θ =

y

h
.

But, by Pythagoras’ Theorem,
x2 + y2 = h2.

In other words, (
x

h

)2

+
(

y

h

)2

= 1.

That is,
cos2θ + sin2θ ≡ 1.

It is also worth noting various consequences of this identity:

(a) cos2θ ≡ 1− sin2θ; (rearrangement).

(b) sin2θ ≡ 1− cos2θ; (rearrangement).

(c) sec2θ ≡ 1 + tan2θ; (divide by cos2θ).

(d) cosec2θ ≡ 1 + cot2θ; (divide by sin2θ).

Other Trigonometric Identities in common use will not be proved here, but they are listed
for reference. However, a booklet of Mathematical Formulae should be obtained.

1



secθ ≡ 1

cos θ
cosecθ ≡ 1

sin θ
cot θ ≡ 1

tan θ

cos2θ + sin2θ ≡ 1, 1 + tan2θ ≡ sec2θ 1 + cot2θ ≡ cosec2θ

sin(A + B) ≡ sin A cos B + cos A sin B

sin(A−B) ≡ sin A cos B − cos A sin B

cos(A + B) ≡ cos A cos B − sin A sin B

cos(A−B) ≡ cos A cos B + sin A sin B

tan(A + B) ≡ tan A + tan B

1− tan A tan B

tan(A−B) ≡ tan A− tan B

1 + tan A tan B

sin 2A ≡ 2 sin A cos A

cos 2A ≡ cos2A− sin2A ≡ 1− 2sin2A ≡ 2cos2A− 1

tan 2A ≡ 2 tan A

1− tan2A

sin A ≡ 2 sin
1

2
A cos

1

2
A

cos A ≡ cos2 1

2
A− sin2 1

2
A ≡ 1− 2sin2 1

2
A ≡ 2cos2 1

2
A− 1

tan A ≡
2 tan 1

2
A

1− tan2 1
2
A

sin A + sin B ≡ 2 sin
(

A + B

2

)
cos

(
A−B

2

)

sin A− sin B ≡ 2 cos
(

A + B

2

)
sin

(
A−B

2

)

cos A + cos B ≡ 2 cos
(

A + B

2

)
cos

(
A−B

2

)

cos A− cos B ≡ −2 sin
(

A + B

2

)
sin

(
A−B

2

)
sin A cos B ≡ 1

2
[sin(A + B) + sin(A−B)]

cos A sin B ≡ 1

2
[sin(A + B)− sin(A−B)]

cos A cos B ≡ 1

2
[cos(A + B) + cos(A−B)]

sin A sin B ≡ 1

2
[cos(A−B)− cos(A + B)]

sin 3A ≡ 3 sin A− 4sin3A

cos 3A ≡ 4cos3A− 3 cos A

2



EXAMPLES

1. Show that

sin22x ≡ 1

2
(1− cos 4x).

Solution

From the standard trigonometric identities, we have

cos 4x ≡ 1− 2sin22x

on replacing A by 2x.

Rearranging this new identity, gives the required result.

2. Show that

sin
(
θ +

π

2

)
≡ cos θ.

Solution

The left hand side can be expanded as

sin θ cos
π

2
+ cos θ sin

π

2
;

and the result follows, because cos π
2

= 0 and sin π
2

= 1.

3. Simplify the expression
sin 2α + sin 3α

cos 2α− cos 3α
.

Solution

Using separate trigonometric identities in the numerator and denominator, the expres-
sion becomes

2 sin
(

2α+3α
2

)
. cos

(
2α−3α

2

)
−2 sin

(
2α+3α

2

)
. sin

(
2α−3α

2

)
≡

2 sin
(

5α
2

)
. cos

(
−α
2

)
−2 sin

(
5α
2

)
. sin

(
−α
2

)
≡

cos
(

α
2

)
sin

(
α
2

)
≡ cot

(
α

2

)
.

4. Express 2 sin 3x cos 7x as the difference of two sines.

Solution

2 sin 3x cos 7x ≡ sin(3x + 7x) + sin(3x− 7x).

Hence,
2 sin 3x cos 7x ≡ sin 10x− sin 4x.
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3.5.2 AMPLITUDE, WAVE-LENGTH, FREQUENCY AND PHASE ANGLE

In the scientific applications of Mathematics, importance is attached to trigonometric func-
tions of the form

A sin(ωt + α) and A cos(ωt + α),

where A, ω and α are constants and t is usually a time variable.

It is useful to note, from trigonometric identities, that the expanded forms of the above two
functions are given by

A sin(ωt + α) ≡ A sin ωt cos α + A cos ωt sin α

and
A cos(ωt + α) ≡ A cos ωt cos α− A sin ωt sin α.

(a) The Amplitude

In view of the fact that the sine and the cosine of any angle always lies within the closed in-
terval from −1 to +1 inclusive, the constant, A, represents the maximum value (numerically)
which can be attained by each of the above trigonometric functions.

A is called the “amplitude” of each of the functions.

(b) The Wave Length (Or Period)

If the value, t, increases or decreases by a whole multiple of 2π
ω

, then the value, (ωt + α),
increases or decreases by a whole multiple of 2π; and, hence, the functions remain unchanged
in value.

A graph, against t, of either A sin(ωt + α) or A cos(ωt + α) would be repeated in shape at
regular intervals of length 2π

ω
.

The repeated shape of the graph is called the “wave profile” and 2π
ω

is called the
“wave-length”, or “period” of each of the functions.

(c) The Frequency

If t is indeed a time variable, then the wave length (or period) represents the time taken to
complete a single wave-profile. Consequently, the number of wave-profiles completed in one
unit of time is given by ω

2π
.

ω
2π

is called the “frequency” of each of the functions.

Note:
The constant ω itself is called the “angular frequency”; it represents the change in the
quantity (ωt + α) for every unit of change in the value of t.

(d) The Phase Angle

The constant, α, affects the starting value, at t = 0, of the trigonometric functions
A sin(ωt+α) and A cos(ωt+α). Each of these is said to be “out of phase”, by an amount,
α, with the trigonometric functions A sin ωt and A cos ωt respectively.
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α is called the “phase angle” of each of the two original trigonometric functions; but it can
take infinitely many values differing only by a whole multiple of 360◦ (if working in degrees)
or 2π (if working in radians ).

EXAMPLES

1. Express sin t +
√

3 cos t in the form A sin(t + α), with α in degrees, and hence solve the
equation,

sin t +
√

3 cos t = 1

for t in the range 0◦ ≤ t ≤ 360◦.

Solution

We require that

sin t +
√

3 cos t ≡ A sin t cos α + A cos t sin α

Hence,

A cos α = 1 and A sin α =
√

3,

which gives A2 = 4 (using cos2α + sin2α ≡ 1) and also tan α =
√

3.

Thus,

A = 2 and α = 60◦ (principal value).

To solve the given equation, we may now use

2 sin(t + 60◦) = 1,

so that

t + 60◦ = Sin−1 1

2
= 30◦ + k360◦ or 150◦ + k360◦,

where k may be any integer.

For the range 0◦ ≤ t ≤ 360◦, we conclude that

t = 330◦ or 90◦.

2. Determine the amplitude and phase-angle which will express the trigonometric function
a sin ωt + b cos ωt in the form A sin(ωt + α).

Apply the result to the expression 3 sin 5t− 4 cos 5t stating α in degrees, correct to one
decimal place, and lying in the interval from −180◦ to 180◦.

Solution

We require that
A sin(ωt + α) ≡ a sin ωt + b cos ωt;

5



and, hence, from trigonometric identities,

A sin α = b and A cos α = a.

Squaring each of these and adding the results together gives

A2 = a2 + b2 that is A =
√

a2 + b2.

Also,
A sin α

A cos α
=

b

a
,

which gives

α = tan−1 b

a
;

but the particular angle chosen must ensure that sin α = b
A

and cos α = a
A

have the
correct sign.

Applying the results to the expression 3 sin 5t− 4 cos 5t, we have

A =
√

32 + 42

and

α = tan−1
(
−4

3

)
.

But sin α
(
= −4

5

)
is negative and cos α

(
= 3

5

)
is positive so that α may be taken as an

angle between zero and −90◦; that is α = −53.1◦.

We conclude that
3 sin 5t− 4 cos 5t ≡ 5 sin(5t− 53.1◦).

3. Solve the equation
4 sin 2t + 3 cos 2t = 1

for t in the interval from −180◦ to 180◦.

Solution

Expressing the left hand side of the equation in the form A sin(2t + α), we require

A =
√

42 + 32 = 5 and α = tan−1 3

4
.

Also sin α
(
= 3

5

)
is positive and cos α

(
= 4

5

)
is positive so that α may be taken as an

angle in the interval from zero to 90◦.

Hence, α = 36.87◦ and the equation to be solved becomes

5 sin(2t + 36.87◦) = 1.

Its solutions are obtained by making t the “subject” of the equation to give

t =
1

2

[
Sin−1 1

5
− 36.87◦

]
.

The possible values of Sin−1 1
5

are 11.53◦ + k360◦ and 168.46◦ + k360◦, where k may be
any integer. But, to give values of t which are numerically less than 180◦, we may use
only k = 0 and k = 1 in the first of these and k = 0 and k = −1 in the second.

The results obtained are

t = −12.67◦, 65.80◦, 167.33◦ and − 114.21◦
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3.5.3 EXERCISES

1. Simplify the following expressions:

(a)

(1 + cos x)(1− cos x);

(b)

(1 + sin x)2 − 2 sin x(1 + sin x).

2. Show that

cos
(
θ − π

2

)
≡ sin θ

3. Express 2 sin 4x sin 5x as the difference of two cosines.

4. Use the table of trigonometric identities to show that

(a)

sin 5x + sin x

cos 5x + cos x
≡ tan 3x;

(b)

1− cos 2x

1 + cos 2x
≡ tan2x;

(c)

tan x. tan 2x + 2 ≡ tan 2x. cot x;

(d)

cot(x + y) ≡ cot x. cot y − 1

cot y + cot x
.

5. Solve the following equations by writing the trigonometric expression on the left-hand-
side in the form suggested, being careful to see whether the phase angle is required in
degrees or radians and ensuring that your final answers are in the range given:

(a) cos t + 7 sin t = 5, 0◦ ≤ t ≤ 360◦, (transposed to the form A cos(t− α), with α in
degrees.

(b)
√

2 cos t− sin t = 1, 0◦ ≤ t ≤ 360◦, (transposed to the form A cos(t + α), with α
in degrees.

(c) 2 sin t − cos t = 1, 0 ≤ t ≤ 2π, (transposed to the form A sin(t − α), with α in
radians.

(d) 3 sin t− 4 cos t = 0.6, 0◦ ≤ t ≤ 360◦, (transposed to the form A sin(t− α), with α
in degrees.

6. Determine the amplitude and phase-angle which will express the trigonometric function
a cos ωt + b sin ωt in the form A cos(ωt + α).

Apply the result to the expression 4 cos 5t− 4
√

3 sin 5t stating α in degrees and lying in
the interval from −180◦ to 180◦.
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7. Solve the equation

2 cos 3t + 5 sin 3t = 4

for t in the interval from zero to 360◦, expressing t in decimals correct to two decimal
places.

3.5.4 ANSWERS TO EXERCISES

1. (a) sin2x; (b) cos2x.

2. Use the cos(A - B) formula to expand left hand side.

3. cos x− cos 9x.

4. (a) Use the formulae for sinA + sinB and cosA + cosB;

(b) Use the formulae for cos 2x to make the 1’s cancel;

(c) Both sides are identically equal to 2
1−tan2x

;

(d) Invert the formula for tan(x + y).

5. (a) 36.9◦, 126.9◦;

(b) 19.5◦, 270◦;

(c) 0, 3.14;

(d) 226.24◦

6.

A =
√

a2 + b2, and α = tan−1

(
− b

a

)
;

4 cos 5t− 4
√

3 sin 5t ≡ 8 cos(5t + 60◦).

7.
√

29 cos(3t− 68.20◦) = 4 or
√

29 sin(3t + 21.80◦) = 4

give

t = 8.72◦, 36.74◦, 156.74◦ and 276.74◦
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UNIT 4.1 - HYPERBOLIC FUNCTIONS
DEFINITIONS, GRAPHS AND IDENTITIES

4.1.1 INTRODUCTION

In this section, we introduce a new group of mathematical functions, based on the functions

ex and e−x

whose properties resemble, very closely, those of the standard trigonometric functions. But,
whereas trigonometric functions can be related to the geometry of a circle (and are sometimes
called the “circular functions”), it can be shown that the new group of functions are related
to the geometry of a hyperbola (see unit 5.7). Because of this, they are called “hyperbolic
functions”.

4.1.2 DEFINITIONS

(a) Hyperbolic Cosine

The hyperbolic cosine of a number, x, is denoted by cosh x and is defined by

cosh x ≡ ex + e−x

2
.

Note:
The name of the function is pronounced “cosh”.

(b) Hyperbolic Sine

The hyperbolic sine of a number, x, is denoted by sinh x and is defined by

sinh x ≡ ex − e−x

2
.

Note:
The name of the function is pronounced “shine”

(c) Hyperbolic Tangent

The hyperbolic tangent of a number, x, is denoted by tanh x and is defined by

tanh x ≡ sinh x

cosh x
.

Notes:
(i) The name of the function is pronounced “than”.

1



(ii) In terms of exponentials, it is easily shown that

tanh x ≡ ex − e−x

ex + e−x
≡ e2x − 1

e2x + 1
.

(d) Other Hyperbolic Functions

Other, less commonly used, hyperbolic functions are defined as follows:

(i) Hyperbolic secant, pronounced “shek”, is defined by

sechx ≡ 1

cosh x
.

(ii) Hyperbolic cosecant, pronounced “coshek” is defined by

cosechx ≡ 1

sinh x
.

(iii) Hyperbolic cotangent, pronounced “coth” is defined by

cothx ≡ 1

tanh x
≡ cosh x

sinh x
.

2



4.1.3 GRAPHS OF HYPERBOLIC FUNCTIONS

It is useful to see the graphs of the functions cosh x, sinh x and tanh x drawn with reference
to the same set of axes. It can be shown that they are as follows:

-

6

O x

y

tanh x

coshx

sinhx

1

−1

Note:
We observe that the graph of cosh x exists only for y greater than or equal to 1; and that
graph of tanh x exists only for y lying between −1 and +1. The graph of sinh x, however,
covers the whole range of x and y values from −∞ to +∞.

4.1.4 HYPERBOLIC IDENTITIES

It is possible to show that, to every identity obeyed by trigonometric functions, there is a
corresponding identity obeyed by hyperbolic functions though, in some cases, the comparison
is more direct than in other cases.

ILLUSTRATIONS

1.

ex ≡ cosh x + sinh x.

Proof

This follows directly from the definitions of cosh x and sinh x.

2.

e−x ≡ cosh x− sinh x.

Proof

Again, this follows from the definitions of cosh x and sinh x.
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3.

cosh2x− sinh2x ≡ 1.

Proof

This follows if we multiply together the results of the previous two illustrations since
ex.e−x = 1 and (cosh x + sinh x)(cosh x− sinh x) ≡ cosh2x− sinh2x.

Notes:

(i) Dividing throughout by cosh2x gives the identity

1− tanh2x ≡ sech2x.

(ii) Dividing throughout by sinh2x gives the identity

coth2x− 1 ≡ cosech2x.

4.

sinh(x + y) ≡ sinh x cosh y + cosh x sinh y.

Proof:

The right hand side may be expressed in the form

ex − e−x

2
.
ey + e−y

2
+

ex + e−x

2
.
ey − e−y

2
,

which expands out to

e(x+y) + e(x−y) − e(−x+y) − e(−x−y)

4
+

e(x+y) − e(x−y) + e(−x+y) − e(−x−y)

4
;

and this simplifies to

2e(x+y) − 2e(−x−y)

4
≡ e(x+y) − e−(x+y)

2
≡ sinh(x + y).

5.

cosh(x + y) ≡ cosh x cosh y + sinh x sinh y.

Proof

The proof is similar to the previous illustration.
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6.

tanh(x + y) ≡ tanh x + tanh y

1− tanh x tanh y
.

Proof

The proof again is similar to that in Illustration No. 4.

4.1.5 OSBORN’S RULE

Many other results, similar to those previously encountered in the standard list of trigono-
metric identities can be proved in the same way as for Illustration No. 4 above; that is, we
substitute the definitions of the appropriate hyperbolic functions.

However, if we merely wish to write down a hyperbolic identity without proving it, we may
use the following observation due to Osborn:

Starting with any trigonometric identity, change cos to cosh and sin to sinh. Then, if the
trigonometric identity contains (or implies) two sine functions multiplied together, change
the sign in front of the relevant term from + to − or vice versa.

ILLUSTRATIONS

1.

cos2x + sin2x ≡ 1,

which leads to the hyperbolic identity

cosh2x− sinh2x ≡ 1

since the trigonometric identity contains two sine functions multiplied together.

2.

sin(x− y) ≡ sin x cos y − cos x sin y,

which leads to the hyperbolic identity

sinh(x− y) ≡ sinh x cosh y − cosh x sinh y

in which no changes of sign are required.

3.

sec2x ≡ 1 + tan2x,

5



which leads to the hyperbolic identity

sech2x ≡ 1− tanh2x

since tan2x in the trigonometric identity implies that two sine functions are multiplied
together; that is,

tan2x ≡ sin2x

cos2x
.

4.1.6 EXERCISES

1. If

L = 2C sinh
H

2C
,

determine the value of L when H = 63 and C = 50

2. If

v2 = 1.8L tanh
6.3d

L
,

determine the value of v when d = 40 and L = 315.

3. Use Osborn’s Rule to write down hyperbolic identities for

(a)

sinh 2A;

(b)

cosh 2A.

4. Use the results of the previous question to simplify the expression

1 + sinh 2A + cosh 2A

1− sinh 2A− cosh 2A
.

5. Use Osborn’s rule to write down the hyperbolic identity which corresponds to the
trigonometric identity

2 sin x sin y ≡ cos(x− y)− cos(x + y)

and prove your result.

6. If
a = c cosh x and b = c sinh x,

show that
(a + b)2e−2x ≡ a2 − b2 ≡ c2.

6



4.1.7 ANSWERS TO EXERCISES

1. 67.25

2. 19.40

3. (a)

sinh 2A ≡ 2 sinh A cosh A;

(b)

cosh 2A ≡ cosh2A + sinh2A ≡ 2cosh2A− 1 ≡ 1 + 2sinh2A.

4.

−cothA.

5.

−2 sinh x sinh y ≡ cosh(x− y)− cosh(x + y).
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UNIT 4.2 - HYPERBOLIC FUNCTIONS 2
INVERSE HYPERBOLIC FUNCTIONS

4.2.1 - INTRODUCTION

The three basic inverse hyperbolic functions are Cosh−1x, Sinh−1x and Tanh−1x.

It may be shown that they are given by the following formulae:

(a)

Cosh−1x = ± ln(x +
√

x2 − 1);

(b)

Sinh−1x = ln(x +
√

x2 + 1);

(c)

Tanh−1x =
1

2
ln

1 + x

1− x
.

Notes:

(i) The positive value of Cosh−1x is called the ‘principal value” and is denoted by cosh−1x
(using a lower-case c).

(ii) Sinh−1x and Tanh−1x have only one value but, for uniformity, we customarily denote
them by sinh−1x and tanh−1x.

4.2.2 THE PROOFS OF THE STANDARD FORMULAE

(a) Inverse Hyperbolic Cosine

If we let y = Cosh−1x, then

x = cosh y =
ey + e−y

2
.

Hence,

2x = ey + e−y.

1



On rearrangement,

(ey)2 − 2xey + 1 = 0,

which is a quadratic equation in ey having solutions, from the quadratic formula, given by

ey =
2x±

√
4x2 − 4

2
= x±

√
x2 − 1.

Taking natural logarithms of both sides gives

y = ln(x±
√

x2 − 1).

However, the two values x +
√

x2 − 1 and x −
√

x2 − 1 are reciprocals of each other, since
their product is the value, 1; and so

y = ± ln(x +
√

x2 − 1).

(b) Inverse Hyperbolic Sine

If we let y = Sinh−1x, then

x = sinh y =
ey − e−y

2
.

Hence,

2x = ey − e−y,

or

(ey)2 − 2xey − 1 = 0,

which is a quadratic equation in ey having solutions, from the quadratic formula, given by
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ey =
2x±

√
4x2 + 4

2
= x±

√
x2 + 1.

However, x−
√

x2 + 1 has a negative value and cannot, therefore, be equated to a power of
e, which is positive. Hence, this part of the expression for ey must be ignored.

Taking natural logarithms of both sides gives

y = ln(x +
√

x2 + 1).

(c) Inverse Hyperbolic Tangent

If we let y = Tanh−1x, then

x = tanh y =
ey − e−y

ey + e−y
=

e2y − 1

e2y + 1
.

Hence,

x
(
e2y + 1

)
= e2y − 1,

giving

e2y =
1 + x

1− x
.

Taking natural logarithms of both sides,

y =
1

2
ln

1 + x

1− x
.

Note:
The graphs of inverse hyperbolic functions are discussed fully in Unit 10.7, but we include
them here for the sake of completeness:
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The graphs are as follows:

(a) y = Cosh−1x

-

6
y

xO 1

(b) y = Sinh−1x

-x

6
y

O

4



(c) y = Tanh−1x

-

6

O

y

x−1 1

4.2.3 EXERCISES

1. Use the standard formulae to evaluate (a) sinh−17 and (b) cosh−19.

2. Express cosh 2x and sinh 2x in terms of exponentials and hence solve, for x, the equation

2 cosh 2x− sinh 2x = 2.

3. Obtain a formula which equates cosech−1x to the natural logarithm of an expression in
x, distinguishing between the two cases x > 0 and x < 0.

4. If t = tanh(x/2), prove that

(a)

sinh x =
2t

1− t2

and
(b)

cosh x =
1 + t2

1− t2
.

Hence solve, for x, the equation

7 sinh x + 20 cosh x = 24.
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4.2.4 ANSWERS TO EXERCISES

1. (a)

ln(7 +
√

49 + 1) ' 2.644;

(b)

ln(9 +
√

81− 1) ' 2.887

2. (
e2x

)2
− 4e2x + 3 = 0,

which gives e2x = 1 or 3 and hence x = 0 or 1
2
ln 3 ' 0.549.

3. If x > 0, then

cosech−1x = ln
1 +

√
1 + x2

x
.

If x < 0, then

cosech−1x = ln
1−

√
1 + x2

x
.

4. Use

sinh x ≡ 2 tanh(x/2)

sech2(x/2)

and

cosh x ≡

(
1 + tanh2(x/2)

)
sech2(x/2)

.

This gives t = −1
2

or t = 2
11

and hence x ' −1.099 or 0.368 which agrees with the
solution obtained using exponentials.
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UNIT 5.1 - GEOMETRY 1

CO-ORDINATES, DISTANCE AND GRADIENT

5.1.1 CO-ORDINATES

(a) Cartesian Co-ordinates

The position of a point, P, in a plane may be specified completely if we know its perpendic-
ular distances from two chosen fixed straight lines, where we distinguish between positive
distances on one side of each line and negative distances on the other side of each line.

It is not essential that the two chosen fixed lines should be at right-angles to each other, but
we usually take them to be so for the sake of convenience.

Consider the following diagram:

-

6 (x, y).................

...

...

...

x

y

O

The horizontal directed line, Ox, is called the “x-axis” and distances to the right of the
origin (point O) are taken as positive.

The vertical directed line, Oy, is called the “y-axis” and distances above the origin (point
O) are taken as positive.

The notation (x, y) denotes a point whose perpendicular distances from Oy and Ox are x
and y respectively, these being called the “cartesian co-ordinates” of the point.

(b) Polar Co-ordinates

An alternative method of fixing the position of a point P in a plane is to choose first a point,
O, called the “pole” and directed line , Ox, emanating from the pole in one direction only
and called the “initial line”.

1



Consider the following diagram:

-�
���

���
�����*

xθO

r

P(r, θ)

The position of P is determined by its distance r from the pole and the angle, θ which the
line OP makes with the initial line, measuring this angle positively in a counter-clockwise
sense or negatively in a clockwise sense from the initial line. The notation (r, θ) denotes the
“polar co-ordinates” of the point.

5.1.2 THE RELATIONSHIP BETWEEN POLAR AND CARTESIAN CO-ORDINATES

It is convenient to superimpose the diagram for Polar Co-ordinates onto the diagram for
Cartesian Co-ordinates as follows:

-

6
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x

y

P(r, θ)

θ

r

O

The trigonometry of the combined diagram shows that

(a) x = r. cos θ and y = r. sin θ;

(b) r2 = x2 + y2 and θ = tan−1 y
x
.

EXAMPLES

1. Express the equation
2x + 3y = 1

in polar co-ordinates.

Solution

Substituting for x and y separately, we obtain

2r cos θ + 3r sin θ = 1

That is

r =
1

2 cos θ + 3 sin θ

2



2. Express the equation
r = sin θ

in cartesian co-ordinates.

Solution

We could try substituting for r and θ separately, but it is easier, in this case, to rewrite
the equation as

r2 = r sin θ

which gives
x2 + y2 = y

5.1.3 THE DISTANCE BETWEEN TWO POINTS

Given two points (x1, y1) and (x2, y2), the quantity | x2−x1 | is called the “horizontal sep-
aration” of the two points and the quantity | y2− y1 | is called the “vertical separation”
of the two points, assuming, of course, that the x-axis is horizontal.

The expressions for the horizontal and vertical separations remain valid even when one or
more of the co-ordinates is negative. For example, the horizontal separation of the points
(5, 7) and (−3, 2) is given by | −3 − 5 |= 8 which agrees with the fact that the two points
are on opposite sides of the y-axis.

The actual distance between (x1, y1) and (x2, y2) is easily calculated from Pythagoras’ The-
orem, using the horizontal and vertical separations of the points.

-

6
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P(x1, y1)

Q(x2, y2)

R

x

y

O

In the diagram,
PQ2 = PR2 + RQ2.

That is,
d2 = (x2 − x1)

2 + (y2 − y1)
2,

giving

d =
√

(x2 − x1)2 + (y2 − y1)2.

Note:
We do not need to include the modulus signs of the horizontal and vertical separations
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because we are squaring them and therefore, any negative signs will disappear. For the same
reason, it does not matter which way round the points are labelled.

EXAMPLE
Calculate the distance, d, between the two points (5,−3) and (−11,−7).

Solution

Using the formula, we obtain

d =
√

(5 + 11)2 + (−3 + 7)2.

That is,
d =

√
256 + 16 =

√
272 ∼= 16.5

5.1.4 GRADIENT

The gradient of the straight-line segment, PQ, joining two points P and Q in a plane is
defined to be the tangent of the angle which PQ makes with the positive x-direction.

In practice, when the co-ordinates of the two points are P(x1, y1) and Q(x2, y2), the gradient,
m, is given by either

m =
y2 − y1

x2 − x1

or

m =
y1 − y2

x1 − x2

,

both giving the same result.

This is not quite the same as the ratio of the horizontal and vertical separations since we
distinguish between positive gradient and negative gradient.

EXAMPLE
Determine the gradient of the straight-line segment joining the two points (8,−13) and
(−2, 5) and hence calculate the angle which the segment makes with the positive x-direction.

Solution

m =
5 + 13

−2− 8
=
−13− 5

8 + 2
= −1.8

Hence, the angle, θ, which the segment makes with the positive x-direction is given by

tan θ = −1.8

Thus,
θ = tan−1(−1.8) ' 119◦.

5.1.5 EXERCISES

1. A square, side d, has vertices O,A,B,C (labelled counter-clockwise) where O is the pole
of a system of polar co-ordinates. Determine the polar co-ordinates of A,B and C when

4



(a) OA is the initial line;

(b) OB is the initial line.

2. Express the following cartesian equations in polar co-ordinates:

(a)

x2 + y2 − 2y = 0;

(b)

y2 = 4a(a− x).

3. Express the following polar equations in cartesian co-ordinates:

(a)

r2 sin 2θ = 3;

(b)

r = 1 + cos θ.

4. Determine the length of the line segment joining the following pairs of points given in
cartesian co-ordinates:

(a) (0, 0) and (3, 4);

(b) (−2,−3) and (1, 1);

(c) (−4,−6) and (−1,−2);

(d) (2, 4) and (−3, 16);

(e) (−1, 3) and (11,−2).

5. Determine the gradient of the straight-line segment joining the two points (−5,−0.5)
and (4.5,−1).

5.1.6 ANSWERS TO EXERCISES

1. (a) A(d, 0), B
(
d
√

2, π
4

)
, C

(
d, π

2

)
;

(b) A
(
d,−π

4

)
, B(d

√
2, 0), C

(
d, π

4

)
.

2. (a) r = 2 sin θ;

(b) r2sin2θ = 4a(a− r cos θ).

3. (a) xy = 3
2
;

(b) x4 + y4 + 2x2y2 − 2x3 − 2xy2 − y2 = 0.

4. (a) 5; (b) 5; (c) 5; (d) 13; (e) 13.

5. m = − 1
19

.
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UNIT 5.2 - GEOMETRY 2

THE STRAIGHT LINE

5.2.1 PREAMBLE

It is not possible to give a satisfactory diagramatic definition of a straight line since the
attempt is likely to assume a knowledge of linear measurement which, itself, depends on
the concept of a straight line. For example, it is no use defining a straight line as “the
shortest path between two points” since the word “shortest” assumes a knowledge of linear
measurement.

In fact, the straight line is defined algebraically as follows:

DEFINITION
A straight line is a set of points, (x, y), satisfying an equation of the form

ax + by + c = 0

where a, b and c are constants. This equation is called a “linear equation” and the symbol
(x, y) itself, rather than a dot on the page, represents an arbitrary point of the line.

5.2.2 STANDARD EQUATIONS OF A STRAIGHT LINE

(a) Having a given gradient and passing through the origin

-

6

x

y

���
���

���
���

����
���

����

O

Let the gradient be m; then, from the diagram, all points (x, y) on the straight line (but no
others) satisfy the relationship,

y

x
= m.

That is,

y = mx

which is the equation of this straight line.

1



EXAMPLE
Determine, in degrees, the angle, θ, which the straight line,

√
3y = x,

makes with the positive x-direction.

Solution

The gradient of the straight line is given by

tan θ =
1√
3
.

Hence,

θ = tan−1 1√
3

= 30◦.

(b) Having a given gradient, and a given intercept on the vertical axis

-

6

x

y
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���

O

c

Let the gradient be m and let the intercept be c; then, in this case we can imagine that the
relationship between x and y in the previous section is altered only by adding the number c
to all of the y co-ordinates. Hence the equation of the straight line is

y = mx + c.

EXAMPLE
Determine the gradient, m, and intercept c on the y-axis of the straight line whose equation
is

7x− 5y − 3 = 0.

Solution

On rearranging the equation, we have

y =
7

5
x− 3

5
.

Hence,

m =
7

5

2



and

c = −3

5
.

This straight line will intersect the y-axis below the origin because the intercept is negative.

(c) Having a given gradient and passing through a given point

Let the gradient be m and let the given point be (x1, y1). Then,

y = mx + c,

where
y1 = mx1 + c.

Hence, on subtracting the second of these from the first, we obtain

y − y1 = m(x− x1).

EXAMPLE
Determine the equation of the straight line having gradient 3

8
and passing through the point

(−7, 2).

Solution

From the formula,

y − 2 =
3

8
(x + 7).

That is
8y − 16 = 3x + 21,

giving
8y = 3x + 37.

(d) Passing through two given points

Let the two given points be (x1, y1) and (x2, y2). Then, the gradient is given by

m =
y2 − y1

x2 − x1

.

Hence, from the previous section, the equation of the straight line is

y − y1 =
y2 − y1

x2 − x1

(x− x1);

but this is more usually written

y − y1

y2 − y1

=
x− x1

x2 − x1

.

Note:
The same result is obtained no matter which way round the given points are taken as (x1, y1)
and (x2, y2).
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EXAMPLE
Determine the equation of the straight line joining the two points (−5, 3) and (2,−7), stating
the values of its gradient and its intercept on the y-axis.

Solution (Method 1).

y − 3

−7− 3
=

x + 5

2 + 5
,

giving
7(y − 3) = −10(x + 5).

That is,
10x + 7y + 29 = 0.

Solution (Method 2).

y + 7

3 + 7
=

x− 2

−5− 2
,

giving
−7(y + 7) = 10(x− 2).

That is,
10x + 7y + 29 = 0,

as before.

By rewriting the equation of the line as

y = −10

7
x− 29

7

we see that the gradient is −10
7

and the intercept on the y-axis is −29
7
.

(e) The parametric equations of a straight line

In the previous section, the common value of the two fractions

y − y1

y2 − y1

and
x− x1

x2 − x1

is called the “parameter” of the point (x, y) and is usually denoted by t.

By equating each fraction separately to t, we obtain

x = x1 + (x2 − x1)t and y = y1 + (y2 − y1)t.

These are called the “parametric equations” of the straight line while (x1, y1) and (x2, y2)
are known as the “base points” of the parametric representation of the line.

Notes:
(i) In the above parametric representation, (x1, y1) has parameter t = 0 and (x2, y2) has
parameter t = 1.

(ii) Other parametric representations of the same line can be found by using the given base
points in the opposite order, or by using a different pair of points on the line as base points.

4



EXAMPLES

1. Use parametric equations to find two other points on the line joining (3,−6) and (−1, 4).

Solution

One possible parametric representation of the line is

x = 3− 4t y = −6 + 10t.

To find another two points, we simply substitute any two values of t other than 0 or 1.
For example, with t = 2 and t = 3,

x = −5, y = 14 and x = −9, y = 24.

A pair of suitable points is therefore (−5, 14) and (−9, 24).

2. The co-ordinates, x and y, of a moving particle are given, at time t, by the equations

x = 3− 4t and y = 5 + 2t

Determine the gradient of the straight line along which the particle moves.

Solution

Eliminating t, we have
x− 3

−4
=

y − 5

2
.

That is,
2(x− 3) = −4(y − 5),

giving

y = −2

4
x +

26

4
.

Hence, the gradient of the line is

−2

4
= −1

2
.

5.2.3 PERPENDICULAR STRAIGHT LINES

The perpendicularity of two straight lines is not dependent on either their length or their
precise position in the plane. Hence, without loss of generality, we may consider two straight
line segments of equal length passing through the origin. The following diagram indicates
appropriate co-ordinates and angles to demonstrate perpendicularity:

5
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A
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A
A

P(a, b)

Q(−b, a)

O

In the diagram, the gradient of OP = b
a

and the gradient of OQ = a
−b

.

Hence the product of the gradients is equal to −1 or, in other words, each gradient
is minus the reciprocal of the other gradient.

EXAMPLE
Determine the equation of the straight line which passes through the point (−2, 6) and is
perpendicular to the straight line,

3x + 5y + 11 = 0.

Solution

The gradient of the given line is −3
5

which implies that the gradient of a perpendicular line

is 5
3
. Hence, the required line has equation

y − 6 =
5

3
(x + 2),

giving
3y − 18 = 5x + 10.

That is,
3y = 5x + 28.

5.2.4 CHANGE OF ORIGIN

Given a cartesian system of reference with axes Ox and Oy, it may sometimes be convenient
to consider a new set of axes O′X parallel to Ox and O′Y parallel to Oy with new origin at
O′ whose co-ordinates are (h, k) referred to the original set of axes.

6
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In the above diagram, everything is drawn in the first quadrant, but the relationships ob-
tained between the old and new co-ordinates will apply in all situations. They are

X = x− h and Y = y − k

or
x = X + h and y = Y + k.

EXAMPLE
Given the straight line,

y = 3x + 11,

determine its equation referred to new axes with new origin at the point (−2, 5).

Solution

Using
x = X − 2 and y = Y + 5,

we obtain
Y + 5 = 3(X − 2) + 11.

That is,
Y = 3X,

which is a straight line through the new origin with gradient 3.

Note:
If we had spotted that the point (−2, 5) was on the original line, the new line would be
bound to pass through the new origin; and its gradient would not alter in the change of
origin.

7



5.2.5 EXERCISES

1. Determine the equations of the following straight lines:

(a) having gradient 4 and intercept −7 on the y-axis;

(b) having gradient 1
3

and passing through the point (−2, 5);

(c) passing through the two points (1, 6) and (5, 9).

2. Determine the equation of the straight line passing through the point (1,−5) which is
perpendicular to the straight line whose cartesian equation is

x + 2y = 3.

3. Given the straight line
y = 4x + 2,

referred to axes Ox and Oy, determine its equation referred to new axes O′X and O′Y
with new origin at the point where x = 7 and y = −3 (assuming that Ox is parallel to
O′X and Oy is parallel to O′Y ).

4. Use the parametric equations of the straight line joining the two points (−3, 4) and
(7,−1) in order to find its point of intersection with the straight line whose cartesian
equation is

x− y + 4 = 0.

5.2.6 ANSWERS TO EXERCISES

1. (a)

y = 4x− 7;

(b)

3y = x + 17;

(c)

4y = 3x + 21.

2.

y = 2x− 7.

3.

Y = 4X + 33.

4.

x = −3 + 10t y = 4− 5t,

giving the point of intersection (at t = 1
5
) as (−1, 3).
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UNIT 5.3 - GEOMETRY 3

STRAIGHT LINE LAWS

5.3.1 INTRODUCTION

In practical work, the theory of an experiment may show that two variables, x and y, are
connected by a straight line equation (or “straight line law”) of the form

y = mx + c.

In order to estimate the values of m and c, we could use the experimental data to plot a
graph of y against x and obtain the “best straight line” passing through (or near) the
plotted points to average out any experimental errors. Points which are obviously out of
character with the rest are usually ignored.

O -

6

������������

x

y

x x x

x
x

x
x

It would seem logical, having obtained the best straight line, to measure the gradient, m,
and the intercept, c, on the y-axis. However, this not always the wisest way of proceeding
and should be avoided in general. The reasons for this are as follows:

(i) Economical use of graph paper may make it impossible to read the intercept, since this
part of the graph may be “off the page”.

(ii) The use of symbols other than x or y in scientific work may leave doubts as to which
is the equivalent of the y-axis and which is the equivalent of the x-axis. Consequently, the
gradient may be incorrectly calculated from the graph.

The safest way of finding m and c is to take two sets of readings, (x1, y1) and (x2, y2), from
the best straight line drawn then solve the simultaneous linear equations

1



y1 = mx1 + c,

y2 = mx2 + c.

It is a good idea if the two points chosen are as far apart as possible, since this will reduce
errors in calculation due to the use of small quantities.

5.3.2 LAWS REDUCIBLE TO LINEAR FORM

Other experimental laws which are not linear can sometimes be reduced to linear form by
using the experimental data to plot variables other than x or y, but related to them.

EXAMPLES

1. y = ax2 + b.

Method

We let X = x2, so that y = aX + b and hence we may obtain a straight line by plotting
y against X.

2. y = ax2 + bx.

Method

Here, we need to consider the equation in the equivalent form y
x

= ax + b so that, by
letting Y = y

x
, giving Y = ax + b, a straight line will be obtained if we plot Y against

x.

Note:
If one of the sets of readings taken in the experiment happens to be
(x, y) = (0, 0), we must ignore it in this example.

3. xy = ax + b.

Method

Two alternatives are available here as follows:
(a) Letting xy = Y , giving Y = ax + b, we could plot a graph of Y against x.

(b) Writing the equation as y = a+ b
x
, we could let 1

x
= X, giving y = a+ bX, and plot

a graph of y against X.

2



4. y = axb.

Method

This kind of law brings in the properties of logarithms since, if we take logarithms of
both sides (base 10 will do here), we obtain

log10 y = log10 a + b log10 x.

Letting log10 y = Y and log10 x = X, we have

Y = log10 a + bX,

so that a straight line will be obtained by plotting Y against X.

5. y = abx.

Method

Here again, logarithms may be used to give

log10 y = log10 a + x log10 b

Letting log10 y = Y , we have

Y = log10 a + x log10 b,

which will give a straight line if we plot Y against x.

6. y = aebx.

Method

In this case, it makes sense to take natural logarithms of both sides to give

loge y = loge a + bx,

which may also be written
ln y = ln a + bx

Hence, letting ln y = Y , we can obtain a straight line by plotting a graph of Y against
x.

Note:
In all six of the above examples, it is even more important not to try to read off the gradient
and the intercept from the graph drawn. As before, we should take two sets of readings for
x (or X) and y (or Y ), substitute them in the straight-line form of the equation and solve
two simultaneous linear equations for the constants required.
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5.3.3 THE USE OF LOGARITHMIC GRAPH PAPER

In Examples 4,5 and 6 in the previous section, it can be very tedious looking up on a
calculator the logarithms of large sets of numbers. We may use, instead, a special kind of
graph paper on which there is printed a logarithmic scale (see Unit 1.4) along one or both
of the axis directions.

0.1 0.2 0.3 0.4 1 2 3 4 10

Effectively, the logarithmic scale has already looked up the logarithms of the numbers as-
signed to it provided these numbers are allocated to each “cycle” of the scale in successive
powers of 10.

Data which includes numbers spread over several different successive powers of ten will need
graph paper which has at least that number of cycles in the appropriate axis direction.

For example, the numbers 0.03, 0.09, 0.17, 0.33, 1.82, 4.65, 12, 16, 20, 50 will need four
cycles on the logarithmic scale.

Accepting these restrictions, which make logarithmic graph paper less economical to use
than ordinary graph paper, all we need to do is to plot the actual values of the variables
whose logarithms we would otherwise have needed to look up. This will give the straight
line graph from which we take the usual two sets of readings; these are then substituted into
the form of the experimental equation which occurs immediately after taking logarithms of
both sides.

It will not matter which base of logarithms is being used since logarithms to two differ-
ent bases are proportional to each other anyway. The logarithmic graph paper does not,
therefore, specify a base.

EXAMPLES

1. y = axb.

Method

(i) Taking logarithms (base 10), log10 y = log10 a + b log10 x.

(ii) Plot a graph of y against x, both on logarithmic scales.

(iii) Estimate the position of the “best straight line”.

(iv) Read off from the graph two sets of co-ordinates, (x1, y1) and (x2, y2), as far apart
as possible.
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(v) Solve for a and b the simultaneous equations

log10 y1 = log10 a + b log10 x1,

log10 y2 = log10 a + b log10 x2.

If it is possible to choose readings which are powers of 10, so much the better, but this
is not essential.

2. y = abx.

Method

(i) Taking logarithms (base 10), log10 y = log10 a + x log10 b.

(ii) Plot a graph of y against x with y on a logarithmic scale and x on a linear scale.

(iii) Estimate the position of the best straight line.

(iv) Read off from the graph two sets of co-ordinates, (x1, y1) and (x2, y2), as far apart
as possible.

(v) Solve for a and b the simultaneous equations

log10 y1 = log10 a + x1 log10 b,

log10 y2 = log10 a + x2 log10 b.

If it is possible to choose zero for the x1 value, so much the better, but this is not
essential.

3. y = aebx.

Method

(i) Taking natural logarithms, ln y = ln a + bx.

(ii) Plot a graph of y against x with y on a logarithmic scale and x on a linear scale.

(iii) Estimate the position of the best straight line.

(iv) Read off two sets of co-ordinates, (x1, y1) and (x2, y2), as far apart as possible.

(v) Solve for a and b the simultaneous equations

ln y1 = ln a + bx1,

ln y2 = ln a + bx2.

If it possible to choose zero for the x1 value, so much the better, but this is not essential.
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5.3.5 EXERCISES

In these exercises, use logarithmic graph paper where possible.

1. The following values of x and y can be represented approximately by the law y = a+bx2:

x 0 2 4 6 8 10
y 7.76 11.8 24.4 43.6 71.2 107.0

Use a straight line graph to find approximately the values of a and b.

2. The following values of x and y are assumed to follow the law y = abx:

x 0.2 0.4 0.6 0.8 1.4 1.8
y 0.508 0.645 0.819 1.040 2.130 3.420

Use a straight line graph to find approximately the values of a and b.

3. The following values of x and y are assumed to follow the law y = aekx:

x 0.2 0.5 0.7 1.1 1.3
y 1.223 1.430 1.571 1.921 2.127

Use a straight line graph to find approximately the values of a and k.

4. The table below gives the pressure, P , and the volume, V , of a certain quantity of steam
at maximum density:

P 12.27 17.62 24.92 34.77 47.87 65.06
V 3,390 2,406 1,732 1,264 934.6 699.0

Assuming that PV n = C, use a straight line graph to find approximately the values of
n and C.

5. The coefficient of self induction, L, of a coil, and the number of turns, N , of wire are
related by the formula L = aN b, where a and b are constants.
For the following pairs of observed values, use a straight line graph to calculate approx-
imate values of a and b:

N 25 35 50 75 150 200 250
L 1.09 2.21 5.72 9.60 44.3 76.0 156.0

6. Measurements taken, when a certain gas undergoes compression, give the following
values of pressure, p, and temperature, T :

p 10 15 20 25 35 50
T 270 289 303 315 333 353

Assuming a law of the form T = apn, use a straight line graph to calculate approximately
the values of a and n. Hence estimate the value of T when p = 32.
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5.3.6 ANSWERS TO EXERCISES

The following answers are approximate; check only that the order of your results are correct.
Any slight variations in the position of your straight line could affect the result considerably.

1. a ' 8.0, b ' 0.99

2. a ' 0.4, b ' 3.3

3. a ' 1.1, k ' 0.5

4. n ' 1.06, C ' 65887

5. a ' 1.38× 10−3, b ' 2.08

6. a ' 183.95, n ' 0.17
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UNIT 5.4 - GEOMETRY 4

ELEMENTARY LINEAR PROGRAMMING

5.4.1 FEASIBLE REGIONS

(i) The equation, y = mx + c, of a straight line is satisfied only by points which lie on the
line. But it is useful to investigate the conditions under which a point with co-ordinates
(x, y) may lie on one side of the line or the other.

(ii) For example, the inequality y < mx + c is satisfied by points which lie below the line
and the inequality y > mx + c is satisfied by points which lie above the line.

(iii) Linear inequalities of the form Ax+By+C < 0 or Ax+By+C > 0 may be interpretted
in the same way by converting, if necessary, to one of the forms in (ii).

(iv) Weak inequalities of the form Ax + By + C ≤ 0 or Ax + By + C ≥ 0 include the points
which lie on the line itself as well as those lying on one side of it.

(v) Several simultaneous linear inequalties may be used to determine a region of the xy-
plane throughout which all of the inequalities are satisfied. The region is called the “feasible
region”.

EXAMPLES

1. Determine the feasible region for the simultaneous inequalities

x ≥ 0, y ≥ 0, x + y ≤ 20, and 3x + 2y ≤ 48

Solution

We require the points of the first quadrant which lie on or below the straight line
y = 20− x and on or below the straight line y = −3

2
x + 16.

The feasible region is shown as the shaded area in the following diagram:
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2. Determine the feasible region for the following simultaneous inequalities:

0 ≤ x ≤ 50, 0 ≤ y ≤ 30, x + y ≤ 80, x + y ≥ 60

Solution

We require the points which lie on or to the left of the straight line x = 50, on or below
the straight line y = 30, on or below the straight line y = 80− x and on or above the
straight line y = 60− x.

The feasible region is shown as the shaded area in the following diagram:
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5.4.2 OBJECTIVE FUNCTIONS

An important application of the feasible region discussed in the previous section is that
of maximising (or minimising) a linear function of the form px + qy subject to a set of
simultaneous linear inequalities. Such a function is known as an “objective function”

Essentially, it is required that a straight line with gradient−p
q

is moved across the appropriate

feasible region until it reaches the highest possible point of that region for a maximum value
or the lowest possible point for a minimum value. This will imply that the straight line
px + qy = r is such that r is the optimum value required.

However, for convenience, it may be shown that the optimum value of the objective function
always occurs at one of the corners of the feasible region so that we simply evaluate it at
each corner and choose the maximum (or minimum) value.

EXAMPLES

1. A farmer wishes to buy a number of cows and sheep. Cows cost £18 each and sheep
cost £12 each.

The farmer has accommodation for not more than 20 animals, and cannot afford to
pay more than £288.

If he can reasonably expect to make a profit of £11 per cow and £9 per sheep, how
many of each should he buy in order to make his total profit as large as possible ?

Solution

Suppose he needs to buy x cows and y sheep; then, his profit is the objective function
P ≡ 11x + 9y.

Also,

x ≥ 0, y ≥ 0, x + y ≤ 20, and 18x + 12y ≤ 288 or 3x + 2y ≤ 48.

Thus, we require to maximize P ≡ 11x + 9y in the feasible region for the first example
of the previous section.

The corners of the region are the points (0, 0), (16, 0), (0, 20) and (8, 12), the last of
these being the point of intersection of the two straight lines x+y = 20 and 3x+2y = 48.

The maximum value occurs at the point (8, 12) and is equal to 88 + 108 = 196. Hence,
the farmer should buy 8 cows and 12 sheep.
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2. A cement manufacturer has two depots, D1 and D2, which contain current stocks of 80
tons and 20 tons of cement respectively.

Two customers C1 and C2 place orders for 50 and 30 tons respectively.

The transport cost is £1 per ton, per mile and the distances, in miles, between D1, D2,
C1 and C2 are given by the following table:

C1 C2

D1 40 30
D2 10 20

From which depots should the orders be dispatched in order to minimise the transport
costs ?

Solution

Suppose that D1 distributes x tons to C1 and y tons to C2; then D2 must distribute
50− x tons to C1 and 30− y tons to C2.

All quantities are positive and the following inequalties must be satisfied:

x ≤ 50, y ≤ 30, x + y ≤ 80, 80− (x + y) ≤ 20 or x + y ≥ 60

The total transport costs, T , are made up of 40x, 30y, 10(50− x) and 20(30− y).

That is,

T ≡ 30x + 10y + 1100,

and this is the objective function to be minimised.

From the diagram in the second example of the previous section, we need to evaluate
the objective function at the points (30, 30), (50, 30) and (50, 10).

The minimum occurs, in fact, at the point (30, 30) so that D1 should send 30 tons to
C1 and 30 tons to C2 while D2 should send 20 tons to C1 but 0 tons to C2.
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5.4.3 EXERCISES

1. Sketch, on separate diagrams, the regions of the xy-plane which correspond to the
following inequalities (assuming that x ≥ 0 and y ≥ 0):

(a)

x + y ≤ 6;

(b)

x + y ≥ 4;

(c)

3x + y ≥ 6;

(d)

x + 3y ≥ 6.

2. Sketch the feasible region for which all the inequalities in question 1 are satisfied.

3. Maximise the objective function 5x+7y subject to the simultaneous linear inequalities

x ≥ 0, y ≥ 0, 3x + 2y ≥ 6 and x + y ≤ 4.

4. A mine manager has contracts to supply, weekly,

100 tons of grade 1 coal,
700 tons of grade 2 coal,
2000 tons of grade 3 coal,
4500 tons of grade 4 coal.

Two seams, A and B, are being worked at a cost of £4000 and £10,000, respectively,
per shift, and the yield, in tons per shift, from each seam is given by the following
table:

Grade 1 Grade 2 Grade 3 Grade 4
A 200 100 200 400
B 100 100 500 1500

How many shifts per week should each seam be worked, in order to fulfill the contracts
most economically ?
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5. A manufacturer employs 5 skilled and 10 semi-skilled workers to make an article in two
qualities, standard and deluxe.

The deluxe model requires 2 hour’s work by skilled workers; the standard model requires
1 hour’s work by skilled workers and 3 hour’s work by semi-skilled workers.

No worker works more than 8 hours per day and profit is £10 on the deluxe model and
£8 on the standard model.

How many of each type, per day, should be made in order to maximise profits ?

5.4.4 ANSWERS TO EXERCISES

1. (a) The region is as follows:
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(b) The region is as follows:

6

-O

y

x

4

4

(c) The region is as follows:
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(d) The region is as follows:
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2. The feasible region is as follows:
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3. The feasible region is as follows:
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The maximum value of 5x + 7y occurs at the point (0, 4) and is equal to 28.

4. Subject to the simultaneous inequalities

x ≥ 0, y ≥ 0, 2x + y ≥ 10, x + y ≥ 7, 2x + 5y ≥ 20 and 4x + 5y ≥ 45,

the function 2x + 5y has minimum value 20 at any point on the line 2x + 5y = 20.

5. Subject to the simultaneous inequalities

x ≥ 0, y ≥ 0, x + 2y ≤ 0 and 3x + 2y ≤ 80,

the objective function P ≡ 8x + 10y has maximum value 260 at the point (20, 10).
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UNIT 5.5 - GEOMETRY 5

CONIC SECTIONS - THE CIRCLE

5.5.1 INTRODUCTION

In this and the following three units, we shall investigate some of the geometry of four
standard curves likely to be encountered in the scientific applications of Mathematics. They
are the Circle, the Parabola, the Ellipse and the Hyperbola.

These curves could be generated, if desired, by considering plane sections through a cone;
and, because of this, they are often called “conic sections” or even just “conics”. We
shall not discuss this interpretation further, but rather use a more analytical approach.

The properties of the four standard conics to be included here will be restricted to those
required for simple applications work and, therefore, these notes will not provide an extensive
course on elementary co-ordinate geometry.

Useful results from previous work which will be used in these units include the Change of
Origin technique (Unit 5.2) and the method of Completing the Square (Unit 1.5). These
results should be reviewed, if necessary, by the student.

DEFINITION
A circle is the path traced out by (or “locus’’ of) a point which moves at a fixed distance,
called the “radius”, from a fixed point, called the “centre”.

5.5.2 STANDARD EQUATIONS FOR A CIRCLE

(a) Circle with centre at the origin and having radius a.

- x

6

y













(x, y)

a

O

Using Pythagoras’s Theorem in the diagram, the equation which is satisfied by every point
(x, y) on the circle, but no other points in the plane of the axes, is

x2 + y2 = a2.

This is therefore the cartesian equation of a circle with centre (0, 0) and radius a.
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Note:
The angle θ in the diagram could be used as a parameter for the point (x, y) to give the
parametric equations

x = a cos θ, y = a sin θ.

Each point on the curve has infinitely many possible parameter values, all differing by a
multiple of 2π; but it is usually most convenient to choose the value which lies in the interval
−π < θ ≤ π.

(b) Circle with centre (h, k) having radius a.











(h, k)

(x, y)

a

O - x

6

y

If we were to consider a temporary change of origin to the point (h, k) with X-axis and
Y -axis, the circle would have equation

X2 + Y 2 = a2,

with reference to the new axes. But, from previous work,

X = x− h and Y = y − k.

Hence, with reference to the original axes, the circle has equation

(x− h)2 + (y − k)2 = a2;

or, in its expanded form,
x2 + y2 − 2hx− 2ky + c = 0,

where
c = h2 + k2 − a2.
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Notes:
(i) The parametric equations of this circle with reference to the temporary new axes through
the point (h, k) would be

X = a cos θ, Y = a sin θ.

Hence, the parametric equations of the circle with reference to the original axes are

x = h + a cos θ, y = k + a sin θ.

(ii) If the equation of a circle is encountered in the form

(x− h)2 + (y − k)2 = a2,

it is very easy to identify the centre, (h, k) and the radius, a. If the equation is encountered
in its expanded form, the best way to identify the centre and radius is to complete the
square in the x and y terms in order to return to the first form.

EXAMPLES

1. Determine the co-ordinates of the centre and the value of the radius of the circle whose
equation is

x2 + y2 + 4x + 6y + 4 = 0.

Solution

Completing the square in the x terms,

x2 + 4x ≡ (x + 2)2 − 4.

Completing the square in the y terms,

y2 + 6y ≡ (y + 3)2 − 9.

The equation of the circle therefore becomes

(x + 2)2 + (y + 3)2 = 9.

Hence the centre is the point (−2,−3) and the radius is 3.

2. Determine the co-ordinates of the centre and the value of the radius of the circle whose
equation is

5x2 + 5y2 − 10x + 15y + 1 = 0.

Solution

Here it is best to divide throughout by the coefficient of the x2 and y2 terms, even if
some of the new coefficients become fractions. We obtain

x2 + y2 − 2x + 3y +
1

5
= 0.

Completing the square in the x terms,

x2 − 2x ≡ (x− 1)2 − 1.
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Completing the square in the y terms,

y2 + 3y ≡
(
y +

3

2

)2

− 9

4
.

The equation of the circle therefore becomes

(x− 1)2 +
(
y +

3

2

)2

=
61

20
.

Hence the centre is the point
(
1,−3

2

)
and the radius is

√
61
20
∼= 1.75

Note:
Not every equation of the form

x2 + y2 − 2hx− 2ky + c = 0

represents a circle because, for some combinations of h, k and c, the radius would not be a
real number. In fact,

a =
√

h2 + k2 − c,

which could easily turn out to be unreal.

5.5.3 EXERCISES

1. Write down the equation of the circle with centre (4,−3) and radius 2.

2. Determine the co-ordinates of the centre and the value of the radius of the circle whose
equation is

x2 + y2 − 2x + 4y − 11 = 0.

3. Determine the co-ordinates of the centre and the value of the radius of the circle whose
equation is

36x2 + 36y2 − 36x− 24y − 131 = 0.

4. Determine the equation of the circle passing through the point (4,−3) and having centre
(2, 1). What is the radius of the circle and what are its parametric equations ?

5. Use the parametric equations of the straight line joining the two points (2, 4) and −4, 2)
to find its points of intersection with the circle whose equation is

x2 + y2 + 4x− 2y = 0.

Hint:
Substitute the parametric equations of the straight line into the equation of the circle
and find two solutions for the parameter.
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5.5.4 ANSWERS TO EXERCISES

1. The equation of the circle is either

(x− 4)2 + (y + 3)2 = 4,

or
x2 + y2 − 8x + 6y + 21 = 0.

2. The centre is (1,−2) and the radius is 4.

3. The centre is
(

1
2
, 1

3

)
and radius is 2.

4. The equation is
(x− 2)2 + (y − 1)2 = 20

and the radius is
√

20.

The parametric equations are

x = 2 +
√

20 cos θ, y = 1 +
√

20 sin θ.

5. From
x = 2− 6t, and y = 4− 2t,

we obtain
40t2 − 60t + 20 = 0,

giving t = 1
2

and t = 1.

The points of intersection are (−1, 3) and (−4, 2).
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UNIT 5.6 - GEOMETRY 6

CONIC SECTIONS - THE PARABOLA

5.5.1 INTRODUCTION

The Standard Form for the equation of a Parabola

DEFINITION
A parabola is the path traced out by (or “locus” of) a point, P, whose distance, SP, from a
fixed point, S, called the “focus”, is equal to its perpendicular distance, PM, from a fixed
line, l, called the “directrix”.
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For convenience, we may take the directrix, l, to be a vertical line - with the perpendicular
onto it from the focus, S, being the x-axis. We could take the y-axis to be the directrix itself,
but the equation of the parabola turns out to be simpler if we use a different line; namely
the line parallel to the directrix passing through the mid-point of the perpendicular from the
focus onto the directrix. This point is one of the points on the parabola so that we make
the curve pass through the origin.
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S(a, 0)

x = −a
l

M P

Letting the focus be the point (a, 0) (since it lies on the x-axis) the definition of the parabola
implies that SP = PM. That is,

√
(x− a)2 + y2 = x + a.
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Squaring both sides gives

(x− a)2 + y2 = x2 + 2ax + a2,

or
x2 − 2ax + a2 + y2 = x2 + 2ax + a2.

This reduces to
y2 = 4ax

and is the standard equation of a parabola with “vertex” at the origin, focus at (a, 0) and
axis of symmetry along the x-axis. All other versions of the equation of a parabola which
we shall consider will be based on this version.

Notes:
(i) If a is negative, the bowl of the parabola faces in the opposite direction towards negative
x values.

(ii) Any equation of the form y2 = kx, where k is a constant, represents a parabola with
vertex at the origin and axis of symmetry along the x-axis. Its focus will lie at the point(

k
4
, 0

)
; it is worth noting this observation for future reference.

(iii) The parabola y2 = 4ax may be represented parametrically by the pair of equations

x = at2, y = 2at;

but the parameter, t, has no significance in the diagram such as was the case for the circle.

5.6.2 OTHER FORMS OF THE EQUATION OF A PARABOLA

(a) Vertex at (0, 0) with focus at (0, a)
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(0, a)

This parabola is effectively the same as the standard one except that the roles of x and y
have been reversed. We may assume, therefore that the curve has equation

x2 = 4ay

with associated parametric equations

x = 2at, y = at2
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(b) Vertex at (h, k) with focus at (h + a, k)
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(h, k)
(h + a, k)
r

If we were to consider a temporary change of origin to the point (h, k), with X-axis and
Y -axis, the parabola would have equation

Y 2 = 4aX.

With reference to the original axes, therefore, the parabola has equation

(y − k)2 = 4a(x− h).

Notes:
(i) Such a parabola will often be encountered in the expanded form of this equation, contain-
ing quadratic terms in y and linear terms in x. Conversion to the stated form by completing
the square in the y terms will make it possible to identify the vertex and focus.

(ii) With reference to the new axes with origin at the point (h, k), the parametric equations
of the parabola would be

X = at2, Y = 2at.

Hence, with reference to the original axes, the parametric equations are

x = h + at2, y = k + 2at.
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(c) Vertex at (h, k) with focus at (h, k + a)
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(h, k + a)r

If we were to consider a temporary change of origin to the point (h, k) with X-axis and
Y -axis, the parabola would have equation

X2 = 4aY.

With reference to the original axes, therefore, the parabola has equation

(x− h)2 = 4a(y − k).

Notes:
(i) Such a parabola will often be encountered in the expanded form of this equation, contain-
ing quadratic terms in x and linear terms in y. Conversion to the stated form by completing
the square in the x terms will make it possible to identify the vertex and focus.

(ii) With reference to the new axes with origin at the point (h, k), the parametric equations
of the parabola would be

X = 2at, Y = at2.

Hence, with reference to the original axes, the parametric equations are

x = h + 2at, y = k + at2.

EXAMPLES

1. Give a sketch of the parabola whose cartesian equation is

y2 − 6y + 3x = 10,

showing the co-ordinates of the vertex, focus and intesections with the x-axis and y-axis.

Solution

First, we must complete the square in the y terms obtaining

y2 − 6y ≡ (y − 3)2 − 9.
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Hence, the equation becomes

(y − 3)2 − 9 + 3x = 10.

That is,
(y − 3)2 = 19− 3x,

or

(y − 3)2 = 4.
(
−3

4

) (
x− 19

3

)
.

Thus, the vertex lies at the point
(

19
3
, 3

)
and the focus lies at the point

(
19
3
− 3

4
, 3

)
; that

is,
(

67
12

, 3
)
.

The parabola intersects the x-axis where y = 0, i.e.

3x = 10,

giving x = 10
3
.

The parabola intersects the y-axis where x = 0; that is,

y2 − 6y − 10 = 0,

which is a quadratic equation with solutions

y =
6±

√
36 + 40

2
∼= 7.36 or − 1.36

-
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2. Use the parametric equations of the parabola

x2 = 8y

to determine its points of intesection with the straight line

y = x + 6.

Solution

The parametric equations are x = 4t, y = 2t2.

Substituting these into the equation of the straight line, we have

2t2 = 4t + 6.
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That is,
t2 − 2t− 3 = 0,

or
(t− 3)(t + 1) = 0,

which is a quadratic equation in t having solutions t = 3 and t = −1.

The points of intersection are therefore (12, 18) and (−4, 2).

5.6.3 EXERCISES

1. For the following parabolae, determine the co-ordinates of the vertex, the focus and the
points of intersection with the x- axis and y-axis where appropriate:

(a)

(y − 1)2 = 4(x− 2);

(b)

(x + 1)2 = 8(y − 3);

(c)

2x = y2 + 4y + 6;

(d)

x2 + 4x− 4y + 6 = 0.

2. Use the parametric equations of the parabola

y2 = 12x

to determine its points of intersection with the straight line

6x + 5y − 12 = 0.

5.6.4 ANSWERS TO EXERCISES

1. (a) Vertex (2, 1), Focus (3, 1), Intersection (9
4
, 0) with the x-axis;

(b) Vertex (−1, 3), Focus (−1, 5), Intersection (0, 25
8
) with the y-axis;

(c) Vertex (1,−2), Focus (3
2
,−2), Intersection (3, 0) with the x-axis;

(d) Vertex (−2, 1
2
), Focus (−2, 3

2
), Intersection (0, 3

2
) with the y-axis.

2. x = 3t2 and y = 6t give 18t2 + 30t − 12 = 0 with solutions t = 1
3

and t = −2. Hence

the points of intersection are (1
3
, 2) and (12,−12).
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UNIT 5.7 - GEOMETRY 7

CONIC SECTIONS - THE ELLIPSE

5.7.1 INTRODUCTION

The Standard Form for the equation of an Ellipse

DEFINITION
The Ellipse is the path traced out by (or “locus of) a point, P, for which the distance, SP,
from a fixed point, S, and the perpendicular distance, PM, from a fixed line, l, satisfy a
relationship of the form

SP = ε.PM,

where ε < 1 is a constant called the “eccentricity” of the ellipse. The fixed line, l, is called
a “directrix” of the ellipse and the fixed point, S, is called a “focus” of the ellipse.

S

l

MP

In fact, there are two foci and two directrices because the curve turns out to be symmetrical
about a line parallel to l and the perpendicular line from S onto l. The diagram below
illustrates two foci, S and S′, together with two directrices, l and l′. The axes of symmetry
are taken as the co-ordinate axes.

6
y

(0, b)

(0,−b)

-xO (a, 0)(−a, 0)
SS′

ll′

It can be shown that, with this system of reference, the ellipse has equation

x2

a2
+

y2

b2
= 1,

with associated parametric equations

x = a cos θ, y = b sin θ.

1



The curve clearly intersects the x-axis at (±a, 0) and the y-axis at (0,±b). Whichever is the
larger of a and b defines the length of the “semi-major axis” and whichever is the smaller
defines the length of the “semi-minor axis”.

For the sake of completeness, it may further be shown that the eccentricity, ε, is obtainable
from the formula

b2 = a2
(
1− ε2

)
and, having done so, the foci lie at (±aε, 0) with directrices at x = ±a

ε
. However, in these

units, students will not normally be expected to determine the eccentricity, foci or directrices
of an ellipse.

5.7.2 A MORE GENERAL FORM FOR THE EQUATION OF AN ELLIPSE

The equation of an ellipse, with centre (h, k) and axes of symmetry parallel to Ox and Oy
respectively, is easily obtainable from the standard form of equation by a temporary change
of origin to the point (h, k). We obtain

(x− h)2

a2
+

(y − k)2

b2
= 1

with associated parametric equations

x = h + a cos θ, y = k + b sin θ.

Ellipses will usually be encountered in the expanded form of the above cartesian equation
and it will be necessary to complete the square in both the x terms and the y terms in order
to locate the centre of the ellipse. The expanded form will be similar in appearance to that
of a circle but the coefficients of x2 and y2, though both of the same sign, will not be equal
to each other.

EXAMPLE

Determine the co-ordinates of the centre and the lengths of the semi-axes of the ellipse whose
equation is

3x2 + y2 + 12x− 2y + 1 = 0.

Solution

Completing the square in the x terms gives

3x2 + 12x ≡ 3
[
x2 + 4x

]
≡ 3

[
(x + 2)2 − 4

]
≡ 3(x + 2)2 − 12.

Completing the square in the y terms gives

y2 − 2y ≡ (y − 1)2 − 1.

Hence, the equation of the ellipse becomes

3(x + 2)2 + (y − 1)2 = 12.
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That is,
(x + 2)2

4
+

(y − 1)2

12
= 1.

The centre is thus located at the point (−2, 1) and the semi-axes have lengths a = 2 and
b =

√
12.

6
y

-
xO

(−2, 1)(−4, 1)
qq

5.7.3 EXERCISES

1. For each of the following ellipses, determine the co-ordinates of the centre and give a
sketch of the curve:

(a)

x2 + 4y2 − 4x− 8y + 4 = 0;

(b)

x2 + 4y2 + 16y + 12 = 0;

(c)

x2 + 4y2 + 6x− 8y + 9 = 0.

2. Determine the lengths of the semi-axes of the ellipse whose equation is

9x2 + 25y2 = 225

and write down also a pair of parametric equations for this ellipse.

3



5.7.4 ANSWERS TO EXERCISES

1. (a) Centre (2, 1) with a = 2 and b = 1.

6

y

- xO

(2, 1) (4, 1)
q q

(b) Centre (0,−2) with a = 2 and b = 1.

6
y

-xO

(0,−1)

(0,−2)

q
q

(c) Centre (−3, 1) with a = 2 and b = 1.

6

y

-xO

(−3, 1) (−1, 1)
q q

2. a = 5 and b = 3, giving the parametric equations x = 5 cos θ, y = 3 sin θ.
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UNIT 5.8 - GEOMETRY 8

CONIC SECTIONS - THE HYPERBOLA

5.8.1 INTRODUCTION

DEFINITION
The hyperbola is the path traced out by (or “locus” of) a point, P, for which the distance,
SP, from a fixed point, S, and the perpendicular distance, PM, from a fixed line, l, satisfy a
relationship of the form

SP = ε.PM,

where ε > 1 is a constant called the “eccentricity” of the hyperbola. The fixed line, l,
is called a “directrix” of the hyperbola and the fixed point, S, is called a “focus” of the
hyperbola.

B
B
B
S

l

PM

In fact, there are two foci and two directrices because the curve turns out to be symmetrical
about a line parallel to l and the perpendicular line from S onto l. The diagram below
illustrates two foci S and S′ together with two directrices l and l′. The axes of symmetry are
taken as the co-ordinate axes.

6
y

- xO

l′ l

S′ S

It can be shown that, with this system of reference, the hyperbola has equation

x2

a2
− y2

b2
= 1,

1



with associated parametric equations

x = asecθ, y = b tan θ

although, for students who meet “hyperbolic functions”, a better set of parametric equations
would be

x = acosht, y = bsinht.

The curve clearly intersects the x-axis at (±a, 0) but does not intersect the y-axis at all.

For the sake of completeness, it may further be shown that the eccentricity, ε, is obtainable
from the formula

b2 = a2
(
ε2 − 1

)
and, having done so, the foci lie at (±aε, 0) with directrices at x = ±a

ε
. However, in these

units, students will not normally be expected to determine the eccentricity, foci or directrices
of a hyperbola

Note:
A similar hyperbola to the one above, but intersecting the y-axis rather than the x-axis, has
equation

y2

b2
− x2

a2
= 1.

The roles of x and y are simply reversed.

6
y

- xO

5.8.2 ASYMPTOTES

A special property of the hyperbola is that, at infinity, it approaches two straight lines
through the centre of the hyperbola called “asymptotes”.

It can be shown that both of the hyperbolae

x2

a2
− y2

b2
= 1 and

y2

b2
− x2

a2
= 1

have asymptotes whose equations are:

2



x

a
− y

b
= 0 and

x

a
+

y

b
= 0.

These are easily obtained by factorising the left hand side of the equation of the hyperbola,
then equating each factor to zero.

5.8.3 MORE GENERAL FORMS FOR THE EQUATION OF A HYPERBOLA

The equation of a hyperbola, with centre (h, k) and axes of symmetry parallel to Ox and Oy
respectively, is easily obtainable from one of the standard forms of equation by a temporary
change of origin to the point (h, k). We obtain either

(x− h)2

a2
− (y − k)2

b2
= 1,

with associated parametric equations

x = h + asecθ, y = k + b tan θ

or

(y − k)2

b2
− (x− h)2

a2
= 1,

with associated parametric equations

x = h + a tan θ, y = k + bsecθ.

Hyperbolae will usually be encountered in the expanded form of the above cartesian equations
and it will be necessary to complete the square in both the x terms and the y terms in order
to locate the centre of the hyperbola. The expanded form will be similar in appearance to
that of a circle but the coefficients of x2 and y2 will be different numerically and opposite in
sign.

EXAMPLE

Determine the co-ordinates of the centre and the equations of the asymptotes of the hyperbola
whose equation is

4x2 − y2 + 16x + 6y + 6 = 0.

Solution

Completing the square in the x terms gives

4x2 + 16x ≡ 4
[
x2 + 4x

]
≡ 4

[
(x + 2)2 − 4

]
≡ 4(x + 2)2 − 16.

3



Completing the square in the y terms gives

−y2 + 6y ≡ −
[
y2 − 6y

]
≡ −

[
(y − 3)2 − 9

]
≡ −(y − 3)2 + 9.

Hence the equation of the hyperbola becomes

4(x + 2)2 − (y − 3)2 = 1

or
(x + 2)2(

1
2

)2 − (y − 3)2

12
= 1.

The centre is thus located at the point (−2, 3).

The asymptotes are best obtained by factorising the left hand side of the penultimate version
of the equation of the hyperbola, then equating each factor to zero. We obtain

2(x + 2)− (y − 3) = 0 and 2(x + 2) + (y − 3) = 0.

In other words,
2x− y + 7 = 0 and 2x + y + 1 = 0.

To sketch the graph of a hyperbola, it is not always enough to have the position of the centre
and the equations of the asymptotes. It may also be necessary to investigate some of the
intersections of the curve with the co-ordinate axes. In the current example, by substituting
first y = 0 and then x = 0 into the equation of the hyperbola, it is possible to determine
intersections at (−0.84, 0), (−7.16, 0), (0,−0.87) and (0, 6.87).

6
y

- xO

5.8.4 THE RECTANGULAR HYPERBOLA

For some hyperbolae, it will turn out that the asymptotes are at right-angles to each other;
in which case, the asymptotes themselves could be used as the x-axis and y-axis. When
this choice of reference system is made for a hyperbola with centre at the origin, it can be
shown that hyperbola has the simpler equation xy = C, where C is a constant.

4



6y

- xO

Similarly, for a rectangular hyperbola with centre at the point (h, k) and asymptotes used
as the axes of reference, the equation will be (x− h)(y − k) = C.

6y

- xO

(h, k)

Note:
A suitable pair of parametric equations for the rectangular hyperbola (x−h)(y−k) = C are

x = t + h, y = k +
C

t
.

EXAMPLES

1. Determine the centre of the rectangular hyperbola whose equation is

7x− 3y + xy − 31 = 0.

5



Solution

The equation factorises into the form

(x− 3)(y + 7) = 10.

Hence, the centre is located at the point (3,−7).

2. A certain rectangular hyperbola has parametric equations

x = 1 + t, y = 3− 1

t
.

Determine its points of intersection with the straight line x + y = 4.

Solution

Substituting for x and y into the equation of the straight line, we obtain

1 + t + 3− 1

t
= 4 or t2 − 1 = 0.

Hence, t = ±1 giving points of intersection at (2, 2) and (0, 4).

5.8.5 EXERCISES

1. For each of the following hyperbolae, determine the co-ordinates of the centre and the
equations of the asympotes. Give a sketch of the curve, indicating where appropriate,
the co-ordinates of its points of intersection with the x-axis and y-axis:

(a)

x2 − y2 − 2y = 0;

(b)

y2 − x2 − 6x = 10;

(c)

x2 − y2 − 2x− 2y = 4;

(d)

y2 − x2 − 6x + 4y = 14;

(e)

9x2 − 4y2 + 18x− 16y = 43.

2. Determine a pair of parametric equations for the rectangular hyperbola whose equation
is xy− x + 2y− 6 = 0 and hence obtain its points of intersection with the straight line
y = x + 3. Sketch the hyperbola and the straight line on the same diagram.

6



5.8.6 ANSWERS TO EXERCISES

1. (a) Centre (0,−1) with asymptotes y = x− 1 and y = −x− 1;

6
y

- xO

(b) Centre (−3, 0) with asymptotes y = x + 3 and y = −x− 3;

6
y

- xO

(c) Centre (1,−1) with asymptotes y = −x and y = x− 2;

6
y

- xO
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(d) Centre (−3,−2) with asymptotes y = x + 1 and y = −x− 5;

6
y

- xO

(e) Centre (−1,−2) with asymptotes 3x− 2y = 1 and 3x + 2y = −7.

6y

- xO

2. Centre (−2, 1) with asymptotes x = −2 and y = 1. Intersections (0, 3) and (−4,−1).

6
y

-
xO

x = t− 2, y = 4
t + 1

8
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UNIT 5.9 - GEOMETRY 9

CURVE SKETCHING IN GENERAL

Introduction

The content of the present section is concerned with those situations where it is desirable to
find out the approximate shape of a curve whose equation is known, but not necessarily to
determine an accurate “plot” of the curve.

In becoming accustomed to the points discussed below, the student should not feel that
every one has to be used for a particular curve; merely enough of them to give a satisfactory
impression of what the curve looks like.

5.9.1 SYMMETRY

A curve is symmetrical about the x-axis if its equation contains only even powers of y. It is
symmetrical about the y-axis if its equation contains only even powers of x.

We say also that a curve is symmetrical with respect to the origin if its equation is unaltered
when both x and y are changed in sign. In other words, if a point (x, y) lies on the curve,
so does the point (−x,−y).

ILLUSTRATIONS

1. The curve whose equation is

x2
(
y2 − 2

)
= x4 + 4

is symmetrical about to both the x-axis and the y axis. This means that, once the
shape of the curve is known in the first quadrant, the rest of the curve is obtained from
this part by reflecting it in both axes.

The curve is also symmetrical with respect to the origin.

2. The curve whose equation is
xy = 5

is symmetrical with respect to the origin but not about either of the co-ordinate axes.

5.9.2 INTERSECTIONS WITH THE CO-ORDINATE AXES

Any curve intersects the x-axis where y = 0 and the y-axis where x = 0; but sometimes the
curve has no intersection with one or more of the co-ordinate axes. This will be borne out
by an inability to solve for x when y = 0 or for y when x = 0 (or both).

1



ILLUSTRATION

The circle
x2 + y2 − 4x− 2y + 4 = 0

meets the x-axis where
x2 − 4x + 4 = 0.

That is,
(x− 2)2 = 0,

giving a double intersection at the point (2, 0). This means that the circle touches the
x-axis at (2, 0).

The circle meets the y-axis where

y2 − 2y + 4 = 0.

That is,
(y − 1)2 = −3,

which is impossible, since the left hand side is bound to be positive when y is a real number.

Thus, there are no intersections with the y-axis.

5.9.3 RESTRICTIONS ON THE RANGE OF EITHER VARIABLE

It is sometimes possible to detect a range of x values or a range of y values outside of which
the equation of a curve would be meaningless in terms of real geometrical points of the
cartesian diagram. Usually, this involves ensuring that neither x nor y would have to assume
complex number values; but other kinds of restriction can also occur.

ILLUSTRATIONS

1. The curve whose equation is
y2 = 4x

requires that x shall not be negative; that is, x ≥ 0.

2. The curve whose equation is

y2 = x
(
x2 − 1

)
requires that the right hand side shall not be negative; and from the methods of Unit
1.10, this will be so when either x ≥ 1 or −1 ≤ x ≤ 0.

2



5.9.4 THE FORM OF THE CURVE NEAR THE ORIGIN

For small values of x (or y), the higher powers of the variable can often be usefully neglected
to give a rough idea of the shape of the curve near to the origin.

This method is normally applied to curves which pass through the origin, although the
behaviour near to other points can be considered by using a temporary change of origin.

ILLUSTRATION

The curve whose equation is
y = 3x3 − 2x

approximates to the straight line
y = −2x

for very small values of x.

5.9.5 ASYMPTOTES

DEFINITION
An “asymptote” is a straight line which is approached by a curve at a very great distance
from the origin.

(i) Asymptotes Parallel to the Co-ordinate Axes

Consider, by way of illustration, the curve whose equation is

y2 =
x3(3− 2y)

x− 1
.

(a) By inspection, we see that the straight line x = 1 “meets” this curve at an infinite value
of y, making it an asymptote parallel to the y-axis.

(b) Now suppose we re-write the equation as

x3 =
y2(x− 1)

3− 2y
.

Inspection, this time, suggests that the straight line y = 3
2

“meets” the curve at an infinite
value of x, making it an asymptote parallel to the x axis.

(c) Another way of arriving at the conclusions in (a) and (b) is to write the equation of the
curve in a form without fractions, namely

y2(x− 1)− x3(3− 2y) = 0,

3



then equate to zero the coefficients of the highest powers of x and y. That is,

The coefficient of y2 gives x− 1 = 0.

The coefficient of x3 gives 3− 2y = 0.

It can be shown that this method may be used with any curve to find asymptotes parallel
to the co-ordinate axes. Of course, there may not be any, in which case the method will not
work.

(ii) Asymptotes in General for a Polynomial Curve

This paragraph requires a fairly advanced piece of algebraical argument, but an outline proof
will be included, for the sake of completeness.

Suppose a given curve has an equation of the form

P (x, y) = 0

where P (x, y) is a polynomial in x and y.

Then, to find the intersections with this curve of a straight line

y = mx + c,

we substitute mx + c in place of y into the equation of the curve, obtaining a polynomial
equation in x, say

a0 + a1x + a2x
2 + ...... + anx

n = 0.

In order for the line y = mx + c to be an asymptote, this polynomial equation must have
coincident solutions at infinity.

But now let us replace x by 1
u

giving, after multiplying throughout by un, the new polynomial
equation

a0u
n + a1u

n−1 + a2u
n−2 + ...... + an−1u + an = 0

This equation must have coincident solutions at u = 0 which will be the case provided

an = 0 and an−1 = 0.

Conclusion
To find the asymptotes (if any) to a polynomial curve, we first substitute y = mx + c into

4



the equation of the curve. Then, in the polynomial equation obtained, we equate to zero
the two leading coefficents; (that is, the coeffiecients of the highest two powers of x) and
solve for m and c.

EXAMPLE

Determine the equations of the asymptotes to the hyperbola

x2

a2
− y2

b2
= 1.

Solution

Substituting y = mx + c gives
x2

a2
− (mx + c)2

b2
= 1.

That is,

x2

(
1

a2
− m2

b2

)
− 2mcx

b2
− c2

b2
− 1 = 0.

Equating to zero the two leading coefficients; that is, the coefficients of x2 and x, we obtain

1

a2
− m2

b2
= 0 and

2mc

b2
= 0.

No solution is obtainable if we let m = 0 in the second of these statements since it would
imply 1

a2 = 0 in the first statement, which is impossible. Therefore we must let c = 0 in the

second statement, and m = ± b
a

in the first statement.

The asymptotes are therefore

y = ± b

a
x.

In other words,
x

a
− y

b
= 0 or

x

a
+

y

b
= 0,

as used earlier in the section on the hyperbola.
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5.9.6 EXERCISES

1. Sketch the graphs of the following equations:

(a)

y = x +
1

x
;

(b)

y =
1

x2 + 1
;

(c)

y2 =
x

x− 2
;

(d)

y =
(x− 1)(x + 4)

(x− 2)(x− 3)
;

(e)

y(x + 2) = (x + 3)(x− 4);

(f)

x2
(
y2 − 25

)
= y;

(g)

y = 6− e−2x.

2. For each of the following curves, determine the equations of the asymptotes which are
parallel to either the x-axis or the y-axis:

(a)

xy2 + x2 − 1 = 0;

(b)

x2y2 = 4
(
x2 + y2

)
;

6



(c)

y =
x2 − 3x + 5

x− 3
.

3. Determine all the asymptotes of the following curves:

(a)

x3 − xy2 + 4x− 16 = 0;

(b)

y3 + 2y2 − x2y + y − x + 4 = 0.

5.9.7 ANSWERS TO EXERCISES

1.(a)

-

6

x

y

O
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1.(b)

65
y

-xO

1.(c)

6
y

-xO 2

1

−1
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1.(d)

6
y

- xO−4 3

1.(e)

6
y

- xO
−3

4

9



1.(f)

O -

6

x

y

5

−5

1.(g)

6
y

- xO−0.9

5

2.(a) x = 0, (b) x = ±2 and y = ±2, (c) x = 3

3.(a) y = x, y = −x and x = 0; (b) y = 0, y = x− 1 and y = −x− 1.
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UNIT 5.10 - GEOMETRY 10

GRAPHICAL SOLUTIONS

5.10.1 INTRODUCTION

An algebraic equation in a variable quantity, x, may be written in the general form

f(x) = 0,

where f(x) is an algebraic expression involving x; we call it a “function of x” (see Unit
10.1).

In the work which follows, f(x) will usually be either a linear function of the form ax + b,
where a and b are constants, or a quadratic function of the form ax2 + bx + c where a, b
and c are constants.

The solutions of the equation f(x) = 0 consist of those values of x which, when substituted
into the function f(x), cause it to take the value zero.

The solutions may also be interpreted as the values of x for which the graph of the equation

y = f(x)

meets the x-axis since, at any point of this axis, y is equal to zero.

5.10.2 THE GRAPHICAL SOLUTION OF LINEAR EQUATIONS

To solve the equation
ax + b = 0,

we may plot the graph of the equation y = ax + b to find the point at which it meets the
x-axis.

EXAMPLES

1. By plotting the graph of y = 3x− 5 from x = 0 to x = 3, solve the linear equation

3x− 5 = 0.

Solution

x 0 1 2 3
y −5 −2 1 4

1
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6

�
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�
�
�
�
�
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�
�

5
3

3

−5

x

y

O

Hence x ' 1.7

2. By plotting the graph of y = 2x + 7 from x = −4 to x = 2, solve the linear equation

2x + 7 = 0

Solution

x −4 −3 −2 −1 0 1 2
y −1 1 3 5 7 10 11

-

�
�
�
�
�
�
�
�
�
�
��

2

−7
2

−4

6

x

y

O

Hence x = −3.5
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5.10.3 THE GRAPHICAL SOLUTION OF QUADRATIC EQUATIONS

To solve the quadratic equation
ax2 + bx + c = 0

by means of a graph, we may plot the graph of the equation y = ax2 + bx + c and determine
the points at which it crosses the x-axis.

An alternative method is to plot the graphs of the two equations y = ax2 + bx and y = −c
in order to determine their points of intersection. This method is convenient since the first
graph has the advantage of passing through the origin.

EXAMPLE

By plotting the graph of y = x2 − 4x from x = −2 to x = 6, solve the quadratic equations

(a)
x2 − 4x = 0;

(b)
x2 − 4x + 2 = 0;

(c)
x2 − 4x− 1 = 0.

Solution

A table of values for the graph of y = x2 − 4x is

x −2 −1 0 1 2 3 4 5 6
y 12 5 0 −3 −2 −3 0 5 12

For parts (b) and (c), we shall also need the graphs of y = −2 and y = 1.

3



O -

6

x

y

(4, 0)

(−0.2, 1) (4.2, 1)

(0.6,−2) (3.4,−2)

Hence, the three sets of solutions are:

(a)
x = 0 and x = 4;

(b)
x ' 3.4 and x ' 0.6;

(c)
x ' 4.2 and x ' −0.2

5.10.4 THE GRAPHICAL SOLUTION OF SIMULTANEOUS EQUATIONS

A simple extension of the ideas covered in the previous paragraphs is to solve either a pair
of simultaneous linear equations or a pair of simultaneous equations consisting of one linear
and one quadratic equation. More complicated cases can also be dealt with by a graphical
method but we shall limit the discussion to the simpler ones.

EXAMPLES

1. By plotting the graphs of 5x+y = 2 and −3x+y = 6 from x = −2 to x = 2, determine
the common solution of the two equations.

Solution

x −2 −1 0 1 2
y1 = 2− 5x 12 7 2 −3 −8
y2 = 6 + 3x 0 3 6 9 12

4
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6

x2−2

y

O

Hence, x = −0.5 and y = 4.5.

2. By plotting the graphs of the equations y = x2 and y = 2 − 3x from x = −4 to x = 2
determine their common solutions and hence solve the quadratic equation

x2 + 3x− 2 = 0.

Solution

x −4 −3 −2 −1 0 1 2
y1 = x2 16 9 4 1 0 1 4
y2 = 2− 3x 14 11 8 5 2 −1 −4

O -

6

x

yPPPPPPPPPPPPPPPPPPPPPPP
0.6−3.6

Hence x ' 0.6 and x ' −3.6.
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5.10.5 EXERCISES

In these exercises, state your answers correct to one place of decimals.

1. Use a graphical method to solve the following linear equations:

(a)

8x− 3 = 0;

(b)

8x = 7.

2. Use a graphical method to solve the following quadratic equations:

(a)

2x2 − x = 0;

(b)

2x2 − x + 3 = 10;

(c)

2x2 − x = 11.

3. Use a graphical method to solve the follwing pairs of simultaneous equations:

(a)

3x− y = 6 and x + y = 0;

(b)

x + 2y = 13 and 2x− 3y = 14;

(c)

y = 3x2 and y = −5x + 1.

6



5.10.6 ANSWERS TO EXERCISES

1. (a)

x ' 0.4;

(b)

x ' 0.9

2. (a)

x = 0 and x = 2;

(b)

x ' 2.1 and x ' −1.6;

(c)

x ' 2.6 and x ' −2.1

3. (a)

x = 1.2 and y = −1.2;

(b)

x ' 9.6 and y ' 1.7;

(c)

x ' 0.18 and y ' 0.1 or x ' −1.8 and y ' 10.2
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UNIT 5.11 - GEOMETRY 11 - POLAR CURVES

5.11.1 INTRODUCTION

The concept of polar co-ordinates was introduced in Unit 5.1 as an alternative method, to
cartesian co-ordinates, of specifying the position of a point in a plane. It was also seen that
a relationship between cartesian co-ordinates, x and y, may be converted into an equivalent
relationship between polar co-ordinates, r and θ by means of the formulae,

x = r cos θ, and y = r sin θ,

while the reverse process may be carried out using the formulae

r2 = x2 + y2 and θ = tan−1(y/x).

Sometimes the reverse process may be simplified by using a mixture of both sets of formulae.

In this Unit, we shall consider the graphs of certain relationships between r and θ without
necessarily refering to the equivalent of those relationships in cartesian co-ordinates. The
graphs obtained will be called “polar curves”.

Note:

In Unit 5.1, no consideration was given to the possibility of negative values of r; in fact,
when polar co-ordinates are used in the subject of complex numbers (see Units 6.1 - 6.6)
r is not allowed to take negative values.

However, for the present context it will be necessary to assign a meaning to a point (r, θ),
in polar co-ordinates, when r is negative.

We simply plot the point at a distance of |r| along the θ − 180◦ line; and, of course, this
implies that, when r is negative, the point (r, θ) is the same as the point (|r|, θ − 180◦)

5.11 2 THE USE OF POLAR GRAPH PAPER

For equations in which r is expressed in terms of θ, it is convenient to plot values of r against
values of θ using a special kind of graph paper divided into small cells by concentric circles
and radial lines.

The radial lines are usually spaced at intervals of 15◦ and the concentric circles allow a scale
to be chosen by which to measure the distances, r, from the pole.

We illustrate with examples:
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EXAMPLES

1. Sketch the graph of the equation
r = 2 sin θ.

Solution

First we construct a table of values of r and θ, in steps of 15◦, from 0◦ to 360◦.

θ 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 105◦ 120◦ 135◦ 150◦ 165◦ 180◦ 195◦

r 0 0.52 1 1.41 1.73 1.93 2 1.93 1.73 1.41 1 0.52 0 −0.52

θ 210◦ 225◦ 240◦ 255◦ 270◦ 285◦ 300◦ 315◦ 330◦ 345◦ 360◦

r −1 −1.41 −1.73 −1.93 −2 −1.93 −1.73 −1.41 −1 −0.52 0

  0.5

  1

  1.5

  2

30

210

60

240

90

270

120

300

150

330

180 0

Notes:

(i) The curve, in this case, is a circle whose cartesian equation turns out to be

x2 + y2 − 2y = 0.

(ii) The fact that half of the values of r are negative means, here, that the circle is
described twice over. For example, the point (−0.52, 195◦) is the same as the point
(0.52, 15◦).

2. Sketch the graph of the following equations:

(a)

r = 2(1 + cos θ);

(b)

r = 1 + 2 cos θ;

(c)

r = 5 + 3 cos θ.
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Solution

(a) The table of values is as follows:

θ 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 105◦ 120◦ 135◦ 150◦ 165◦ 180◦

r 4 3.93 3.73 3.42 3 2.52 2 1.48 1 0.59 0.27 0.07 0

θ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦ 285◦ 300◦ 315◦ 330◦ 345◦ 360◦

r 0.07 0.27 0.59 1 1.48 2 2.52 3 3.42 3.73 3.93 4

  1

  2

  3

  4

30

210

60

240

90

270

120

300

150

330

180 0

(b) The table of values is as follows:

θ 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 105◦ 120◦ 135◦ 150◦ 165◦ 180◦

r 3 2.93 2.73 2.41 2 1.52 1 0.48 0 −0.41 −0.73 −0.93 −1

θ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦ 285◦ 300◦ 315◦ 330◦ 345◦ 360◦

r −0.93 −0.73 −0.41 0 0.48 1 1.52 2 2.41 2.73 2.93 3

  1

  2

  3

30

210

60

240

90

270

120

300

150

330

180 0
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(c) The table of values is as follows:

θ 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 105◦ 120◦ 135◦ 150◦ 165◦ 180◦

r 8 7.90 7.60 7.12 6.5 5.78 5 4.22 3.5 2.88 2.40 2.10 2

θ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦ 285◦ 300◦ 315◦ 330◦ 345◦ 360◦

r 2.10 2.40 2.88 3.5 4.22 5 5.78 6.5 7.12 7.60 7.90 8

  2

  4

  6

  8

30

210

60

240

90

270

120

300

150

330

180 0

Note:

Each of the three curves in the above example is known as a “limacon” and they illustrate
special cases of the more general curve, r = a + b cos θ, as follows:

(i) If a = b, the limacon may also be called a “cardioid”; that is, a heart-shape. At the
pole, the curve possesses a “cusp”.

(ii) If a < b, the limacon contains a “re-entrant loop”.

(iii) If a > b, the limacon contains neither a cusp nor a re-entrant loop.

Other well-known polar curves, together with any special titles associated with them, may
be found in the answers to the exercises at the end of this unit.
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5.11.3 EXERCISES

Plot the graphs of the following polar equations:

1.

r = 3 cos θ.

2.

r = sin 3θ.

3.

r = sin 2θ.

4.

r = 4 cos 3θ.

5.

r = 5 cos 2θ.

6.

r = 2sin2θ.

7.

r = 2cos2θ.

8.

r2 = 25 cos 2θ.

9.

r2 = 16 sin 2θ.

10.

r = 2θ.
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5.11.4 ANSWERS TO EXERCISES

1. The graph is as follows:

  1

  2

  3

30

210

60

240

90

270

120

300

150

330

180 0

Note:

This is an example of the more general curve, r = a cos θ, which is a circle.

2. The graph is as follows:

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

Note:

This is an example of the more general curve, r = a sin nθ, where n is odd. It is an
“n-leaved rose”.
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3. The graph is as follows:

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

Note:

This is an example of the more general curve, r = a sin nθ, where n is even. It is a
“2n-leaved rose”.

4. The graph is as follows:

  1

  2

  3

  4

30

210

60

240

90

270

120

300

150

330

180 0

Note:

This is an example od the more general curve, r = a cos nθ, where n is odd. It is an
“n-leaved rose”.
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5. The graph is as follows:

  1

  2

  3

  4

  5

30

210

60

240

90

270

120

300

150

330

180 0

Note:

This is an example of the more general curve, r = a cos nθ, where n is even. It is a
“2n-leaved rose”.

6. The graph is as follows:

  0.5

  1

  1.5

  2

30

210

60

240

90

270

120

300

150

330

180 0

Note:

This is an example of the more general curve, r = asin2θ, which is called a
“lemniscate”.
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7. The graph is as follows:

  0.5

  1

  1.5

  2

30

210

60

240

90

270

120

300

150

330

180 0

Note:

This is an example of the more general curve, r = acos2θ, which is also called a
“lemniscate”.

8. The graph is as follows:

  1

  2

  3

  4

  5

30

210

60

240

90

270

120

300

150

330

180 0

Note:

This is an example of the more general curve, r2 = a2 cos 2θ. It is another example of
a “lemniscate”; but, since r2 cannot be negative, there are no points on the curve in
the intervals π

4
< θ < 3π

4
and 5π

4
< θ < 7π

4
.
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9. The graph is as follows:

  1

  2

  3

  4

30

210

60

240

90

270

120

300

150

330

180 0

Note:

This is an example of the more general curve, r2 = a2 sin 2θ. It is another example of
a “lemniscate”; but, since r2 cannot be negative, there are no points on the curve in
the intervals π

2
< θ < π and 3π

2
< θ < 2π.

10. The graph is as follows:

  5

  10

  15

  20

30

210

60

240

90

270

120

300

150

330

180 0

Note:

This is an example of the more general curve, r = aθ, a > 0, which is called an
“Archimedean spiral”.
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UNIT 6.1 - COMPLEX NUMBERS 1 - DEFINITIONS AND ALGEBRA

6.1.1 THE DEFINITION OF A COMPLEX NUMBER

Students who are already familiar with the Differential Calculus may appreciate that equa-
tions of the form

a
d2y

dx2
+ b

dy

dx
+ cy = f(x),

which are called “Differential Equations”, have wide-reaching applications in science and
engineering. They are particularly applicable to problems involving either electrical circuits
or mechanical vibrations.

It is possible to show that, in order to determine a formula (without derivatives) giving the
variable y in terms of the variable x, one method is to solve, first, the quadratic equation
whose coefficents are a, b and c and whose solutions are therefore

−b±
√

b2 − 4ac

2a
.

Note:
Students who are not already familiar with the Differential Calculus should consider only
the quadratic equation whose coefficients are a, b and c, ignoring references to differential
equations.

ILLUSTRATION

One method of solving the differential equation

d2y

dx2
− 6

dy

dx
+ 13 = 2 sin x

would be to solve, first, the quadratic equation whose coefficients are 1, −6 and 13.

Its solutions are
6±

√
36− 52

2
=

6±
√
−16

2

which clearly do not exist since we cannot find the square root of a negative number in
elementary arithmetic.
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However, if we assume that the differential equation represents a genuine scientific problem
with a genuine scientific solution, we cannot simply dismiss the result obtained from the
quadratic formula.

The difficulty seems to be, not so much with the −16 but with the minus sign in front of the
16. We shall therefore write the solutions in the form

6± 4
√
−1

2
= 3± 2

√
−1.

Notes:
(i) The symbol

√
−1 will be regarded as an “imaginary” number.

(ii) In mathematical work,
√
−1 is normally denoted by i but, in scientific work it is denoted

by j in order to avoid confusion with other quantities (eg. electric current) which could be
denoted by the same symbol.

(iii) Whenever the imaginary quantity j =
√
−1 occurs in the solutions of a quadratic

equation, those solutions will always be of the form a + bj (or a + jb), where a and b are
ordinary numbers of elementary arithmetic.

DEFINITIONS

1. The term “complex number” is used to denote any expression of the form a + bj or
a + jb where a and b are ordinary numbers of elementary arithmetic (including zero)
and j denotes the imaginary number

√
−1; i.e. j2 = −1.

2. If the value a happens to be zero, then the complex number a + bj or a + jb is called
“purely imaginary” and is written bj or jb.

3. If the value b happens to be zero, then the complex number a + bj or a + jb is defined
to be the same as the number a and is called “real”. That is a + j0 = a + 0j = a.

4. For the complex number a + bj or a + jb, the value a is called the “real part” and the
value b is called the “imaginary part”. Notice that the imaginary part is b and not
jb.

5. The complex numbers a ± bj are said to form a pair of “complex conjugates” and
similarly a ± jb form a pair of complex conjugates. Alternatively, we may say, for
instance, that a − jb is the complex conjugate of a + jb and a + jb is the complex
conjugate of a− jb.

Note:
In some work on complex numbers, especially where many complex numbers may be under

2



discussion at the same time, it is convenient to denote real and imaginary parts by the
symbols x and y respectively, rather than a and b. It is also convenient, on some occasions,
to denote the whole complex number x + jy by the symbol z in which case the conjugate,
x− jy, will be denoted by z.

6.1.2 THE ALGEBRA OF COMPLEX NUMBERS

INTRODUCTION

An “Algebra” (coming from the Arabic word AL-JABR) refers to any mathematical system
which uses the concepts of equality, addition, subtraction, multiplication and division. For
example, the algebra of real numbers is what we normally call “arithmetic”; but algebraical
concepts can be applied to other mathematical systems of which the system of complex
numbers is one.

In meeting a new mathematical system for the first time, the concepts of equality, addition,
subtraction, multiplication and division need to be properly defined, and that is the purpose
of the present section. In some cases, the definitions are fairly obvious, but need to be made
without contradicting ideas already established in the system of real numbers which complex
numbers include.

(a) EQUALITY

Unlike a real number, a complex number does not have a “value”; and so the word “equality”
must take on a meaning, here, which is different from that used in elementary arithmetic.
In fact two complex numbers are defined to be equal if they have the same real part and the
same imaginary part.

That is

a + jb = c + jd if and only if a = c and b = d

EXAMPLE

Determine x and y such that

(2x− 3y) + j(x + 5y) = 11− j14.
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Solution

From the definition of equality, we may

EQUATE REAL AND IMAGINARY PARTS.

Thus,

2x− 3y = 11,

x + 5y = −14

These simultaneous linear equations are satisfied by x = 1 and y = −3.

(b) ADDITION AND SUBTRACTION

These two concepts are very easily defined. We simply add (or subtract) the real parts and
the imaginary parts of the two complex numbers whose sum (or difference) is required.

That is,

(a + jb) + (c + jd) = (a + c) + j(b + d)

and

(a + jb)− (c + jd) = (a− c) + j(b− d).

EXAMPLE

(−7 + j2) + (10− j5) = 3− j3 = 3(1− j)

and

(−7 + j2)− (10− j5) = −17 + j7.

4



(c) MULTIPLICATION

The definition of multiplication essentially treats j in the same way as any other algebraic
symbol, but uses the fact that j2 = −1.

Thus,

(a + jb)(c + jd) = (ac− bd) + j(bc + ad);

but this is not so much a formula to be learned off-by-heart as a technique to be applied in
future examples.

EXAMPLES

1.

(5 + j9)(2 + j6) = (10− 54) + j(18 + 30) = −44 + j48.

2.

(3− j8)(1 + j4) = (3 + 32) + j(−8 + 12) = 35 + j4.

3.

(a + jb)(a− jb) = a2 + b2.

Note:
The third example above will be useful in the next section. It shows that the product of
a complex number and its complex conjugate is always a real number consisting
of the sum of the squares of the real and imaginary parts.

(d) DIVISION

The objective here is to make a definition which provides the real and imaginary parts of
the complex expression

a + jb

c + jd
.

Once again, we make this definition in accordance with what would be obtained algebraically
by treating j in the same way as any other algebraic symbol, but using the fact that j2 = −1.
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The method is to multiply both the numerator and the denominator of the complex ratio
by the conjugate of the denominator giving

a + jb

c + jd
.
c− jd

c− jd
=

(ac + bd) + j(bc− ad)

c2 + d2
.

The required definition is thus

a + jb

c + jd
=

(ac + bd) + j(bc− ad)

c2 + d2
,

which, again, is not so much a formula to be learned off-by-heart as a technique to be applied
in future examples.

EXAMPLES

1.

5 + j3

2 + j7
=

5 + j3

2 + j7
.
2− j7

2− j7

=
(10 + 21) + j(6− 35)

22 + 72
=

31− j29

53
.

Hence, the real part is 31
53

and the imaginary part is −29
53

.

2.

6 + j

j2− 4
=

6 + j

j2− 4
.
−j2− 4

−j2− 4

=
(−24 + 2) + j(−4− 12)

(−2)2 + (−4)2
=
−22− j16

20
.

Hence, the real part is −22
20

= −11
10

and the imaginary part is −16
20

= −4
5
.
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6.1.3 EXERCISES

1. Simplify the following:

(a) j3; (b) j4; (c) j5; (d) j15; (e) j22.

2. If z1 = 2− j5, z2 = 1+ j7 and z3 = −3− j4, determine the following in the form a+ jb:

(a)

z1 − z2 + z3;

(b)

2z1 + z2 − z3;

(c)

z1 − (4z2 − z3);

(d)

z1

z2

;

(e)

z2

z3

;

(f)

z3

z1

.

3. Determine the values of x and y such that

(3x− 5y) + j(x + 3y) = 20 + j2.

4. Determine the real and imaginary parts of the expression

(1− j3)2 + j(2 + j5)− 3(4− j)

1− j
.

5. If z ≡ x + jy and z ≡ x− jy are conjugate complex numbers, determine the values of
x and y such that

4zz − 3(z − z) = 2 + j.
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6.1.4 ANSWERS TO EXERCISES

1. (a) −j; (b) 1; (c) j; (d) −j; (e) −1.

2. (a)

4− j16;

(b)

8 + j;

(c)

−5− j37;

(d)

−0.66− j0.38;

(e)

−1.24− j0.68;

(f)

0.48− j0.79

3.

x = 5 and y = −1.

4. The real part = −20.5; the imaginary part = −8.5

5.

x = ±1

2
and y = −1

2
.
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UNIT 6.2 - COMPLEX NUMBERS 2

THE ARGAND DIAGRAM

6.2.1 INTRODUCTION

It may be observed that a complex number x + jy is completely specified if we know the
values of x and y in the correct order. But the same is true for the cartesian co-ordinates,
(x, y), of a point in two dimesions. There is therefore a “one-to-one correspondence”
between the complex number x + jy and the point with co-ordinates (x, y).

Hence it is possible to represent the complex number x+jy by the point (x, y) in a geometrical
diagram called the Argand Diagram:

-

6

x

y
.........................

...

...

...
(x, y)

O

DEFINITIONS:

1. The x-axis is called the “real axis” since the points on it represent real numbers.

2. The y-axis is called the “imaginary axis” since the points on it represent purely
imaginary numbers.

6.2.2 GRAPHICAL ADDITON AND SUBTRACTION

If two complex numbers, z1 = x1 + jy1 and z2 = x2 + jy2, are represented in the Argand
Diagram by the points P1(x1, y1) and P2(x2, y2) respectively, then the sum, z1 + z2, of the
complex numbers will be represented by the point Q(x1 + x2, y1 + y2).

If O is the origin, it is possible to show that Q is the fourth vertex of the parallelogram
having OP1 and OP2 as adjacent sides.

1



6

y

- x�
�
�
�
�
��

P1

���������1
P2

��������� Q

R

S�
�
�
�
�
�

O

In the diagram, the triangle ORP1 has exactly the same shape as the triangle P2SQ. Hence,
the co-ordinates of Q must be (x1 + x2, y1 + y2).

Note:
The difference z1−z2 of the two complex numbers may similarly be found by completing the
parallelogram of which two adjacent sides are the straight line segments joining the origin
to the points with co-ordinates (x1, y1) and (−x2,−y2).

6.2.3 MULTIPLICATION BY j OF A COMPLEX NUMBER

Given any complex number z = x + jy, we observe that

jz = j(x + jy) = −y + jx.

Thus, if z is represented in the Argand Diagram by the point with co-ordinates A(x, y), then
jz is represented by the point with co-ordinates B(−y, x).
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-

6

x

y

��
����

A
A

A
A

A
A

A

B

O

But OB is in the position which would be occupied by OA if it were rotated through 90◦ in
a counter-clockwise direction.

We conclude that, in the Argand Diagram, multiplication by j of a complex number rotates,
through 90◦ in a counter-clockwise direction, the straight line segment joining the origin to
the point representing the complex number.

6.2.4 MODULUS AND ARGUMENT

-

6

���
���

���
���*

P(x, y)

x

y

θ

r

O

(a) Modulus

If a complex number, z = x + jy is represented in the Argand Diagram by the point, P,
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with cartesian co-ordinates (x, y) then the distance, r, of P from the origin is called the
“modulus” of z and is denoted by either |z| or |x + jy|.

Using the theorem of Pythagoras in the diagram, we conclude that

r = |z| = |x + jy| =
√

x2 + y2.

Note:
This definition of modulus is consistent with the definition of modulus for real numbers
(which are included in the system of complex numbers). For any real number x, we may say
that

|x| = |x + j0| =
√

x2 + 02 =
√

x2,

giving the usual numerical value of x.

ILLUSTRATIONS

1.

|3− j4| =
√

32 + (−4)2 =
√

25 = 5.

2.

|1 + j| =
√

12 + 12 =
√

2.

3.

|j7| = |0 + j7| =
√

02 + 72 =
√

49 = 7.

Note:
The result of the last example above is obvious from the Argand Diagram since the point on
the y-axis representing j7 is a distance of exactly 7 units from the origin. In the same way,
a real number is represented by a point on the x-axis whose distance from the origin is the
numerical value of the real number.

(b) Argument

The “argument” (or “amplitude”) of a complex number, z, is defined to be the angle, θ,
which the straight line segment OP makes with the positive real axis (measuring θ positively
from this axis in a counter-clockwise sense).
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In the diagram,

tan θ =
y

x
; that is, θ = tan−1 y

x
.

Note:
For a given complex number, there will be infinitely many possible values of the argument,
any two of which will differ by a whole multiple of 360◦. The complete set of possible values
is denoted by Argz, using an upper-case A.

The particular value of the argument which lies in the interval −180◦ < θ ≤ 180◦ is called
the “principal value” of the argument and is denoted by arg z using a lower-case a. The
particular value, 180◦, in preference to −180◦, represents the principal value of the argument
of a negative real number.

ILLUSTRATIONS

1.

Arg(
√

3 + j) = tan−1

(
1√
3

)
= 30◦ + k360◦,

where k may be any integer. But we note that

arg(
√

3 + j) = 30◦ only.

2.

Arg(−1 + j) = tan−1(−1) = 135◦ + k360◦

but not −45◦ + k360◦, since the complex number −1 + j is represented by a point in
the second quadrant of the Argand Diagram.

We note also that
arg(−1 + j) = 135◦ only.

3.

Arg(−1− j) = tan−1(1) = 225◦ + k360◦ or − 135◦ + k360◦

but not 45◦ + k360◦ since the complex number −1− j is represented by a point in the
third quadrant of the Argand Diagram.

We note also that
arg(−1− j) = −135◦ only.
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Note:
It is worth mentioning here that, in the Argand Diagram, the directed straight line segment
described from the point P1 (representing the complex number z1 = x1 + jy1) to the point
P2 (representing the complex number z2 = x2 + jy2) has length, r, equal to |z2 − z1|, and is
inclined to the positive direction of the real axis at an angle, θ, equal to arg(z2 − z1). This
follows from the relationship

z2 − z1 = (x2 − x1) + j(y2 − y1)

in which x2 − x1 and y2 − y1 are the distances separating the two points, parallel to the real
axis and the imaginary axis respectively.

-

6

x

y

�
�

�
�

�
�

�
�
�

P1

P2

x2 − x1

y2 − y1r

θ

O

6.2.5 EXERCISES

1. Determine the modulus (in decimals, where appropriate, correct to three significant
figures) and the principal value of the argument (in degrees, correct to the nearest
degree) of the following complex numbers:

(a)

1− j;

(b)

−3 + j4;

(c)

−
√

2− j
√

2;
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(d)

1

2
− j

√
3

2
;

(e)

−7− j9.

2. If z = 4− j5, verify that jz has the same modulus as z but that the principal value of
the argument of jz is greater, by 90◦ than the principal value of the argument of z.

3. Illustrate the following statements in the Argand Diagram:

(a)

(6− j11) + (5 + j3) = 11− j8;

(b)

(6− j11)− (5 + j3) = −1− j14.

6.2.6 ANSWERS TO EXERCISES

1. (a) 1.41 and −45◦;

(b) 5 and 127◦;

(c) 2 and −135◦;

(d) 1 and −60◦;

(e) 11.4 and −128◦.

2. 4− j5 has modulus
√

41 and argument −51◦;
j(4− j5) = 5 + j4 has modulus

√
41 and argument 39◦ = −51◦ + 90◦.

3. Construct the graphical sum and difference of the two complex numbers.
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UNIT 6.3 - COMPLEX NUMBERS 3

THE POLAR AND EXPONENTIAL FORMS

6.3.1 THE POLAR FORM

-

6

��
���

���
����*

P(x, y)

x

y

θ

r

O

From the above diagram, we may observe that

x

r
= cos θ and

y

r
= sin θ.

Hence, the relationship between x, y, r and θ may also be stated in the form

x = r cos θ, y = r sin θ,

which means that the complex number x + jy may be written as r cos θ + jr sin θ. In other
words,

x + jy = r(cos θ + j sin θ).

The left-hand-side of this relationship is called the “rectangular form” or “cartesian
form” of the complex number while the right-hand-side is called the “polar form”.

1



Note:
For convenience, the polar form may be abbreviated to r 6 θ, where θ may be positive, negative
or zero and may be expressed in either degrees or radians.

EXAMPLES

1. Express the complex number z =
√

3 + j in polar form.

Solution

|z| = r =
√

3 + 1 = 2

and

Argz = θ = tan−1 1√
3

= 30◦ + k360◦,

where k may be any integer.

Alternatively, using radians,

Argz =
π

6
+ k2π,

where k may be any integer.

Hence, in polar form,

z = 2(cos[30◦ + k360◦] + j sin[30◦ + k360◦]) = 26 [30◦ + k360◦]

or

z = 2
(
cos

[
π

6
+ k2π

]
+ j sin

[
π

6
+ k2π

])
= 26

[
π

6
+ k2π

]
.

2. Express the complex number z = −1− j in polar form.

Solution

|z| = r =
√

1 + 1 =
√

2

and

Argz = θ = tan−1(1) = −135◦ + k360◦,

where k may be any integer.

2



Alternatively,

Argz = −3π

4
+ k2π,

where k may be any integer.

Hence, in polar form,

z =
√

2(cos[−135◦ + k360◦] + j sin[−135◦ + k360◦]) =
√

26 [−135◦ + k360◦]

or

z =
√

2
(
cos

[
−3π

4
+ k2π

]
+ j sin

[
−3π

4
+ k2π

])
=
√

26
[
−3π

4
+ k2π

]
.

Note:
If it is required that the polar form should contain only the principal value of the argument,
θ, then, provided −180◦ < θ ≤ 180◦ or −π < θ ≤ π, the component k360◦ or k2π of the
result is simply omitted.

6.3.2 THE EXPONENTIAL FORM

Using some theory from the differential calculus of complex variables (not included here) it
is possible to show that, for any complex number, z,

ez = 1 +
z

1!
+

z2

2!
+

z3

3!
+

z4

4!
+ ...,

sin z = z − z3

3!
+

z5

5!
− z7

7!
+ ...

and

cos z = 1− z2

2!
+

z4

4!
− z6

6!
+ ...

These are, in fact, taken as the definitions of the functions ez, sin z and cos z.

Students who are already familiar with the differential calculus of a real variable, x, may
recognise similarities between the above formulae and the “MacLaurin Series” for the func-
tions ex, sin x and cos x. In the case of the series for sin x and cos x, the value, x, must be
expressed in radians and not degrees.

A useful deduction can be made from the three formulae if we make the substitution z = jθ
into the first one, obtaining:

3



ejθ = 1 +
jθ

1!
+

(jθ)2

2!
+

(jθ)3

3!
+

(jθ)4

4!
+ ...

and, since j2 = −1, this gives

ejθ = 1 + j
θ

1!
− θ2

2!
− j

θ3

3!
+

θ4

4!
+ ...

On regrouping this into real and imaginary parts, then using the sine and cosine series, we
obtain

ejθ = cos θ + j sin θ,

provided θ is expressed in radians and not degrees.

The complex number x+jy, having modulus r and argument θ+k2π, may thus be expressed
not only in polar form but also in

the exponential form, rejθ.

ILLUSTRATIONS

Using the examples of the previous section

1.
√

3 + j = 2ej(π
6
+k2π).

2.

−1 + j =
√

2ej( 3π
4

+k2π).

3.

−1− j =
√

2e−j( 3π
4

+k2π).

Note:
If it is required that the exponential form should contain only the principal value of the
argument, θ, then, provided −π < θ ≤ π, the component k2π of the result is simply omitted.

4



6.3.3 PRODUCTS AND QUOTIENTS IN POLAR FORM

Let us suppose that two complex numbers z1 and z2 have already been expressed in polar
form, so that

z1 = r1(cos θ1 + j sin θ1) = r1 6 θ1

and

z2 = r2(cos θ2 + j sin θ2) = r2 6 θ2.

It is then possible to establish very simple rules for determining both the product and the
quotient of the two complex numbers. The explanation is as follows:

(a) The Product

z1.z2 = r1.r2(cos θ1 + j sin θ1).(cos θ2 + j sin θ2).

That is,

z1.z2 = r1.r2([cos θ1. cos θ2 − sin θ1. sin θ2] + j[sin θ1. cos θ2 + cos θ1. sin θ2]).

Using trigonometric identities, this reduces to

z1.z2 = r1.r2(cos[θ1 + θ2] + j sin[θ1 + θ2]) = r1.r2 6 [θ1 + θ2].

We have shown that, to determine the product of two complex numbers in polar form, we
construct the product of their modulus values and the sum of their argument values.

(b) The Quotient

z1

z2

=
r1

r2

(cos θ1 + j sin θ1)

(cos θ2 + j sin θ2)
.

On multiplying the numerator and denominator by cos θ2 − j sin θ2, we obtain

5



z1

z2

=
r1

r2

([cos θ1. cos θ2 + sin θ1. sin θ2] + j[sin θ1. cos θ2 − cos θ1. sin θ2]).

Using trigonometric identities, this reduces to

z1

z2

=
r1

r2

(cos[θ1 − θ2] + j sin[θ1 − θ2]) =
r1

r2

6 [θ1 − θ2].

We have shown that, to determine the quotient of two complex numbers in polar form, we
construct the quotient of their modulus values and the difference of their argument values.

ILLUSTRATIONS

Using results from earlier examples:

1.

(
√

3 + j).(−1− j) = 26 30◦.
√

26 (−135◦) = 2
√

26 (−105◦).

We notice that, for all of the complex numbers in this example, including the result,
the argument appears as the principal value.

2.
√

3 + j

−1− j
=

26 30◦√
26 (−135◦)

=
√

26 165◦.

Again, for all of the complex numbers in this example, including the result, the argument
appears as the principal value.

Note:
It will not always turn out that the argument of a product or quotient of two complex
numbers appears as the principal value. For instance,

3.

(−1− j).(−
√

3− j) =
√

26 (−135◦).26 (−150◦) = 2
√

26 (−285◦),

which must be converted to 2
√

26 (75◦) if the principal value of the argument is required.

6



6.3.4 EXERCISES

In the following cases, express the complex numbers z1 and z2 in

(a) the polar form, r 6 θ

and

(b) the exponential form, rejθ

using only the principal value of θ.

(c) For each case, determine also the product, z1.z2, and the quotient, z1

z2
, in polar form using

only the principal value of the argument.

1.

z1 = 1 + j, z2 =
√

3− j.

2.

z1 = −
√

2 + j
√

2, z2 = −3− j4.

3.

z1 = −4− j5, z2 = 7− j9.

6.3.5 ANSWERS TO EXERCISES

1. (a)

z1 =
√

26 45◦ z2 = 26 (−30◦);

(b)

z1 =
√

2ej π
4 z2 = 2e−j π

6 ;

(c)

z1.z2 = 2
√

26 15◦
z1

z2

=

√
2

2
6 75◦.

2. (a)

z1 = 26 (135◦) z2 = 56 (−127◦);

7



(b)

z1 = 2ej 3π
4 z2 = 5e−j2.22;

(c)

z1.z2 = 106 8◦
z1

z2

=
2

5
6 (−98◦).

3. (a)

z1 = 6.406 (−128.66◦) z2 = 11.406 (−55.13◦);

(b)

z1 = 6.40e−j2.25 z2 = 11.40e−j0.96;

(c)

z1.z2 = 72.966 176.21◦
z1

z2

= 0.566 (−73.53◦).

8
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UNIT 6.4 - COMPLEX NUMBERS 4

POWERS OF COMPLEX NUMBERS

6.4.1 POSITIVE WHOLE NUMBER POWERS

As an application of the rule for multiplying together complex numbers in polar form, it is
a simple matter to multiply a complex number by itself any desired number of times.

Suppose that
z = r 6 θ.

Then,

z2 = r.r 6 (θ + θ) = r2 6 2θ;

z3 = z.z2 = r.r2 6 (θ + 2θ) = r3 6 3θ;

and, by continuing this process,

zn = rn 6 nθ.

This result is due to De Moivre, but other aspects of it will need to be discussed before we
may formalise what is called “De Moivre’s Theorem”.

EXAMPLE

(
1√
2

+ j
1√
2

)19

= (16
[
π

4

]
)19 = 16

[
19π

4

]
= 16

[
3π

4

]
= − 1√

2
+ j

1√
2
.

6.4.2 NEGATIVE WHOLE NUMBER POWERS

If n is a negative whole number, we shall suppose that

n = −m,

where m is a positive whole number.

Thus, if z = r 6 θ,

1



zn = z−m =
1

zm
=

1

rm 6 mθ
.

In more detail,

zn =
1

rm(cos mθ + j sin mθ)
,

giving

zn =
1

rm
.
(cos mθ − j sin mθ)

cos2mθ + sin2mθ
= r−m(cos[−mθ] + j sin[−mθ]).

But −m = n, and so

zn = rn(cos nθ + j sin nθ) = rn 6 nθ,

showing that the result of the previous section remains true for negative whole number
powers.

EXAMPLE

(
√

3 + j)−3 = (26 30◦)−3 =
1

8
6 (−90◦) = −j

8
.

6.4.3 FRACTIONAL POWERS AND DE MOIVRE’S THEOREM

To begin with, here, we consider the complex number

z
1
n ,

where n is a positive whole number and z = r 6 θ.

We define z
1
n to be any complex number which gives z itself when raised to the power n.

Such a complex number is called “an n-th root of z”.

2



Certainly one such possibility is

r
1
n 6

θ

n
,

by virtue of the paragraph dealing with positive whole number powers.

But the general expression for z is given by

z = r 6 (θ + k360◦),

where k may be any integer; and this suggests other possibilities for z
1
n , namely

r
1
n 6

θ + k360◦

n
.

However, this set of n-th roots is not an infinite set because the roots which are given by
k = 0, 1, 2, 3............n− 1 are also given by k = n, n + 1, n + 2, n + 3, ......., 2n− 1, 2n,
2n + 1, 2n + 2, 2n + 3, ..... and so on, respectively.

We conclude that there are precisely n n-th roots given by k = 0, 1, 2, 3........., n− 1.

EXAMPLE

Determine the cube roots (i.e. 3rd roots) of the complex number j8.

Solution

We first write
j8 = 86 (90◦ + k360◦).

Hence,

(j8)
1
3 = 8

1
3 6

(90◦ + k360◦)

3
,

where k = 0, 1, 2

3



The three distinct cube roots are therefore

26 30◦, 26 150◦ and 26 270◦ = 26 (−90◦).

They all have the same modulus of 2 but their arguments are spaced around the Argand
Diagram at regular intervals of 360◦

3
= 120◦.

Notes:

(i) In general, the n-th roots of a complex number will all have the same modulus, but their
arguments will be spaced at regular intervals of 360◦

n
.

(ii) Assuming that −180◦ < θ ≤ 180◦; that is, assuming that the polar form of z uses the
principal value of the argument, then the particular n-th root of z which is given by k = 0
is called the “principal n-th root”.

(iii) If m
n

is a fraction in its lowest terms, we define

z
m
n

to be either
(
z

1
n

)m
or (zm)

1
n both of which turn out to give the same set of n distinct results.

The discussion, so far, on powers of complex numbers leads us to the following statement:

DE MOIVRE’S THEOREM

If z = r 6 θ, then, for any rational number n, one value of zn is rn 6 nθ.

6.4.4 EXERCISES

1. Determine the following in the form a + jb, expressing a and b in decimals correct to
four significant figures:

(a)

(1 + j
√

3)10;

(b)

(2− j5)−4.

2. Determine the fourth roots of j81 in exponential form rejθ where r > 0 and −π < θ ≤ π.

3. Determine the fifth roots of the complex number −4 + j4 in the form a + jb expressing
a and b in decimals, where appropriate, correct to two places. State also which root is
the principal root.

4



4. Determine all the values of

(3 + j4)
3
2

in polar form.

6.4.5 ANSWERS TO EXERCISES

1. (a)

(1 + j
√

3)10 = −512.0− j886.8;

(b)

(2− j5)−4 = 5.796− j1.188

2. The fourth roots are

3e−
π
8 , 3e

3π
8 , 3e

7π
8 , 3e−

5π
8 .

3. The fifth roots are

1.26 + j0.64, − 0.22 + j1.40, − 1.40 + j0.22, − 0.64− j1.26, 1− j.

The principal root is 1.26 + j0.64.

4. There are two values, namely

11.186 79.695◦ and 11.186 (−100.305◦).
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UNIT 6.5 - COMPLEX NUMBERS 5

APPLICATIONS TO TRIGONOMETRIC IDENTITIES

6.5.1 INTRODUCTION

It will be useful for the purposes of this section to restate the result known as “Pascal’s
Triangle” previously discussed in Unit 2.2.

If n is a positive whole number, the diagram

1 1

1 2 1

1 3 3 1

1 4 6 4 1

provides the coefficients in the expansion of (A + B)n which contains the sequence of terms

An, An−1B, An−2B2, An−3B3, ........., Bn.

6.5.2 EXPRESSIONS FOR cos nθ AND sin nθ IN TERMS OF cos θ AND sin θ.

From De Moivre’s Theorem

(cos θ + j sin θ)n ≡ cos nθ + j sin nθ,

from which we may deduce that, in the expansion of the left-hand-side, using Pascal’s Trian-
gle, the real part will coincide with cos nθ and the imaginary part will coincide with sin nθ.

EXAMPLE

(cos θ + j sin θ)3 ≡ cos3θ + 3cos2θ.(j sin θ) + 3 cos θ.(j sin θ)2 + (j sin θ)3.

That is,

cos 3θ ≡ cos3θ − 3 cos θ.sin2θ or 4cos3θ − 3 cos θ,

1



using sin2θ ≡ 1− cos2θ;

and

sin 3θ ≡ 3cos2θ. sin θ − sin3θ or 3 sin θ − 4sin3θ,

using cos2θ ≡ 1− sin2θ.

6.5.3 EXPRESSIONS FOR cosnθ AND sinnθ IN TERMS OF SINES AND COSINES
OF WHOLE MULTIPLES OF θ.

The technique described here is particularly useful in calculus problems when we are required
to integrate an integer power of a sine function or a cosine function. It does stand, however,
as a self-contained application to trigonometry of complex numbers.

Suppose

z ≡ cos θ + j sin θ − (1)

Then, by De Moivre’s Theorem, or by direct manipulation,

1

z
≡ cos θ − j sin θ − (2).

Adding (1) and (2) together, then subtracting (2) from (1), we obtain

z + 1
z
≡ 2 cos θ z − 1

z
≡ j2 sin θ

Also, by De Moivre’s Theorem,

zn ≡ cos nθ + j sin nθ − (3)

and

1

zn
≡ cos nθ − j sin nθ − (4).

2



Adding (3) and (4) together, then subtracting (4) from (3), we obtain

zn + 1
zn ≡ 2 cos nθ zn − 1

zn ≡ j2 sin nθ

We are now in a position to discuss some examples on finding trigonometric identities for
whole number powers of sin θ or cos θ.

EXAMPLES

1. Determine an identity for sin3θ.

Solution

We use the result

j323sin3θ ≡
(
z − 1

z

)3

,

where z ≡ cos θ + j sin θ.

That is,

−j8sin3θ ≡ z3 − 3z2.
1

z
+ 3z.

(
1

z

)2

− 1

z3

or, after cancelling common factors,

−j8sin3θ ≡ z3 − 3z +
3

z
− 1

z3
≡

(
z3 − 1

z3

)
− 3

(
z − 1

z

)
,

which gives

−j8sin3θ ≡ j2 sin 3θ − j6 sin θ.

Hence,

sin3θ ≡ 1

4
(3 sin θ − sin 3θ) .

3



2. Determine an identity for cos4θ.

Solution

We use the result

24cos4θ ≡
(
z +

1

z

)4

,

where z ≡ cos θ + j sin θ.

That is,

16cos4θ ≡ z4 + 4z3.
1

z
+ 6z2.

(
1

z

)2

+ 4z.
(

1

z

)3

+
(

1

z

)4

or, after cancelling common factors,

16cos4θ ≡ z4 + 4z2 + 6 +
4

z2
+

1

z4
≡ z4 +

1

z4
+ 4

(
z2 +

1

z2

)
+ 6,

which gives

16cos4θ ≡ 2 cos 4θ + 8 cos 2θ + 6.

Hence,

cos4θ ≡ 1

8
(cos 4θ + 4 cos 2θ + 3)

6.5.4 EXERCISES

1. Use a complex number method to determine identities for cos 4θ and sin 4θ in terms of
sin θ and cos θ.

2. Use a complex number method to determine an identity for sin5θ in terms of sines of
whole multiples of θ.

3. Use a complex number method to deternine an identity for cos6θ in terms of cosines of
whole multiples of θ.
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6.5.5 ANSWERS TO EXERCISES

1.

cos 4θ ≡ cos4θ − 6cos2θ.sin2θ

and

sin 4θ ≡ 4cos3θ. sin θ − 4 cos θ.sin3θ.

2.

sin5θ ≡ 1

16
(sin 5θ − 5 sin 3θ + 10 sin θ].

3.

cos6θ ≡ 1

32
(cos 6θ + 6 cos 4θ + 15 cos 2θ + 10).

5
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UNIT 6.6 - COMPLEX NUMBERS 6

COMPLEX LOCI

6.6.1 INTRODUCTION

In Unit 6.2, it was mentioned that the directed line segment joining the point representing
a complex number z1 to the point representing a complex number z2 is of length equal
to |z2 − z1| and is inclined to the positive direction of the real axis at an angle equal to
arg(z2 − z1).

This observation now has significance when discussing variable complex numbers which are
constrained to move along a certain path (or “locus”) in the Argand Diagram. For many
practical applications, such paths (or “loci”) will normally be either straight lines or circles
and two standard types of example appear in what follows.

In both types, we shall assume that z = x + jy denotes a variable complex number (rep-
resented by the point (x, y) in the Argand Diagram), while z0 = x0 + jy0 denotes a fixed
complex number (represented by the point (x0, y0) in the Argand Diagram).

6.6.2 THE CIRCLE

Suppose that the moving point representing z moves on a circle, with radius a, whose centre
is at the fixed point representing z0.










z0

z

a

O - x

6

y

1



Then the distance between these two points will always be equal to a. In other words,

|z − z0| = a

and this is the standard equation of the circle in terms of complex numbers.

Note:
By substituting z = x + jy and z0 = x0 + jy0 in the above equation, we may obtain the
equivalent equation in terms of cartesian co-ordinates, namely,

|(x− x0) + j(y − y0)| = a.

That is,

(x− x0)
2 + (y − y0)

2 = a2.

ILLUSTRATION

The equation

|z − 3 + j4| = 7

represents a circle, with radius 7, whose centre is the point representing the complex number
3− j4.

In cartesian co-ordinates, it is the circle with equation

(x− 3)2 + (y + 4)2 = 49.

6.6.3 THE HALF-STRAIGHT-LINE

Suppose now that the “directed” straight line segment described from the fixed point
representing z0 to the moving point representing z is inclined at an angle θ to the positive
direction of the real axis.

2



Then,

arg(z − z0) = θ

and this equation is satisfied by all of the values of z for which the inclination of the directed
line segment is genuinely θ and not 180◦ − θ. The latter angle would correspond to points
on the other half of the straight line joining the two points.

-

6

x

y

��
���

���
���

���
����*

θ
z0

z

O

Note:
If we substitute z = x + jy and z0 = x0 + jy0, we obtain

arg([x− x0] + j[y − y0]) = θ.

That is,

tan−1 y − y0

x− x0

= θ

or

y − y0 = tan θ(x− x0),

which is certainly the equation of a straight line with gradient tan θ passing through the
point (x0, y0); but it represents only that half of the straight line for which x−x0 and y− y0

correspond, in sign as well as value, to the real and imaginary parts of a complex number
whose argument is genuinely θ and not 180◦ − θ.

3



ILLUSTRATION

The equation

arg(z + 1− j5) = −π

6

represents the half-straight-line described from the point representing z0 = −1 + j5 to the
point representing z = x + jy and inclined to the positive direction of the real axis at an
angle of −π

6
.

-

6

x

y

PPPPPPPPPq

z0

O

In terms of cartesian co-ordinates,

arg([x + 1] + j[y − 5]) = −π

6
,

in which it must be true that x + 1 > 0 and y − 5 < 0 in order that the argument of
[x + 1] + j[y − 5] may be a negative acute angle.

We thus have the half-straight-line with equation

y − 5 = tan
(
−π

6

)
(x + 1) = − 1√

3
(x + 1)

which lies to the right of, and below the point (−1, 5).
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6.6.4 MORE GENERAL LOCI

Certain types of locus problem may be encountered which cannot be identified with either
of the two standard types discussed above. The secret, in such problems is to substitute
z = x + jy in order to obtain the cartesian equation of the locus. We have already seen that
this method is applicable to the two standard types anyway.

ILLUSTRATIONS

1. The equation ∣∣∣∣z − 1

z + 2

∣∣∣∣ = 3

may be written

|z − 1| = 3|z + 2|.

That is,

(x− 1)2 + y2 = 3[(x + 2)2 + y2],

which simplifies to

2x2 + 2y2 + 14x + 13 = 0

or (
x +

7

2

)2

+ y2 =
23

4
,

representing a circle with centre
(
−7

2
, 0

)
and radius

√
23
4
.

2. The equation

arg
(

z − 3

z

)
=

π

4

may be written

arg(z − 3)− arg z =
π

4
.
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That is,

arg([x− 3] + jy)− arg(x + jy) =
π

4
.

Taking tangents of both sides and using the trigonometric identity for tan(A− B), we
obtain

y
x−3

− y
x

1 + y
x−3

y
x

= 1.

On simplification, the equation becomes

x2 + y2 − 3x− 3y = 0

or (
x− 3

2

)2

+
(
y − 3

2

)2

=
9

2
,

the equation of a circle with centre
(

3
2
, 3

2

)
and radius 3√

2
.

However, we observe that the original complex number,

z − 3

z
,

cannot have an argument of π
4

unless its real and imaginary parts are both positive.

In fact,

z − 3

z
=

(x− 3) + jy

x + jy
.
x− jy

x− jy
=

x(x− 3) + y2 + j3

x2 + y2

which requires, therefore, that

x(x− 3) + y2 > 0.

That is,

x2 + y2 − 3x > 0

or (
x− 3

2

)2

+ y2 >
9

4
.

Conclusion

The locus is that part of the circle with centre
(

3
2
, 3

2

)
and radius 3√

2
which lies outside

the circle with centre
(

3
2
, 0

)
and radius 3

2
.
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-

6
y

xO

this region

6.6.5 EXERCISES

1. Identify the loci whose equations are

(a)

|z − 3| = 4;

(b)

|z − 4 + j7| = 2.

2. Identify the loci whose equations are

(a)

arg(z + 1) =
π

3
;

(b)

arg(z − 2− j3) =
3π

2
.

3. Identify the loci whose equations are

(a) ∣∣∣∣∣z + j2

z − j3

∣∣∣∣∣ = 1;

(b)

arg
(

z + j

z − 1

)
= −π

4
.
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6.6.6 ANSWERS TO EXERCISES

1. (a) A circle with centre (3, 0) and radius 4;

(b) A circle with centre 4,−7) and radius 2.

2. (a) A half-straight-line to the right of, and above the point (−1, 0) inclined at an angle
of π

3
to the positive direction of the real axis;

(b) A half-straight-line below the point (2, 3) and perpendicular to the real axis.

3. (a) The straight line y = 1
2
;

(b) That part of the circle x2 + y2 = 1 which lies outside the circle with centre
(

1
2
,−1

2

)
and radius 1√

2
and above the straight line whose equation is y = x− 1.

Note:
Examples like No. 3(b) are often quite difficult and will not normally be included in the
more elementary first year courses in mathematics.
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UNIT 7.1 - DETERMINANTS 1

SECOND ORDER DETERMINANTS

7.1.1 PAIRS OF SIMULTANEOUS LINEAR EQUATIONS

The subject of Determinants may be introduced by considering, first, a set of two simulta-
neous linear equations in two unknowns. We shall take them in the form

a1x + b1y + c1 = 0,−−−−−−−− (1)

a2x + b2y + c2 = 0.−−−−−−−−(2)

If we subtract equation (2) × b1 from equation (1) × b2, we obtain

a1b2x− a2b1x + c1b2 − c2b1 = 0.

Hence,

x =
b1c2 − b2c1

a1b2 − a2b1

,

provided that a1b2 − a2b1 6= 0.

Similarly, if we subtract equation (2) × a1 from equation (1) × a2, we obtain

a2b1y − a1b2y + a2c1 − a1c2 = 0.

Hence,

y = −a1c2 − a2c1

a1b2 − a2b1

,

provided that a1b2 − a2b1 6= 0.

Note:
Other arrangements of the solutions for x and y are possible, but the above arrangements

1



have been stated for a particular purpose which will be made clear shortly under “Observa-
tions”.

The Symmetrical Form of the solution

The two separate solutions for x and y may be conveniently written in “symmetrical” form
as follows:

x

b1c2 − b2c1

=
−y

a1c2 − a2c1

=
1

a1b2 − a2b1

,

provided that a1b2 − a2b1 6= 0.

7.1.2 THE DEFINITION OF A SECOND ORDER DETERMINANT

Each of the denominators in the symmetrical form of the previous section has the same
general appearance, namely the difference of the products of two pairs of numbers; and we
shall rewrite each denominator in a new form using a mathematical symbol called a “second
order determinant“ and defined by the statement:

∣∣∣∣ A B
C D

∣∣∣∣ = AD −BC.

The symbol on the left-hand-side may be called either a second order determinant or a
2× 2 determinant; it has two “rows” (horizontally), two “columns” (vertically) and four
“elements” (the numbers inside the determinant).

7.1.3 CRAMER’S RULE FOR TWO SIMULTANEOUS LINEAR EQUATIONS

The symmetrical solution to the two simultaneous linear equations may now be written

x∣∣∣∣ b1 c1

b2 c2

∣∣∣∣ =
−y∣∣∣∣ a1 c1

a2 c2

∣∣∣∣ =
1∣∣∣∣ a1 b1

a2 b2

∣∣∣∣ ,

provided that
∣∣∣∣ a1 b1

a2 b2

∣∣∣∣ 6= 0;

or, in an abbreviated form,

x

∆1

=
−y

∆2

=
1

∆0

,

2



provided that ∆0 6= 0.

This determinant rule for solving two simultaneous linear equations is called “Cramer’s
Rule” and has equivalent forms for a larger number of equations.

Note:
The interpretation of Cramer’s Rule in the case when a1b2 − a2b1 = 0 will be dealt with as
a special case after some elementary examples:

Observations

In Cramer’s Rule,

1. The determinant underneath x can be remembered by covering up the x terms in the
original simultaneous equations, then using the coefficients of y and the constant terms
in the pattern which they occupy on the page.

2. The determinant underneath y can be remembered by covering up the y terms in the
original simultaneous equations, then using the coefficients of x and the constant terms
in the pattern they occupy on the page.

3. The determinant underneath 1 can be remembered by covering up the constant terms
in the original simultaneous equations, then using the coefficients of x and y in the
pattern they occupy on the page.

4. The final determinant is labelled ∆0 as a reminder to evaluate it first; because, if it
happens to be zero, there is no point in evaluating ∆1 and ∆2.

EXAMPLES

1. Evaluate the determinant

∆ =
∣∣∣∣ 7 −2
4 5

∣∣∣∣ .
Solution

∆ = 7× 5− 4× (−2) = 35 + 8 = 43

2. Express the value of the determinant

∆ =
∣∣∣∣−p −q

p −q

∣∣∣∣
in terms of p and q.

3



Solution

∆ = (−p)× (−q)− p× (−q) = p.q + p.q = 2pq.

3. Use Cramer’s Rule to solve for x and y the simultaneous linear equations

5x− 3y = −3,

2x− y = −2.

Solution

We may first rearrange the equations in the form

5x− 3y + 3 = 0,

2x− y + 2 = 0.

Hence, by Cramer’s Rule,

x

∆1

=
−y

∆2

=
1

∆0

,

where

∆0 =
∣∣∣∣ 5 −3
2 −1

∣∣∣∣ = −5 + 6 = 1;

∆1 =
∣∣∣∣−3 3
−1 2

∣∣∣∣ = −6 + 3 = −3;

∆2 =
∣∣∣∣ 5 3
2 2

∣∣∣∣ = 10− 6 = 4.

Thus,

x =
∆1

∆0

= −3 and y = −∆2

∆0

= −4.
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Special Cases

When using Cramer’s Rule, the determinant ∆0 must not have the value zero. But if it does
have the value zero, then, the simultaneous linear equations

a1x + b1y + c1 = 0,−−−−−−−− (1)

a2x + b2y + c2 = 0.−−−−−−−−(2)

are such that

a1b2 − a2b1 = 0.

In other words,

a1

a2

=
b1

b2

,

which means that the x and y terms in one of the equations are proportional to the x and
y terms in the other equation.

Two situations may arise which may be illustrated by the following examples:

EXAMPLES

1. For the set of equations

3x− 2y = 5,

6x− 4y = 10,

∆0 = 0 but the second equation is simply a multiple of the first equation. That is, one
of the equations is redundant and so there exists an infinite number of solutions;
either of the variables may be chosen at random, with the remaining variable being
expressible in terms of it.

2. For the set of equations

3x− 2y = 5,

6x− 4y = 7,

5



∆0 = 0 as before, but there is an inconsistency because, if the second equation is divided
by 2, we obtain

3x− 2y = 3.5,

which is inconsistent with
3x− 2y = 5.

In this case there are no solutions at all.

Summary of the Special Cases

If ∆0 = 0, further investigation of the simultaneous linear equations is necessary.

7.1.4 EXERCISES

1. Write down the values of the following determinants:

(a)
∣∣∣∣ 2 3
1 4

∣∣∣∣; (b)
∣∣∣∣ 1 −2
2 1

∣∣∣∣; (c)
∣∣∣∣−2 3
−1 2

∣∣∣∣;
(d)

∣∣∣∣ x y
y x

∣∣∣∣; (e)
∣∣∣∣ x x
y y

∣∣∣∣; (f)
∣∣∣∣ a b
−b a

∣∣∣∣.
2. Use determinants (that is, ‘Cramer’s Rule’) to solve the following sets of simultaneous

linear equations:

(a)
19x + 6y = 39,
13x − 8y = −6.

; (b)
3x + 4y + 6 = 0,
5x − 3y − 19 = 0.

;

(c)
2x + 1 = 3y,
x − 5 = 7y.

; (d)
4 − 2y = x,
7 + 3y = 2x.

;

(e)
3i1 + 2i2 = 5,
i1 − 3i2 = 7.

; (f)
2x − 4z = 5,
x − 2z = 1.

.

3. By expanding out all of the determinants, verify the following results:

(a)
∣∣∣∣ a1 b1

a2 b2

∣∣∣∣ =
∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ = −
∣∣∣∣ b1 a1

b2 a2

∣∣∣∣;
(b)

∣∣∣∣ a1 b1

a2 b2

∣∣∣∣ =
∣∣∣∣ a1 + c1 b1

a2 + c2 b2

∣∣∣∣ −
∣∣∣∣ c1 b1

c2 b2

∣∣∣∣;
(c)

∣∣∣∣ a1 b1

a2 b2

∣∣∣∣ =
∣∣∣∣ a1 − kb1 b1

a2 − kb2 b2

∣∣∣∣ for any number, k.
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7.1.5 ANSWERS TO EXERCISES

1. The values are:

(a) 5; (b) 5; (c) −1;

(d) x2 − y2; (e) 0; (f) a2 + b2.

2. (a)
x

−276
=
−y

621
=

1

−230
;

hence, x = 1.2 and y = 2.7;

(b)
x

−58
=
−y

−87
=

1

−29
;

hence, x = 2 and y = −3;

(c)
x

22
=
−y

−11
=

1

−11
;

hence, x = −2 and y = −1;

(d)
x

−26
=
−y

1
=

1

−7
;

hence, x = 26
7

and y = 1
7
;

(e)
i1
−29

=
−i2
−16

=
1

−11
;

hence, i1 = 29
11

and i2 = −16
11

;

(f)
x

−6
=
−z

3
=

1

0
,

which means that Cramer’s rule breaks down. In fact, the second equation gives two
contradictory statements 2x− 4z = 5 and 2x− 4z = 2.

3. By following the instructions, the results may be verified.
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UNIT 7.2 - DETERMINANTS 2

CONSISTENCY AND THIRD ORDER DETERMINANTS

7.2.1 CONSISTENCY FOR THREE SIMULTANEOUS LINEAR EQUATIONS
IN TWO UNKNOWNS

In a genuine scientific problem involving simultaneous equations, it is not necessarily true
that there will be the same number of equations to solve as there are unknowns to be
determined. We examine, here, an elementary situation in which there are three equations,
but only two unknowns.

Consider the set of equations

a1x + b1y + c1 = 0,−−−−−−−− (1)

a2x + b2y + c2 = 0,−−−−−−−− (2)

a3x + b3y + c3 = 0,−−−−−−−−−(3)

where we shall assume that any pair of the three equations has a unique common solution
which may be calculated by Cramer’s Rule.

In order that the three equations shall be consistent, the common solution of any pair must
also satisfy the remaining equation. In particular, the common solution of equations (2) and
(3) must also satisfy equation (1).

By Cramer’s Rule in equations (2) and (3),

x∣∣∣∣ b2 c2

b3 c3

∣∣∣∣ =
−y∣∣∣∣ a2 c2

a3 c3

∣∣∣∣ =
1∣∣∣∣ a2 b2

a3 b3

∣∣∣∣ .

This solution will satisfy equation (1) provided that

a1

∣∣∣∣ b2 c2

b3 c3

∣∣∣∣∣∣∣∣ a2 b2

a3 b3

∣∣∣∣ − b1

∣∣∣∣ a2 c2

a3 c3

∣∣∣∣∣∣∣∣ a2 b2

a3 b3

∣∣∣∣ + c1 = 0.

In other words,

1



a1

∣∣∣∣ b2 c2

b3 c3

∣∣∣∣− b1

∣∣∣∣ a2 c2

a3 c3

∣∣∣∣ + c1

∣∣∣∣ a2 b2

a3 b3

∣∣∣∣ = 0.

This is the determinant condition for the consistency of three simultaneous linear equations
in two unknowns.

7.2.2 THE DEFINITION OF A THIRD ORDER DETERMINANT

In the consistency condition of the previous section, the expression on the left-hand-side is
called a “determinant of the third order” and is denoted by the symbol

∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣
It has three “rows” (horizontally), three “columns” (vertically) and nine “elements”
(the numbers inside the determinant).

The definition of a third order determinant may be stated in the form

∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣ = a1

∣∣∣∣ b2 c2

b3 c3

∣∣∣∣− b1

∣∣∣∣ a2 c2

a3 c3

∣∣∣∣ + c1

∣∣∣∣ a2 b2

a3 b3

∣∣∣∣ .

Notes:

(i) Other forms of the definition are also possible and will be encountered in Unit 7.3

(ii) The given formula for evaluating a third order determinant can be remembered by
taking each element of the first row in turn and multiplying it by the so-called “minor”
of the element, which is the second order determinant obtained by covering up the row and
column in which the element appears; the results are then combined according to a +, −, +
pattern.

(iii) For the purpose of locating various parts of a determinant, the rows are counted from
the top to the bottom and the columns are counted from the left to the right. Each row is
read from the left to the right and each column is read from the top to the bottom. Thus,
for example, the third element of the second column is b3.
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EXAMPLES

1. Evaluate the determinant

∆ =

∣∣∣∣∣∣∣
−3 2 7
0 4 −2
5 −1 3

∣∣∣∣∣∣∣ .
Solution

∆ = −3
∣∣∣∣ 4 −2
−1 3

∣∣∣∣− 2
∣∣∣∣ 0 −2
5 3

∣∣∣∣ + 7
∣∣∣∣ 0 4
5 −1

∣∣∣∣ .
That is,

∆ = −3(12− 2)− 2(0 + 10) + 7(0− 20) = −190.

2. Show that the simultaneous linear equations

3x− y + 2 = 0,

2x + 5y − 1 = 0,

5x + 4y + 1 = 0

are consistent (assuming that any two of the three have a common solution), and obtain
the common solution.

Solution

The condition for consistency is that the determinant of coefficients and constants must
be zero. We have∣∣∣∣∣∣∣

3 −1 2
2 5 −1
5 4 1

∣∣∣∣∣∣∣ = 3
∣∣∣∣ 5 −1
4 1

∣∣∣∣− (−1)
∣∣∣∣ 2 −1
5 1

∣∣∣∣ + 2
∣∣∣∣ 2 5
5 4

∣∣∣∣

= 3(5 + 4) + (2 + 5) + 2(8− 25) = 27 + 7− 34 = 0.

Thus, the equations are consistent and, to obtain their common solution, we may solve
(say) the first two as follows:

x∣∣∣∣−1 2
5 −1

∣∣∣∣ =
−y∣∣∣∣ 3 2

2 −1

∣∣∣∣ =
1∣∣∣∣ 3 −1

2 5

∣∣∣∣ .
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That is,

x

−9
=
−y

−7
=

1

17
,

which gives

x = − 9

17
and y =

7

17
.

Note:
It may be observed that the given set of simultaneous equations above is not an independent
set because the third equation happens to be the sum of the other two. We say that the
equations are “linearly dependent”; and this implies that the rows of the determinant of
coefficients and constants are linearly dependent in the same way.
(In this case, Row 3 = Row 1 plus Row 2).

Furthermore, it may shown that the value of a determinant is zero if and only if its rows are
linearly dependent. Hence, an alternative way of proving that a set of simultaneous linear
equations is a consistent set is to show that they are linearly dependent in some way.

7.2.3 THE RULE OF SARRUS

From the given definition of a third order determinant, the complete “expansion” of the
determinant may be given, in general, as

∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣ = a1(b2c3 − b3c2)− b1(a2c3 − a3c2) + c1(a2b3 − a3b2)

But it may be observed that precisely the same terms may be obtained by first constructing
a diagram which consists of the original determinant with the first two columns written out
again to the right of this determinant. That is:

∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣
a1 b1

a2 b2

a3 b3

.

Taking the sum of the possible products of the trios of numbers in the direction ↘ and
subtracting the sum of the possible products of the trios of numbers in the ↗ direction, we
obtain the terms
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(a1b2c3 + b1c2a3 + c1a2b3)− (a3b2c1 + b2c3a1 + c3a2b1);

and it may be shown that these are exactly the same terms as those obtained by the original
formula.

This “Rule of Sarrus” makes it possible to evaluate a third order determinant with an
electronic calculator, almost without putting pen to paper, provided the calculator memory
is used to store, then recall, the various products.

EXAMPLE

∣∣∣∣∣∣∣
−3 2 7
0 4 −2
5 −1 3

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
−3 2 7
0 4 −2
5 −1 3

∣∣∣∣∣∣∣
−3 2
0 4
5 −1

= ([−3].4.3 + 2.[−2].5 + 7.0.[−1])− (5.4.7 + [−1].[−2].[−3] + 3.0.2)

= (−36− 20 + 0)− (140− 6 + 0) = −56− 134 = −190

as in a previous example.

7.2.4 CRAMER’S RULE FOR THREE SIMULTANEOUS LINEAR
EQUATIONS IN THREE UNKNOWNS

In the same way that, under certain conditions, two simultaneous linear equations may be
solved by determinants of the second order, it is possible to show that, under certain condi-
tions, three simultaneous linear equations in three unknowns may be solved by determinants
of the third order.

The proof of this result will not be included here , but we state it for reference.

The simultaneous linear equations

a1x + b1y + c1z + d1 = 0,

a2x + b2y + c2z + d2 = 0,

a3x + b3y + c3z + d3 = 0,
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have a common solution, given in symmetrical form, by

x∣∣∣∣∣∣∣
b1 c1 d1

b2 c2 d2

b3 c3 d3

∣∣∣∣∣∣∣
=

−y∣∣∣∣∣∣∣
a1 c1 d1

a2 c2 d2

a3 c3 d3

∣∣∣∣∣∣∣
=

z∣∣∣∣∣∣∣
a1 b1 d1

a2 b2 d2

a3 b3 d3

∣∣∣∣∣∣∣
=

−1∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣
or

x

∆1

=
−y

∆2

=
z

∆3

=
−1

∆0

,

which is called the “Key” to the solution and requires that ∆0 6= 0.

Again the rule itself is known as “Cramer’s Rule”.

EXAMPLE

Using the Rule of Sarrus, obtain the common solution of the simultaneous linear equations

x + 4y − z + 2 = 0,

−x− y + 2z − 9 = 0,

2x + y − 3z + 15 = 0.

Solution

The “Key” is

x

∆1

=
−y

∆2

=
z

∆3

=
−1

∆0

,

where

(i)

∆0 =

∣∣∣∣∣∣∣
1 4 −1
−1 −1 2
2 1 −3

∣∣∣∣∣∣∣
1 4
−1 −1
2 1

.

Hence,
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∆0 = (3 + 16 + 1)− (2 + 2 + 12) = 20− 16 = 4,

which is non-zero, and so we may continue:

(ii)

∆1 =

∣∣∣∣∣∣∣
4 −1 2
−1 2 −9
1 −3 15

∣∣∣∣∣∣∣
4 −1
−1 2
1 −3

.

Hence,

∆1 = (120 + 9 + 6)− (4 + 108 + 15) = 135− 127 = 8.

(iii)

∆2 =

∣∣∣∣∣∣∣
1 −1 2
−1 2 −9
2 −3 15

∣∣∣∣∣∣∣
1 −1
−1 2
2 −3

.

Hence,

∆2 = (30 + 18 + 6)− (8 + 27 + 15) = 54− 50 = 4.

(iv)

∆3 =

∣∣∣∣∣∣∣
1 4 2
−1 −1 −9
2 1 15

∣∣∣∣∣∣∣
1 4
−1 −1
2 1

.

Hence,

∆3 = (−15− 72− 2)− (−4− 9− 60) = −89 + 73 = −16.

(v) The solutions are therefore

x = −∆1

∆0

= −8

4
= −2;
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y =
∆2

∆0

=
4

4
= 1;

z = −∆3

∆0

= −−16

4
= 4.

Special Cases

If it should happen that ∆0 = 0 when solving a set of three simultaneous linear equations
by Cramer’s Rule, earlier work has demonstrated that the rows of ∆0 must be linearly
dependent. That is the three groups of x, y and z terms must be linearly dependent.

Different situations arise according to whether or not the constant terms can also be brought
in to the linear dependence relationship and we illustrate with examples as follows:

EXAMPLES

1. For the simultaneous linear equations

2x− y + 3z − 5 = 0,

x + 2y − z − 1 = 0,

x− 3y + 4z − 4 = 0,

the third equation is the difference between the first two and hence it is redundant.

Any solution common to the first two equations will thus be an acceptable solution.
In this case, there will be an infinite number of solutions since, for example, we may
choose the variable z at random, solving for x and y to obtain

x =
11− 5z

5
and y =

5z − 3

5
.

2. For the simultaneous linear equations

2x− y + 3z − 5 = 0,

x + 2y − z − 1 = 0,

x− 3y + 4z − 7 = 0,

8



the third equation is inconsistent with the difference between the first two equations.

That is,

x− 3y + 4z − 7 = 0 is inconsistent with x− 3y + 4z − 4 = 0.

In this case, there are no common solutions.

3. For the simultaneous linear equations

x− 2y + 3z − 1 = 0,

2x− 4y + 6z − 2 = 0,

3x− 6y + 9z − 3 = 0,

we have only one independent equation since the second and third equations are mul-
tiples of the first equation.

Again, there will be an infinite number of solutions which may be obtained by choos-
ing two of the variables at random, then determining the corresponding value of the
remaining variable.

Summary of the special cases

If ∆0 = 0, further investigation of the simultaneous linear equations is necessary.

7.2.5 EXERCISES

1. Show that the simultaneous linear equations

x + y + 2 = 0,

3x + 2y − 1 = 0,

2x + y − 3 = 0,

are consistent and determine their common solution.

2. Show that the simultaneous linear equations

7x− 2y + 1 = 0,

3x + 2y − 4 = 0,

x− 6y − 9 = 0,

are inconsistent.

9



3. Obtain the values of λ for which the simultaneous linear equations

3x + 5y + (λ− 2) = 0,

2x + y − 5 = 0,

(λ− 1)x + 2y − 10 = 0,

are consistent.

4. Use Cramer’s Rule to solve, for x, y and z, the following simultaneous linear equations:

5x + 3y − z + 10 = 0,

−2x− y + 4z − 1 = 0,

−x + 2y − 7z − 17 = 0.

5. Show that the simultaneous linear equations

x− y + 7z − 1 = 0,

x + 2y − 3z + 5 = 0,

5x + 4y + 5z + 13 = 0

are linearly dependent and obtain the common solution for which z = −1.

7.2.6 ANSWERS TO EXERCISES

1.

x = 5 y = −7.

2.

∆0 6= 0.

3.

λ = 5 or λ = −23.

4.

x = −4 y = 3 z = −1.

5.

x =
8

3
y = −16

3
z = −1.
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UNIT 7.3 - DETERMINANTS 3

FURTHER EVALUATION OF
THIRD ORDER DETERMINANTS

7.3.1 EXPANSION BY ANY ROW OR COLUMN

For the numerical evaluation of a third order determinant, the Rule of Sarrus is the easiest
rule to apply; but we examine here some alternative versions of the original definition formula
which will lead us to important standard properties of determinants.

Let us first re-state the original definition formula as follows:

∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣ = a1

∣∣∣∣ b2 c2

b3 c3

∣∣∣∣− b1

∣∣∣∣ a2 c2

a3 c3

∣∣∣∣ + c1

∣∣∣∣ a2 b2

a3 b3

∣∣∣∣ .

The question naturally arises as to whether the three elements of other rows (or even columns)
may multiplied by their minors and the results combined in such a way as to give the same
result as in the above formula. It turns out that any row or any column may be used in this
way.

In order to illustrate this fact, we state again the more algebraic formula for a third order
determinant, namely

∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣ = a1(b2c3 − b3c2)− b1(a2c3 − a3c2) + c1(a2b3 − a3b2).

ILLUSTRATION 1 - Expansion by the second row.

It may be observed that the expression

−a2(b1c3 − b3c1) + b2(a1c3 − a3c1)− c2(a1b3 − a3b1)

gives exactly the same result as in the original formula.
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ILLUSTRATION 2 - Expansion by the third column.

It may be observed that the expression

c1(a2b3 − a3b2)− c2(a1b3 − a3b1) + c3(a1b2 − a2b1)

gives exactly the same result as in the original formula.

Note:
Similar patterns of symbols give the expansions by the remaining rows and columns.

Summary
A third order determinant may be expanded (that is, evaluated) if we multiply each of the
three elements in any row or (any column) by its minor then combined the results according
the following pattern of so-called “place-signs”.

∣∣∣∣∣∣∣
+ − +
− + −
+ − +

∣∣∣∣∣∣∣ .

Note:
It is useful to have a special name for the “signed-minor” which any element of a deter-
minant is mutiplied by, when expanding it by a row or a column. In fact every signed-minor
is called a “cofactor”. This means that, wherever the place-sign is +, the minor and the
cofactor are the same; but, wherever the place-sign is −, the cofactor is numerically equal
to the minor but opposite in sign.

For instance,

(i) The minor of b1 is
∣∣∣∣ a2 c2

a3 c3

∣∣∣∣ ,
but the cofactor of b1 is −

∣∣∣∣ a2 c2

a3 c3

∣∣∣∣.
(ii) The minor and cofactor of b2 are both equal to

∣∣∣∣ a1 c1

a3 c3

∣∣∣∣.
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7.3.2 ROW AND COLUMN OPERATIONS ON DETERMINANTS

INTRODUCTION

Certain types of problem in scientific work can involve determinants for which some or all of
the elements are variable quantities rather than fixed numerical quantities. In these cases,
the methods so far encountered for expanding a determinant may not be appropriate.

Described below is a set of standard properties for determinants of any order but, where
necessary, they will be explained using either 3× 3 determinants or 2× 2 determinants.

STANDARD PROPERTIES OF DETERMINANTS

In this section, the methods of expanding a determinant by any row or any column will be
useful to have in mind.

1. If all of the elements in a row or a column have the value zero, then the value of the
determinant is equal to zero.

Proof:

We simply expand the determinant by the row or column of zeros.

2. If all but one of the elements in a row or column are equal to zero, then the value of
the determinant is the product of the non-zero element in that row or column with its
cofactor.

Proof:

We simply expand the determinant by the row or column containing the single non-
zero element; and we also notice that the determinant is effectively equivalent to a
determinant of one order lower.

For example, ∣∣∣∣∣∣∣
5 1 0
−2 4 3
6 8 0

∣∣∣∣∣∣∣ = −3
∣∣∣∣ 5 1
6 8

∣∣∣∣ = −3(40− 6) = −102.

3. If a determinant contains two identical rows or two identical columns, then the value of
the determinant is zero.

Proof:

If we expand the determinant by a row or column other than the two identical ones, it
will turn out that all of the cofactors have value zero.

For example,
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∣∣∣∣∣∣∣
1 2 3
4 5 6
1 2 3

∣∣∣∣∣∣∣ = −4
∣∣∣∣ 2 3
2 3

∣∣∣∣ + 5
∣∣∣∣ 1 3
1 3

∣∣∣∣− 6
∣∣∣∣ 1 2
1 2

∣∣∣∣ = 0.

4. If two rows, or two columns, are interchanged the value of the determinant is unchanged
numerically but it is reversed in sign.

Proof:

If we expand the determinant by a row or column other than the two which have been
interchanged, then all of the cofactors will be changed in sign.

For example, ∣∣∣∣∣∣∣
a1 c1 b1

a2 c2 b2

a3 c3 b3

∣∣∣∣∣∣∣ = a1

∣∣∣∣ c2 b2

c3 b3

∣∣∣∣− a2

∣∣∣∣ c1 b1

c3 b3

∣∣∣∣ + a3

∣∣∣∣ c1 b1

c2 b2

∣∣∣∣ .
5. If all of the elements in a row or column have a common factor, then this common factor

may be removed from the determinant and placed outside.

Proof:

Expanding the determinant by the row or column which contains the common factor
is equivalent to removing the common factor first, then expanding by the new row or
column so created.

For example, ∣∣∣∣∣∣∣
a1 kb1 c1

a2 kb2 c2

a3 kb3 c3

∣∣∣∣∣∣∣ = k

∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣ ,
if we expand the left-hand-side by the second column.

Note:
Another way of stating this property is that, if all of the elements in any row or column
of a determinant are multiplied by the same factor, then the value of the determinant
is also multiplied by that factor.

6. If the elements of any row in a determinant are altered by adding to them (or subtracting
from them) a common multiple of the corresponding elements in another row, then the
value of the determinant is unaltered. A similar result applies to columns.

ILLUSTRATION

The validity of this result is easily shown in the case of 2× 2 determinants as follows:∣∣∣∣ a1 + kb1 b1

a2 + kb2 b2

∣∣∣∣ = [(a1 + kb1)b2 − (a2 + kb2)b1] = a1b2 − a2b1 =
∣∣∣∣ a1 b1

a2 b2

∣∣∣∣ .
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The above properties need not normally be used for the evaluation of determinants whose
elements are simple numerical values; but, in the examples which follow, we include one such
determinant in order to provide a simple introduction to the technique.

We shall use the symbols R1, R2 and R3 to denote Row 1, Row 2 and Row 3; the symbols C1,
C2 and C3 will be used to denote Column 1, Column 2 and Column 3; and the symbol −→
will stand for the word “becomes”. The examples use what are called “row operations”
and “column operations”.

EXAMPLES

1. Evaluate the determinant, ∣∣∣∣∣∣∣
1 15 7
2 25 9
3 10 3

∣∣∣∣∣∣∣
Solution ∣∣∣∣∣∣∣

1 15 7
2 25 9
3 10 3

∣∣∣∣∣∣∣ C1 −→ C1 ÷ 5;

5

∣∣∣∣∣∣∣
1 3 7
2 5 9
3 2 3

∣∣∣∣∣∣∣ R2 −→ R2 − 2R1;

5

∣∣∣∣∣∣∣
1 3 7
0 −1 −5
3 2 3

∣∣∣∣∣∣∣ R3 −→ R3 − 3R1;

∣∣∣∣∣∣∣
1 3 7
0 −1 −5
0 −7 −18

∣∣∣∣∣∣∣
= 5(18− 35) = 5×−17 = −85.
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2. Solve, for x, the equation ∣∣∣∣∣∣∣
x 5 3
5 x + 1 1
−3 −4 x− 2

∣∣∣∣∣∣∣ = 0.

Solution

We could expand the determinant directly, but we would then obtain a cubic equation
in x which may not be straightforward to solve.

A better method is to try to obtain factors of this cubic equation before expanding the
determinant.

It may be observed in this example that the three expressions in each column add up
to the same quantity, namely x + 2. Thus if we first add Row 2 to Row 1, then add
Row 3 to the new Row 1, we shall obtain x + 2 as a factor of the first row.

We may write

0 =

∣∣∣∣∣∣∣
x 5 3
5 x + 1 1
−3 −4 x− 2

∣∣∣∣∣∣∣ R1 −→ R1 + R2 + R3

=

∣∣∣∣∣∣∣
x + 2 x + 2 x + 2

5 x + 1 1
−3 −4 x− 2

∣∣∣∣∣∣∣ R1 −→ R1 ÷ (x + 2)

= (x + 2)

∣∣∣∣∣∣∣
1 1 1
5 x + 1 1
−3 −4 x− 2

∣∣∣∣∣∣∣ C2 −→ C2 − C1 and C3 −→ C3 − C1

= (x + 2)

∣∣∣∣∣∣∣
1 0 0
5 x− 4 −4
−3 −1 x + 1

∣∣∣∣∣∣∣
= (x + 2)[(x− 4)(x + 1)− 4] = (x− 2)(x2 − 3x− 8).

Hence,

x = −2 or x =
3±

√
9 + 32

2
=

3±
√

41

2
.
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3. Solve, for x, the equation ∣∣∣∣∣∣∣
x− 6 −6 x− 5

2 x + 2 1
7 8 x + 7

∣∣∣∣∣∣∣ = 0,

Solution

We may observe that the sum of the corresponding pairs of elements in the first two
rows is the same, namely x− 4. Hence we may proceed as follows:

0 =

∣∣∣∣∣∣∣
x− 6 −6 x− 5

2 x + 2 1
7 8 x + 7

∣∣∣∣∣∣∣ R1 −→ R1 + R2

=

∣∣∣∣∣∣∣
x− 4 x− 4 x− 4

2 x + 2 1
7 8 x + 7

∣∣∣∣∣∣∣ R1 −→ R1 ÷ (x− 4)

= (x− 4)

∣∣∣∣∣∣∣
1 1 1
2 x + 2 1
7 8 x + 7

∣∣∣∣∣∣∣ C2 −→ C2 − C1 and C3 −→ C3 − C1

= (x− 4)

∣∣∣∣∣∣∣
1 0 0
2 x −1
7 1 x

∣∣∣∣∣∣∣
= (x− 4)(x2 + 1).

In this case, the only real solution is x = 4, the others being complex numbers x = ±j.

4. Solve, for x, the equation ∣∣∣∣∣∣∣
x 3 2
4 x + 4 4
2 1 x− 1

∣∣∣∣∣∣∣ ,
Solution

We may observe that the 2 in Row 1 may be used to reduce to zero the 4 underneath
it in Row 2.
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Hence,

0 =

∣∣∣∣∣∣∣
x 3 2
4 x + 4 4
2 1 x− 1

∣∣∣∣∣∣∣ R2 −→ R2 − 2R1

=

∣∣∣∣∣∣∣
x 3 2

4− 2x x− 2 0
2 1 x− 1

∣∣∣∣∣∣∣ R2 −→ R2 ÷ (x− 2)

= (x− 2)

∣∣∣∣∣∣∣
x 3 2
−2 1 0
2 1 x− 1

∣∣∣∣∣∣∣ C1 −→ C1 + 2C2

= (x− 2)

∣∣∣∣∣∣∣
x + 6 3 2

0 1 0
4 1 x− 1

∣∣∣∣∣∣∣
= (x− 2)[(x + 6)(x− 1)− 8] = (x− 2)[x2 + 5x− 14] = (x− 2)(x + 7)(x− 2).

Thus,

x = 2 (repeated) and x = −7.

Note:
It is not possible to cover, by examples, every type of problem which may occur. The secret
is first to spend a few seconds examining whether or not the sum or difference of a group of
rows or columns can give a common factor immediately. If not, the procedure is to look for
ways of obtaining a row or column in which all but one of the elements is zero and hence,
effectively, to reduce the order of the determinant.
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7.3.3 EXERCISES

1. Use row and/or column operations to evaluate the following determinants:

(a) ∣∣∣∣∣∣∣
100 101 102
101 102 103
102 103 104

∣∣∣∣∣∣∣ ;
(b) ∣∣∣∣∣∣∣

1! 2! 3!
2! 3! 4!
3! 4! 5!

∣∣∣∣∣∣∣ .
2. Use row and/or column operations to evaluate, in terms of a and b, the determinant∣∣∣∣∣∣∣

1 1 1
1 1 + a 1
1 1 1 + b

∣∣∣∣∣∣∣ .
3. Show that the equation ∣∣∣∣∣∣∣

x a b
a x b
a b x

∣∣∣∣∣∣∣ = 0

has one solution x = −(a + b) and hence solve it completely.

4. Solve completely, for x, the following equations:

(a) ∣∣∣∣∣∣∣
x− 3 x + 2 x− 1
x + 2 x− 4 x
x− 1 x + 4 x− 5

∣∣∣∣∣∣∣ = 0;

(b) ∣∣∣∣∣∣∣
x + 1 x + 2 3

2 x + 3 x + 1
x + 3 1 x + 2

∣∣∣∣∣∣∣ = 0.
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7.3.4 ANSWERS TO EXERCISES

1. (a)

0

(b)

24

2.

ab

3.

x = −(a + b), x = a, x = b.

4. (a)

x =
2

3
only;

(b)

x = −3, x = ±
√

3.
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UNIT 7.4 - DETERMINANTS 4

HOMOGENEOUS LINEAR EQUATIONS

7.4.1 TRIVIAL AND NON-TRIVIAL SOLUTIONS

This Unit is concerned with a set of simultaneous linear equations in which all of the constant
terms have value zero. Most of the discussion will involve three such “homogeneous” linear
equations of the form

a1x + b1y + c1z = 0,

a2x + b2y + c2z = 0,

a3x + b3y + c3z = 0.

These could have been discussed at the same time as Cramer’s Rule but are worth con-
sidering as a completely separate case since, in scientific applications, they lend themselves
conveniently to the methods of row and column operations.

Observations

1. In Cramer’s Rule for the above set of equations, if the determinant, ∆0 of the coefficients
of x, y and z is non-zero, there will exist a unique solution, namely x = 0, y = 0, z = 0,
since each of the determinants ∆1, ∆2 and ∆3 will contain a column of zeros (that is,
the constant terms of the three equations).

But this solution is obvious from the given set of equations and we call it the “trivial
solution”.

2. The question arises as to whether it is possible for the set of equations to have any
“non-trivial” solutions.

3. We shall see that non-trivial solutions occur when the number of equations reduces to
less than the number of variables being solved for; that is when the equations are not
linearly independent.

For example, if one of the equations is redundant, we could solve the remaining two in
an infinite number of ways by choosing one of the variables at random. Also, if two
of the equations are redundant, we could solve the remaining equation in an infinite
number of ways by choosing two of the variables at random.

4. It is evident from previous work that the set of homogeneous linear equations will have
non-trivial solutions provided that

1



∆0 =

∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣ = 0.

5. Once it has been established that non-trivial solutions exist, it can be seen that any
solution x = α, y = β, z = γ will imply other solutions of the form x = λα, y = λβ,
z = λγ, where λ is any non-zero number.

TYPE 1 - One of the three equations is redundant

The non-trivial solutions to a set which reduces to two linearly independent homogeneous
linear equations in x, y and z may be stated in the form

x : y : z = α : β : γ,

in which we mean that

x

y
=

α

β
,

y

z
=

β

γ
and

x

z
=

α

γ
.

One method of obtaining these ratios is first to eliminate z between the two equations in
order to obtain the ratio x : y, then to eliminate y between the two equations in order to
find the ratio x : z; but a slightly simpler method is described in the first worked example
to be discussed shortly.

TYPE 2 - Two of the three equations are redundant

This case arises when the three homogeneous linear equations are multiples of one another.

Again, any solution implies an infinite number of others in the same set of ratios, x : y : z.
But it turns out that not all solutions are in the same set of ratios.

For example, if the only equation remaining is

ax + by + cz = 0,

we could choose any two of the variables at random and solve for the remaining variable.
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In particular, we could substitute y = 0 to obtain x : y : z = − c
a

: 0 : 1;

and we could also substitute z = 0 to obtain x : y : z = − b
a

: 1 : 0

From these two, it is now possible to generate solutions with any value, β, of y and any
value, γ, of z (as if we had chosen y and z at random) in order to solve for x.

In fact

x = −(β.
b

a
+ γ.

c

a
), y = β, z = γ.

Note:
It may be shown that, for a set of homogeneous linear simultaneous equations, no types of
solution exist other than those discussed above.

EXAMPLES

1. Show that the homogeneous linear equations

2x + y − z = 0,

x− 3y + 2z = 0,

x + 4y − 3z = 0

have solutions other than x = 0, y = 0, z = 0 and determine the ratios x : y : z for
these non-trivial solutions.

Solution

(a)

∆0 =

∣∣∣∣∣∣∣
2 1 −1
1 −3 2
1 4 −3

∣∣∣∣∣∣∣
2 1
1 −3
1 4

= (18 + 2− 4)− (3 + 16− 3) = 0.

Thus, the equations are linearly dependent and, hence, have non-trivial solutions.

Note:
We could, alternatively, have noticed that the first equation is the sum of the second
and third equations.
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(b) It can always be arranged, in a set of ratios α : β : γ, that any of the quantities
which does not have to be equal to zero may be given the value 1. For example, α

γ
: β

γ
: 1

is the same set of ratios as long as γ is not zero.

Let us now suppose that z = 1, giving

2x + y − 1 = 0,

x− 3y + 2 = 0,

x + 4y − 3 = 0

On solving any pair of these equations, we obtain x = 1
7

and y = 5
7
, which means that

x : y : z =
1

7
:
5

7
: 1

That is,

x : y : z = 1 : 5 : 7

and any three numbers in these ratios form a solution.

2. Determine the values of λ for which the homogeneous linear equations

(1− λ)x + y − 2z = 0,

−x + (2− λ)y + z = 0,

y − (1− λ)z = 0

have non-trivial solutions.

Solution

First we solve the equation

0 =

∣∣∣∣∣∣∣
1− λ 1 −2
−1 2− λ 1
0 1 −1− λ)

∣∣∣∣∣∣∣ R1 −→ R1 −R3

=

∣∣∣∣∣∣∣
1− λ 0 −1 + λ
−1 2− λ 1
0 1 −1− λ

∣∣∣∣∣∣∣ R1 −→ R1 ÷ (1− λ)

4



= (1− λ)

∣∣∣∣∣∣∣
1 0 −1
−1 2− λ 1
0 1 −1− λ

∣∣∣∣∣∣∣ C3 −→ C3 + C1

= (1− λ)

∣∣∣∣∣∣∣
1 0 0
−1 2− λ 0
0 1 −1− λ

∣∣∣∣∣∣∣
= −(1− λ)(2− λ)(1 + λ)

Hence,

λ = 1, − 1 or 2.

3. Determine the general solution of the homogeneous linear equation

3x− 7y + z = 0.

Solution

Substituting y = 0, we obtain 3x + z = 0 and hence x : y : z = −1
3

: 0 : 1.

Substituting z = 0, we obtain 3x− 7y = 0 and hence x : y : z = 7
3

: 1 : 0

The general solution may thus be given by

x =
7β

3
− γ

3
, y = β, z = γ

for arbitrary values of β and γ, though other equivalent versions are possible according
to which of the three variables are chosen to have arbitrary values.
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7.4.2 EXERCISES

1. Show that the homogeneous linear equations

x− 2y + 2z = 0,

2x− 2y − z = 0,

3x + y + z = 0

have no solutions other than the trivial solution.

2. Show that the following sets of homogeneous linear equations have non-trivial solutions
and express these solutions as a set of ratios for x : y : z

(a)

x− 2y + z = 0,

x + y − 3z = 0,

3x− 3y − z = 0;

(b)

3x + y − 2z = 0,

2x + 4y + 2z = 0,

4x + 3y − z = 0.

3. Determine the values of λ for which the homogeneous linear equations

λx + 2y + 3z = 0,

2x + (λ + 3)y + 6z = 0,

3x + 4y + (λ + 6)z = 0

have non-trivial solutions and solve them for the case when λ is an integer.

4. Determine the general solution to the homogeneous linear simultaneous equations

(λ + 1)x− 5y + 3z = 0,

−2x + (λ− 8)y + 6z = 0,

−3x− 15y + (λ + 11)z = 0

in the case when λ = −2.
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7.4.3 ANSWERS TO EXERCISES

1.

∆0 6= 0.

2. (a)

x : y : z = 5 : 4 : 3;

(b)

x : y : z = 1 : −1 : 1

3.

λ = 1, 0.83 or − 10.83

When λ = 1, x : y : z = −1 : −1 : 1

4.

x = −5β + 3γ, y = β, z = γ.
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UNIT 8.1 - VECTORS 1 - INTRODUCTION TO VECTOR ALGEBRA

8.1.1 DEFINITIONS

1. A “scalar” quantity is one which has magnitude, but is not related to any direction in
space.

Examples: Mass, Speed, Area, Work.

2. A “vector” quantity is one which is specified by both a magnitude and a direction in
space.

Examples: Velocity, Weight, Acceleration.

3. A vector quantity with a fixed point of application is called a “position vector”.

4. A vector quantity which is restricted to a fixed line of action is called a “line vector”.

5. A vector quantity which is defined only by its magnitude and direction is called a “free
vector”.

Note:
Unless otherwise stated, all vectors in the remainder of these units will be free vectors.

6. A vector quantity can be represented diagramatically by a directed straight line segment
in space (with an arrow head) whose direction is that of the vector and whose length
represents its magnitude according to a suitable scale.

7. The symbols a, b, c, ...... will be used to denote vectors with magnitudes a,b,c.... but
it is sometimes more convenient to use a notation such as AB which means the vector
represented by the line segment drawn from the point A to the point B.

Notes:
(i) The magnitude of the vector AB, which is the length of the line AB can also be
denoted by the symbol |AB|.
(ii) The magnitude of the vector a, which is the number a, can also be denoted by the
symbol |a|.
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�
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�
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�
�

�
�

�
�

�
�

��

a

A

B

8. A vector whose magnitude is 1 is called a “unit vector” and the symbol â denotes a
unit vector in the same direction as a. A vector whose magnitude is zero is called a
“zero vector” and is denoted by O or O. It has indeterminate direction.

9. Two (free) vectors a and b are said to be “equal” if they have the same magnitude
and direction.

Note:
This means that two directed straight line segments which are parallel and equal in
length may be regarded as representing exactly the same vector.
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10. A vector whose magnitude is that of a but with opposite direction is denoted by − a.

8.1.2 ADDITION AND SUBTRACTION OF VECTORS

Students may already know how the so-called “resultant” (or sum) of particular vectors,
like forces, can be determined using either the “Parallelogram Law” or alternatively the
“Triangle Law”. This previous knowledge is not essential here because we now define the
sum of two arbitrary vectors diagramatically using either a parallelogram or a triangle. This
will then lead also to a definition of subtraction for two vectors.
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������������

HHHj
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������:
������������

�
�
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�
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�
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�
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HHHj
HHH

HHH

a

b

a + b

a

a + b

b

Parallelogram Law Triangle Law

Notes:
(i) The Triangle Law is more widely used than the Parallelogram Law because of its sim-
plicity. We need to observe that a and b describe the triangle in the same sense while
a + b describes the triangle in the opposite sense.

(ii) We define subtraction for vectors by considering that

a − b = a + (−b).

For example, to find a − b for the vectors a and b below,

�
�

�
�

�
��

a

@
@

@R

b

we may construct the following diagrams:
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The third figure shows that, to find a − b, we require that a and b describe the triangle in
opposite senses while a − b describes the triangle in the same sense as b

(iii) The sum of the three vectors describing the sides of a triangle in the same sense is always
the zero vector.

8.1.3 MULTIPLICATION OF A VECTOR BY A SCALAR

If m is any positive real number, ma is defined to be a vector in the same direction as a, but
of m times its magnitude.

Similarly −ma is a vector in the opposite direction to a, but of m times its magnitude.

Note:

a = aâ and hence
1

a
.a = â.

That is, if any vector is multiplied by the reciprocal of its magnitude, we obtain a unit vector
in the same direction. This process is called “normalising the vector”.

8.1.4 LAWS OF ALGEBRA OBEYED BY VECTORS

(i) The Commutative Law of Addition

a + b = b + a.

(ii) The Associative Law of Addition

a + (b + c) = (a + b) + c = a + b + c.

(iii) The Associative Law of Multiplication by a Scalar

m(na) = (mn)a = mna.
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(iv) The Distributive Laws for Multiplication by a Scalar

(m + n)a = ma + na

and

m(a + b) = ma + mb.

8.1.5 VECTOR PROOFS OF GEOMETRICAL RESULTS

The following examples illustrate how certain geometrical results which could be very cum-
bersome to prove using traditional geometrical methods can be much more easily proved
using a vector method.

EXAMPLES

1. Prove that the line joining the midpoints of two sides of a triangle is parallel to the
third side and equal to half of its length.

Solution
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M
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N

C

By the Triangle Law,

BC = BA + AC

and

MN = MA + AN =
1

2
BA +

1

2
AC.

Hence,

MN =
1

2
(BA + AC) =

1

2
BC,

which proves the result.
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2. ABCD is a quadrilateral (four-sided figure) and E,F,G,H are the midpoints of AB, BC,
CD and DA respectively. Show that EFGH is a parallelogram.

Solution

XXXXXXXXXXXX
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B C
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A
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A
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H
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F

By the Triangle Law,

EF = EB + BF =
1

2
AB +

1

2
BC =

1

2
(AB + BC) =

1

2
AC

and also

HG = HD + DG =
1

2
AD +

1

2
DC =

1

2
(AD + DC) =

1

2
AC.

Hence,
EF = HG,

which proves the result.
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8.1.6 EXERCISES

1. Which of the following are vectors and which are scalars ?

(a) Kinetic Energy; (b) Volume; (c) Force;

(d) Temperature; (e) Electric Field; (f) Thrust.

2. Fill in the missing arrows for the following vector diagrams:

(a)

(c) (d)

(b)

�����1
���������

HH
HHHHb

a

a + b

-@
@

@

XXXXXXXXXXXX

b

a

b − a

6

XXXXXXXXXXXX

������������
− b − a

a

b

XXXXXXXXXXXX

�����1
���������

A
A
A
A
A
Ab

− a

a + b

3. ABCDE is a regular pentagon with centre O. Use the Triangle Law of Addition to show
that

AB + BC + CD + DE + EA = O.

4. Draw to scale a diagram which illustrates the identity

4a + 3(b − a) = a + 3b.

5. a, b and c are any three vectors and

p = b + c − 2a, q = c + a − 2b, r = 3c − 3b.

Show that the vector 3p − 2q is parallel to the vector 5p − 6q + r.
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8.1.7 ANSWERS TO EXERCISES

1. (a) Scalar; (b) Scalar; (c) Vector:

(d) Scalar; (e) Vector; (f) Vector.

2. The completed diagrams are as follows:

(a)

(c) (d)

(b)

�����1
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� HHHY
HHH

HHHb

a

a + b
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@

XXXXXXy
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b

a

b − a

6

XXXXXXz
XXXXXXXXXXXX− b − a

a

b

������9
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XXXXXXz
XXXXXXXXXXXX
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���������

A
A
AU

A
A
A
A
A
Ab

− a

a + b

3. Join A,B,C,D and E up to the centre, O.

4. The diagram is

--�
�

�
�

�
��

���PPPPPPPPPPPPPq�
�

�
�

�
�

PPPPPq

PPPPPPPPPPPPPa
b

3(b - a)

4a + 3(b - a)

5. One vector is a scalar multiple of the other.
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UNIT 8.2 - VECTORS 2 - VECTORS IN COMPONENT FORM

8.2.1 THE COMPONENTS OF A VECTOR

The simplest way to define a vector in space is in terms of unit vectors placed along the
axes Ox, Oy and Oz of a three-dimensional right-handed cartesian reference system. These
unit vectors will be denoted respectively by i, j and k (omitting, for convenience, the “bars”
underneath and the “hats” on the top).

Consider the following diagram:
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z
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R

OA ���

B-

C
6

In the diagram, OA = i, OB = j and OC = k. P is the point with co-ordinates (x, y, z).

By the Triangle Law
r = OP = OQ + QP = OR + RQ + QP.

That is,
r = xi + yj + zk.

Notes:

(i) The fact that we have considered a vector which emanates from the origin is not a special
case since we are dealing with free vectors. Nevertheless OP is called the position vector of
the point P.

(ii) The numbers x, y and z are called the “components” of OP (or of any other vector in
space with the same magnitude and direction as OP).

(iii) To multiply (or divide) a vector in component form by a scalar, we simply multiply
(or divide) each of its components by that scalar.
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8.2.2 THE MAGNITUDE OF A VECTOR IN COMPONENT FORM

Referring to the diagram in section 8.2.1, Pythagoras’ Theorem gives

(OP)2 = (OQ)2 + (QP)2 = (OR)2 + (RQ)2 + (QP)2.

That is,

r = |xi + yj + zk| =
√

x2 + y2 + z2.

EXAMPLE

Determine the magnitude of the vector

a = 5i− 2j + k

and hence obtain a unit vector in the same direction.

Solution

|a| = a =
√

52 + (−2)2 + 12 =
√

30.

Hence, a unit vector in the same direction as a is obtained by normalising a; that is, dividing
it by its own magnitude.

The required unit vector is

â =
1

a
.a =

5i− 2j + k√
30

.

8.2.3 THE SUM AND DIFFERENCE OF VECTORS IN COMPONENT FORM

We consider, first, a situation in two dimensions where two vectors are added together.

6
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O

In the diagram, suppose P1 has co-ordinates (x1, y1) and suppose P2 has co-ordinates (x2, y2).
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Then, since the triangle ORP1 has exactly the same shape as the triangle P2SQ, the
co-ordinates of Q must be (x1 + x2, y1 + y2).

But, by the Parallelogram Law, OQ is the sum of OP1 and OP2.

That is,
(x1i + y1j) + (x2i + y2j) = (x1 + x2)i + (y1 + y2)j,

showing that the sum of two vectors may be found by adding together their separate com-
ponents.

It can be shown that this result applies in three dimensions also and that, to find the
difference of two vectors, we calculate the difference of their separate components.

EXAMPLE

Two points P and Q in space have cartesian co-ordinates (−3, 1, 4) and (2,−2, 5) respectively.
Determine the vector PQ.

Solution

We are given that
OP = −3i + j + 4k and OQ = 2i− 2j + 5k.

A
A

A
A

A
A

A
A

AK

���
��

���*

�
�
�
�
�
�
�
�

�
�
�
�
��

O

P

Q

By the triangle Law,

PQ = OQ−OP = 5i− 3j + k.

Note:
The vector PQ is, of course, the vector drawn from the point P to the point Q and it may
seem puzzling that the result just obtained appears to be a vector drawn from the origin to
the point (5,−3, 1). However, we need to use again the fact that we are dealing with free
vectors and the vector drawn from the origin to the point (5,−3, 1) is parallel and equal in
length to PQ; in other words, it is the same as PQ.
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8.2.4 THE DIRECTION COSINES OF A VECTOR

Suppose that

OP = r = xi + yj + zk

and suppose that OP makes angles α, β and γ with Ox, Oy and Oz respectively.

Then,

cos α =
x

r
, cos β =

y

r
and cos γ =

z

r
.
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O

γ

The three quantities cos α, cos β and cos γ are called the “direction cosines” of r.

Any three numbers in the same ratio as the direction cosines are said to form a set of
“direction ratios” for the vector r and we note that x : y : z is one possible set of direction
ratios.

EXAMPLE

The direction cosines of the vector
6i + 2j− k

are
6√
41

,
2√
41

and
−1√
41

,

since the vector has magnitude
√

36 + 4 + 1 =
√

41.

A set of direction ratios for this vector are 6 : 2 : −1.
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8.2.5 EXERCISES

1. The position vectors of two points P and Q are, respectively,

r1 = 2i + 3j− k and r2 = 4i− 3j + 2k.

Determine the vector PQ in terms of i , j and k and hence obtain

(a) its magnitude;

(b) its direction cosines.

2. Obtain a unit vector which is parallel to the vector a = 3i − j + 5k.

3. If a = 3i− j− 4k, b = −2i + 4j− 3k and c = i + 2j− k, determine the following:

(a)

2a− b + 3c;

(b)

|a + b + c|;

(c)

|3a− 2b + 4c|;

(d) a unit vector which is parallel to

3a− 2b + 4c.

4. Prove that the vectors a = 3i + j− 2k, b = −i + 3j + 4k and c = 4i− 2j− 6k can form
the sides of a triangle.

Determine also the lengths of the “medians” of this triangle (that is, the lines joining
each vertex to the mid-point of the opposite side).
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8.2.6 ANSWERS TO EXERCISES

1. PQ = 2i− 6j + 3k.

(a) |PQ| = 7;

(b) The direction cosines are 2
7
, −6

7
and 3

7
.

2.

±3i− j + 5k√
35

.

3. (a)

11i− 8k;

(b)
√

93;

(c)
√

398;

(d)

±17i− 3j− 10k√
398

.

4. a = b + c; therefore the vectors form a triangle.

The medians have lengths equal to

5

√
3

2
,
√

6 and

√
114

2
.

6



“JUST THE MATHS”

UNIT NUMBER

8.3

VECTORS 3
(Multiplication of one vector by another)

by

A.J.Hobson

8.3.1 The scalar product (or “dot” product)
8.3.2 Deductions from the definition of dot product
8.3.3 The standard formula for dot product
8.3.4 The vector product (or “cross” product)
8.3.5 Deductions from the definition of cross product
8.3.6 The standard formula for cross product
8.3.7 Exercises
8.3.8 Answers to exercises



UNIT 8.3 - VECTORS 3

MULTIPLICATION OF ONE VECTOR BY ANOTHER

8.3.1 THE SCALAR PRODUCT (or “Dot” Product)

DEFINITION

The “Scalar Product” of two vectors a and b is defined as ab cos θ, where θ is the angle
between the directions of a and b, drawn so that they have a common end-point and are
directed away from that point. The Scalar Product is denoted by a • b so that

a • b = ab cos θ
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���
���

���*

θ

0 ≤ θ ≤ π

b

a

A
A

A
A

A
A

Scientific Application

If b were a force of magnitude b, then bcos θ would be its resolution (or component) along
the vector a. Hence, a•b would represent the work done by b in moving an object along the
vector a. Similarly, if a were a force of magnitude a, then acos θ would be its resolution (or
component) along the vector b. Hence, a • b would represent the work done by a in moving
an object along the vector b.

8.3.2 DEDUCTIONS FROM THE DEFINITION OF DOT PRODUCT

(i) a • a = a2.

Proof:

Clearly, the angle between a and itself is zero so that

a • a = a.a cos 0 = a2.

(ii) a • b can be interpreted as the magnitude of one vector times the perpendicular projection
of the other vector onto it.

Proof:

bcos θ is the perpendicular projection of b onto a and acos θ is the perpendicular projection
of a onto b.
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(iii) a • b = b • a.

Proof:

This follows since abcos θ = bacos θ.

(iv) Two non-zero vectors are perpendicular if and only if their Scalar Product is zero.

Proof:

a is perpendicular to b if and only if the angle θ = π
2
; that is, if and only if cos θ = 0 and

hence, abcos θ = 0.

(v) a • (b + c) = a • b + a • c.

�
�

�
�

�
�

�
�

�
�

�
�

��

����
���

��*

�
�
�
�
�
�
�
�
��

-

�
���

���
��

�
�
�
�
�
�
�
�
�

P Q R S a

b
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b + c

The result follows from (ii) since the projections PR and PQ of b and c respectively onto a
add up to the projection PS of b + c onto a.

Note:
We need to observe that RS is equal in length to PQ.

(vi) The Scalar Product of any two of the standard unit vectors i, j and k is given by the
following multiplication table:

• i j k
i 1 0 0
j 0 1 0
k 0 0 1

That is, i • i = 1, j • j = 1 and k • k = 1;

but,

i • j = 0, i • k = 0 and j • k = 0.
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8.3.3 THE STANDARD FORMULA FOR DOT PRODUCT

If
a = a1i + a2j + a3k and b = b1i + b2j + b3k,

then
a • b = a1b1 + a2b2 + a3b3.

Proof:

This result follows easily from the multiplication table in (vi).

Note: The angle between two vectors

If θ is the angle between the two vectors a and b, then

cos θ =
a • b

ab
.

Proof:

This result is just a restatement of the original definition of a Scalar Product.

EXAMPLE

If
a = 2i + 2j− k and b = 3j− 4k,

then,
a • b = 2× 0 + 2× 3 + (−1)× (−4) = 10.

Hence,

cos θ =
10√

22 + 22 + 12
√

32 + 42
=

10

15
=

2

3
.

Thus,
θ = 48.19◦ or 0.84 radians.
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8.3.4 THE VECTOR PRODUCT (or “Cross” Product)

DEFINITION

If θ is the angle between two vectors a and b, drawn so that they have a common end-point
and are directed away from that point, then the “Vector Product” of a and b is defined
to be a vector of magnitude

ab sin θ,

in a direction which is perpendicular to the plane containing a and b and in a sense which
obeys the “right-hand-thread screw rule” in turning from a to b. The Vector Product
is denoted by

a x b.

-��
���

���
���

����
���

��*

6

a x b

θ

0 ≤ θ ≤ π
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Scientific Application

Consider the following diagram:

�
�

�
�

�
�

�
�
��

HHH
HHH

HHH
HHHj?

O

A

Ba x b

@
@

@
@

@
@

@
@
@

a

b

θ
bsin θ

Suppose that the vector OA = a represents a force acting at the point O and that the vector
OB = b is the position vector of the point B. Let the angle between the two vectors be θ.

Then the “moment” of the force OA about the point B is a vector whose magnitude is

ab sin θ

and whose direction is perpendicular to the plane of O, A and B in a sense which obeys the
right-hand-thread screw rule in turning from OA to OB. That is

Moment = a x b.
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Note:
The quantity b sin θ is the perpendicular distance from the point B to the force OA.

8.3.5 DEDUCTIONS FROM THE DEFINITION OF CROSS PRODUCT

(i)
a x b = −(b x a) = (−b) x a = b x (−a).

Proof:
This follows easily by considering the implications of the right-hand-thread screw rule.

(ii) Two vectors are parallel if and only if their Cross Product is a zero vector.

Proof:
Two vectors are parallel if and only if the angle, θ, between them is zero or π. In either case,
sin θ = 0, which means that ab sin θ = 0; that is, |a x b| = 0.

(iii) The Cross Product of a vector with itself is a zero vector.

Proof:
Clearly, the angle between a vector, a, and itself is zero. Hence,

|a x a| = a.a. sin 0 = 0.

(iv)
a x (b + c) = a x b + a x c.

Proof:
This is best proved using the standard formula for a Cross Product in terms of components
(see 8.3.6 below).

(v) The multiplication table for the Cross Products of the standard unit vectors i, j and k
is as follows:

x i j k
i O k −j
j − k O i
k j − i O

That is,
i x i = O, j x j = O, k x k = O, i x j = k, j x k = i, k x i = j, j x i = − k,
k x j = − i and i x k = − j.

8.3.6 THE STANDARD FORMULA FOR CROSS PRODUCT

If
a = a1i + a2j + a3k and b = b1i + b2j + b3k,

then,
a x b = (a2b3 − a3b2)i− (a1b3 − a3b1)j + (a1b2 − a2b1)k.
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This is usually abbreviated to

a x b =

∣∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ ,

the symbol on the right hand side being called a “determinant” (see Unit 7.2).

EXAMPLES

1. If a = 2i + 2j − k and b = 3j − 4k, determine a x b.

Solution

a x b =

∣∣∣∣∣∣∣
i j k
2 2 −1
0 3 −4

∣∣∣∣∣∣∣ = (−8 + 3)i− (−8− 0)j + (6− 0)k = −5i + 8j + 6k.

2. Show that, for any two vectors a and b,

(a + b) x (a− b) = 2(b x a).

Solution

The left hand side =
a x a− a x b + b x a− b x b.

That is,
O + b x a + b x a = 2(b x a).

3. Determine the area of the triangle defined by the vectors

a = i + j + k and b = 2i− 3j + k.

Solution

If θ is the angle between the two vectors a and b, then the area of the triangle is
1
2
ab sin θ from elementary trigonometry. The area is therefore given by

1

2
|a x b|.

That is,

Area =
1

2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
i j k
1 1 1
2 −3 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ =

1

2
|4i + j− 5k|.

This gives

Area =
1

2

√
16 + 1 + 25 =

1

2

√
42 ' 3.24
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8.3.7 EXERCISES

1. In the following cases, evaluate the Scalar Product a • b and hence determine the angle,
θ between a and b:

(a) a = 2i + 2j − k and b = 3i − 6j + 2k;

(b) a = i + 2j − k and b = 3j + k;

(c) a = − i − j + 4k and b = 7i − 2k.

2. Find out which of the following pairs of vectors are perpendicular and determine the
cosine of the angle between those which are not:

(a) 3j and 2j − 2k;

(b) i + 3j − 5k and − i + 2j + k;

(c) 2i + 10k and 7j;

(d) 2i + 2j − k and 6i − 3j + 2k.

3. If a = 2i + j + k, b = i − 2j − 2k and c = 3i − 4j + 2k, determine the length of the
projection of a + c onto b.

4. If a = 2i − 3j + 5k and b = 3i + j − 2k, evaluate

(a + b) • (a− b).

5. Determine the components of the vector a x b in the following cases:

(a) a = 2i + 2j − k and b = 3i − 6j + 2k;

(b) a = i + 2j − k and b = 3j + k;

(c) a = − i − j + 4k and b = 7i − 2k.

6. If a = 3i − j + 2k and b = i + 3j − 2k, show that a x b is perpendicular to the vector
c = 9i + 2j + 2k.

7. Given that a x b is perpendicular to each one of the vectors a and b, determine a unit
vector which is perpendicluar to each one of the vectors a = 2i − j + k and b = 3i +
4j − k.
Calculate also the sine of the angle, θ, between a and b.

8. Determine the area of the triangle whose vertices are the points A(3, − 1,2),
B(1, − 1, − 3) and C(4, − 3,1) in space. State your answer correct to two places of
decimals.

7



8.3.8 ANSWERS TO EXERCISES

1. (a) Scalar Product = −8, cos θ ' −0.381 and θ ' 112.4◦;

(b) Scalar Product = 5, cos θ ' 0.645 and θ ' 49.80◦;

(c) Scalar Product = −15, cos θ ' −0.485 and θ ' 119.05◦

2. (a) Cosine ' 0.707;

(b) The vectors are perpendicular;

(c) The vectors are perpendicular;

(d) Cosine ' 0.190

3. The length of the projection is 5
3
.

4. The value of the Dot Product is 24.

5. (a) The components are −2,−7,−18;

(b) The components are 5,−1, 3;

(c) The components are 2, 26, 7.

6. Show that (a x b) • c = 0.

7. A unit vector is

±−3i + 5j + 11k√
155

and

sin θ =

√
155√

6.
√

26
' 0.997

8. The area is 6.42

8
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UNIT 8.4 - VECTORS 4

TRIPLE PRODUCTS

INTRODUCTION

Once the ideas of scalar (dot) product and vector (cross) product for two vectors has been
introduced, it is then possible to consider certain products of three or more vectors where,
in some cases, there may be a mixture of scalar and vector products.

8.4.1 THE TRIPLE SCALAR PRODUCT

DEFINITION 1

Given three vectors a, b and c, expressions such as

a • (b x c), b • (c x a), c • (a x b)

or

(a x b) • c, (b x c) • a, (c x a) • b

are called “triple scalar products” because their results are all scalar quantities. Strictly
speaking, the brackets are not necessary because there is no ambiguity without them; that
is, it is not possible to form the vector product of a vector with the result of a scalar product.

In the work which follows, we shall take a • (b x c) as the typical triple scalar product.

The formula for a triple scalar product

Suppose that

a = a1i + a2j + a3k, b = b1i + b2j + b3k and c = c1i + c2j + c3k.

Then,

a • (b x c) = (a1i + a2j + a3k) •

∣∣∣∣∣∣∣
i j k
b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣ .

1



From the basic formula for scalar product, this becomes

a • (b x c) =

∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣ .

Notes:

(i) From Unit 7.3, if two rows of a determinant are interchanged, the determinant remains
unchanged in numerical value but is altered in sign.

Hence,

a • (b x c) = −a • (c x b) = c • (a x b) = −c • (b x a) = b • (c x a) = −b • (a x c).

In other words, the “cyclic permutations” of a • (b x c) are all equal in numerical value
and in sign, while the remaining permutations are equal to a • (b x c) in numerical value,
but opposite in sign.

(ii) The triple scalar product, a • (b x c), is often denoted by [a, b, c].

EXAMPLE

Evaluate the triple scalar product, a • (b x c), in the case when

a = 2i + k, b = i + j + 2k and c = −i + j

Solution

a • (b x c) =

∣∣∣∣∣∣∣
2 0 1
1 1 2
−1 1 0

∣∣∣∣∣∣∣ = 2.(−2) − 0.(2) + 1.(2) = −2.

A geometrical application of the triple scalar product

Suppose that the three vectors a, b and c lie along three adjacent edges of a parallelepiped
(correct pronunciation, “parallel-epi-ped” ) as shown in the following diagram:

2
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b x c c
a

The area of the base of the parallelepiped, from the geometrical properties of vector products,
is the magnitude of the vector, b x c, which is perpendicular to the base.

The perpendicular height of the parallelepiped is the projection of the vector a onto the
vector b x c; that is,

a • (b x c)

|b x c|
.

Hence, since the volume, V , of the parallelepiped is equal to the area of the base times the
perpendicular height, we conclude that

V = a • (b x c),

at least numerically, since the triple scalar product could turn out to be negative.

Note:
The above geometrical application also provides a condition that three given vectors, a, b
and c lie in the same plane; that is, they are “coplanar”.

The condition is that

a • (b x c) = 0,

since the three vectors would determine a parallelepiped whose volume is zero.

3



8.4.2 THE TRIPLE VECTOR PRODUCT

DEFINITION 2

If a, b and c are any three vectors, then the expression

a x (b x c)

is called the “triple vector product” of a with b and c.

Notes:

(i) The triple vector product is clearly a vector quantity.

(ii) The inclusion of the brackets in a triple vector product is important since it can be shown
that, in general,

a x (b x c) 6= (a x b) x c.

For example, if the three vectors are considered as position vectors, with the origin as a
common end-point, then a x (b x c) is perpendicular to both a and b x c, the latter of which
is already perpendicular to both b and c. It therefore lies in the plane of b and c.

Consequently, (a x b) x c, which is the same as −c x (a x b), will lie in the plane of a and
b.

Hence it will, in general, be different from a x (b x c).

The formula for a triple vector product

Suppose that

a = a1i + a2j + a3k, b = b1i + b2j + b3k and c = c1i + c2j + c3k.

Then,

a x (b x c) = a x

∣∣∣∣∣∣∣
i j k
b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣
4



=

∣∣∣∣∣∣∣
i j k
a1 a2 a3

(b2c3 − b3c2) (b3c1 − b1c3) (b1c2 − b2c1)

∣∣∣∣∣∣∣ .

The i component of this vector is equal to

a2(b1c2 − b2c1) − a3(b3c1 − b1c3) = b1(a2c2 + a3c3) − c1(a2b2 + a3b3);

but, by adding and subtracting a1b1c1, the right hand side can be rearranged in the form

(a1c1 + a2c2 + a3c3)b1 − (a1b1 + a2b2 + a3b3)c1,

which is the i component of the vector (a • c)b − (a • b)c.

Similar expressions can be obtained for the j and k components and we may conclude that

a x (b x c) = (a • c)b − (a • b)c.

EXAMPLE

Determine the triple vector product of a with b and c, where

a = i + 2j− k, b = −2i + 3j and c = 3k.

Solution

a • c = −3 and a • b = 4.

Hence,

a x (b x c) = −3b − 4c = 6i− 9j− 12k.

5



8.4.3 EXERCISES

1. Evaluate the triple scalar product, a • (b x c), in the case when

a = 2i + j− 3k, b = i− 2j + k and c = −i + j− 4k.

2. Determine the volume of the parallelepiped with adjacent edges defined by the vectors

a = −i + j + 3k, b = 2i− j and c = i + j + k.

3. Determine the triple vector product of a with b and c in the cases where

(a)

a = −i + j + 3k, b = 2i + j and c = i + j + k;

(b)

a = 4i− k, b = 3i + 5j− k and c = i− j− k;

(c)

a = 4i + 2j + k, b = 5i and c = −j + 3k.

4. Show that the following three vectors are coplanar:

a = −i + 3j− 2k, b = 4i− 6j + 2k and c = −3i + 12j− 9k.

5. Show that

[(a + b), (b + c), (c + a)] = 2[a, b, c].

6. Show that

(a x b) x(c x d) = [a, c, d]b − [b, c, d]a = [a, b, d]c − [a, b, c]d.

7. Show that

a x (b x c) + b x (c x a) + c x (a x b) = O.

8. Show that

(a x b) • (c x d) =
∣∣∣∣ a • c a • d
b • c b • d

∣∣∣∣ .
6



8.4.4 ANSWERS TO EXERCISES

1.

20.

2.

8.

3. (a)

7i + 4j + k;

(b)

2i + 38j + 8k;

(c)

5i + 20j− 60k.

4. Show that the triple scalar product is zero.

5. Remove all brackets and use the fact that a triple scalar product is zero when two of
the vectors are the same.

6. Use the triple vector product formula.

7. Use the triple vector product formula.

8. Rearrange in the form

a • [b x (c x d)].

7
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UNIT 8.5 - VECTORS 5

VECTOR EQUATIONS OF STRAIGHT LINES

8.5.1 INTRODUCTION

The concept of vector notation and vector products provides a convenient method of repre-
senting straight lines and planes in space by simple vector equations. Such vector equations
may then, if necessary, be converted back to conventional cartesian or parametric equations.

We shall assume that the position vector of a variable point, P(x, y, z), is given by

r = xi + yj + zk,

and that the position vectors of fixed points, such as P1(x1, y1, z1) and P2(x2, y2, z2), are
given by

r1 = x1i + y1j + z1k, r2 = x2i + y2j + z2k, etc.

8.5.2 THE STRAIGHT LINE PASSING THROUGH A GIVEN POINT AND
PARALLEL TO A GIVEN VECTOR

We consider, here, the straight line passing through the point, P1, with position vector, r1,
and parallel to the vector, a = a1i + a2j + a3k.
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From the diagram,

OP = OP1 + P1P.

But,

P1P = ta,

for some number t.

Hence,

r = r1 + ta,

which is the vector equation of the straight line.

The components of a form a set of direction ratios for the straight line.

Notes:

(i) The vector equation of a straight line passing through the origin and parallel to a given
vector a will be of the form

r = ta.

(ii) By equating i, j and k components on both sides, the vector equation of the straight line
passing through P1 and parallel to a leads to parametric equations

x = x1 + a1t, y = y1 + a2t, z = z1 + a3t;

and, if these are solved for the parameter, t, we obtain

x− x1

a1

=
y − y1

a2

=
z − z1

a3

,

which is the standard cartesian form of the straight line.

2



EXAMPLES

1. Determine the vector equation of the straight line passing through the point with posi-
tion vector i− 3j + k and parallel to the vector, 2i + 3j− 4k.

Express the vector equation of the straight line in standard cartesian form.

Solution

The vector equation of the straight line is

r = i− 3j + k + t(2i + 3j− 4k)

or

xi + yj + zk = (1 + 2t)i + (−3 + 3t)j + (1− 4t)k.

Eliminating t from each component, we obtain the cartesian form of the straight line,

x− 1

2
=

y + 3

3
=

z − 1

−4
.

2. The equations

3x + 1

2
=

y − 1

2
=
−z + 5

3

determine a straight line. Express them in vector form and obtain a set of direction
ratios for the straight line.

Solution

Rewriting the equations so that the coefficients of x, y and z are unity, we have

x + 1
3

2
3

=
y − 1

2
=

z − 5

−3
.

Hence, in vector form, the equation of the line is

r = −1

3
i + j + 5k + t

(
2

3
i + 2j− 3k

)
.

Thus, a set of direction ratios for the straight line are 2
3

: 2 : −3 or 2 : 6 : −9.

3



3. Show that the two straight lines

r = r1 + ta1 and r = r2 + ta2,

where

r1 = j, a1 = i + 2j− k,

and

r2 = i + j + k, a2 = −2i− 2j,

have a common point and determine its co-ordinates.

Solution

Any point on the first line is such that

x = t, y = 1 + 2t, z = −t,

for some parameter value, t; and any point on the second line is such that

x = 1− 2s, y = 1− 2s, z = 1,

for some parameter value, s.

The lines have a common point if it is possible to find values of t and s such these are
the same point.

In fact, t = −1 and s = 1 are suitable values and give the common point (−1,−1, 1).

8.5.3 THE STRAIGHT LINE PASSING THROUGH TWO GIVEN POINTS

If a straight line passes through the two given points, P1 and P2, then it is certainly parallel
to the vector,

a = P1P2 = (x2 − x1)i + (y2 − y1)j + (z2 − z1)k.

4
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Thus, the vector equation of the straight line is

r = r1 + ta

as before.

Notes:

(i) The parametric equations of the straight line passing through the points, P1 and P2, are

x = x1 + (x2 − x1)t, y = y1 + (y2 − y1)t, z = z1 + (z2 − z1)t;

and we notice that the “base-points” of the parametric representation (that is, P1 and P2)
have parameter values t = 0 and t = 1 respectively.

(ii) The standard cartesian form of the straight line passing through P1 and P2 is

x− x1

x2 − x1

=
y − y1

y2 − y1

=
z − z1

z2 − z1

.
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EXAMPLE

Determine the vector equation of the straight line passing through the two points, P1(3,−1, 5)
and P2(−1,−4, 2).

Solution

OP1 = 3i− j + 5k

and

P1P2 = (−1− 3)i + (−4 + 1)j + (2− 5)k = −4i− 3j− 3k.

Hence, the vector equation of the straight line is

r = 3i− j + 5k− t(4i + 3j + 3k).

8.5.4 THE PERPENDICULAR DISTANCE OF A POINT FROM A STRAIGHT
LINE

For a straight line, l, passing through a given point, A, with position vector, a and parallel
to a given vector, b, it may be necessary to determine the perpendicular distance, d, from
this line, of a point, C, with position vector, c.
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From the diagram, with Pythagoras’ Theorem,
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d2 = (AC)2 − (AB)2.

But, AC = c− a, so that

(AC)2 = (c− a) • (c− a).

Also, the length, AB, is the projection of AC onto the line, l, which is parallel to b.

Hence,

AB =
(c− a) • b

b
,

which gives the result

d2 = (c− a) • (c− a)−
[
(c− a) • b

b

]2

.

From this result, d may be deduced.

EXAMPLE

Determine the perpendicular distance of the point (3,−1, 7) from the straight line passing
through the two points, (2, 2,−1) and (0, 3, 5).

Solution

In the standard formula, we have

a = 2i + 2j− j,

b = (0− 2)i + (3− 2)j + (5− [−1])k = −2i + j + 6k,

b =
√

(−2)2 + 12 + 62 =
√

41,
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c = 3i− j + 7k,

and

c− a = (3− 2)i + (−1− 2)j + (7− [−1])k = i− 3j + 8k.

Hence, the perpendicular distance, d, is given by

d2 = 12 + (−3)2 + 82 − (1)(−2) + (−3)(1) + (8)(6)√
41

= 74− 43√
41

which gives d ' 8.20.

8.5.5 THE SHORTEST DISTANCE BETWEEN TWO PARALLEL STRAIGHT
LINES

The result of the previous section may also be used to determine the shortest distance
between two parallel straight lines, because this will be the perpendicular distance from one
of the lines of any point on the other line.

We may consider the perpendicular distance between

(a) the straight line passing through the fixed point with position vector r1 and parallel to
the fixed vector, a

and

(b) the straight line passing through the fixed point with position vector r2, also parallel to
the fixed vector, a.

These will have vector equations,

r = r1 + ta and r = r2 + ta.
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In the diagram, F is the foot of the perpendicular onto the second line from the point P1 on
the first line and the length of this perpendicular is d.

Hence,

d2 = (r2 − r1) • (r2 − r1)−
[
(r2 − r1) • a

a

]2

.

EXAMPLE

Determine the shortest distance between the straight line passing through the point with
position vector r1 = 4i − j + k, parallel to the vector b = i + j + k, and the straight line
passing through the point with position vector r2 = −2i + 3j− k, parallel to b.

Solution

From the formula,

d2 = (−6i + 4j− 2k) • (−6i + 4j− 2k)−
[
(−6i + 4j− 2k) • (i + j + k)√

3

]2

.

That is,

d2 = (36 + 16 + 4)−
[
−6 + 4− 2√

3

]2

= 56− 16

3
=

152

3
,

9



which gives

d ' 7.12

8.5.6 THE SHORTEST DISTANCE BETWEEN TWO SKEW STRAIGHT LINES

Two straight lines are said to be “skew” if they are not parallel and do not intersect each
other. It may be shown that such a pair of lines will always have a common perpendicular
(that is, a straight line segment which meets both, and is perpendicular to both). Its length
will be the shortest distance between the two skew lines.

For the straight lines, whose vector equations are

r = r1 + ta1 and r = r2 + ta2,

suppose that the point, M1, on the first line and the point, M2, on the second line are the
ends of the common perpendicular and have position vectors, m1 and m2, respectively.

Then,

m1 = r1 + t1a1 and m2 = r2 + t2a2,

for some values, t1 and t2, of the parameter, t.
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Firstly, we have
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M1M2 = m2 −m1 = (r2 − r1) + t2a2 − t1a1.

Secondly, a vector which is certainly perpendicular to both of the skew lines is a1 x a2, so
that a unit vector perpendicular to both of the skew lines is

a1 x a2

|a1 x a2|
.

This implies that

(r2 − r1) + t2a2 − t1a1 = ±d
a1 x a2

|a1 x a2|
,

where d is the shortest distance between the skew lines.

Finally, if we take the scalar (dot) product of both sides of this result with the vector a1 x a2,
we obtain

(r2 − r1) • (a1 x a2) = ±d
|a1 x a2|2

|a1 x a2|
,

giving

d =

∣∣∣∣∣ (r2 − r1) • (a1 x a2)

|a1 x a2|

∣∣∣∣∣ .
EXAMPLE

Determine the perpendicular distance between the two skew lines

r = r1 + ta1 and r = r2 + ta2,

where

r1 = 9j + 2k, a1 = 3i− j + k,
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r2 = −6i− 5j + 10k, a2 = −3i + 2j + 4k.

Solution

r2 − r1 = −6i− 14j + 8k

and

a1 x a2 =

∣∣∣∣∣∣∣
i j k
3 −1 1
−3 2 4

∣∣∣∣∣∣∣ = −6i− 15j + 3k,

so that

d =
(−6)(−6) + (−14)(−15) + (8)(3)√

36 + 225 + 9
=

270√
270

=
√

270 = 3
√

30.

8.5.7 EXERCISES

1. Determine the vector equation, and hence the parametric equations, of the straight line
which passes through the point, (5,−2, 1), and is parallel to the vector i− 3j + 2k.

2. The equations

−x + 2

7
=

3y − 1

5
=

2z + 1

3

determine a straight line. Determine the equation of the line in vector form, and state
a set of direction ratios for this line.

3. Show that there is a point common to the two straight lines

r = r1 + ta1 and r = r2 + ta2,

where

r1 = 3j + 2k, r2 = −2i + 2j + 3k,
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and

a1 = 2i− 4j− 2k, a2 = 9i− 3j− 6k

Determine the co-ordinates of the common point.

4. Determine, in standard cartesian form, the equation of the straight line passing through
the two points, (−2, 4, 9) and (2,−1, 6).

5. Determine the perpendicular distance of the point (0,−2, 5) from the straight line which
passes through the point (1,−1, 3) and is parallel to the vector 3i + j + k.

6. Determine the shortest distance between the two parallel straight lines

r = r1 + ta and r = r2 + ta,

where

r1 = −3i + 2j + k, r2 = 2i− j− k

and

a = i + 5j + k.

7. Determine the shortest distance between the two skew straight lines

r = r1 + ta1 and r = r2 + ta2,

where

r1 = i− 2j + k, r2 = −i + 3j + 2k,

and

a1 = i− j− k, a2 = 5i + j− 2k

8.5.8 ANSWERS TO EXERCISES

1.

r = (5i− 2j + k + t(i− 3j + k),

giving

x = 5 + t, y = −2− 3t, z = 1 + t.

13



2. In vector form, the equation of the line is

r = 2i +
1

3
j− 1

2
k + t

(
−7i +

5

3
j− 3

2
k

)
,

and set of direction ratios is

−42 : 10 : 9

3. The common point has co-ordinates (1, 1, 1).

4.

x + 2

4
=

y − 4

−5
=

z − 9

−3
.

5.

d =

√
62

11
' 2.37

6.

d =

√
98

3
' 5.72

7.

d =
5
√

6

6
' 2.04
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UNIT 8.6 - VECTORS 6

VECTOR EQUATIONS OF PLANES

8.6.1 THE PLANE PASSING THROUGH A GIVEN POINT AND
PERPENDICULAR TO A GIVEN VECTOR

A plane in space is completely specified if we know one point in it, together with a vector
which is perpendicular to the plane.
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In the diagram, the given point is P1, with position vector, r1, and the given vector is n.

Hence, the vector, P1P, is perpendicular to n, which leads to the equation

(r− r1) • n = 0

or

r • n = r1 • n = d say.

Notes:

(i) In the particular case when n is a unit vector, the constant, d, represents the perpendicular
projection of r1 onto n, which is therefore the perpendicular distance of the origin from the
plane.

(ii) If r = xi+ yj+ zk and n = ai+ bj+ ck, then the cartesian form for the equation of the
above plane will be
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ax + by + cz = d.

That is, it is simply a linear equation in the variables x, y and z.

EXAMPLE

Determine the vector equation and, hence, the cartesian equation of the plane passing
through the point with position vector 3i−2j+k and perpendicular to the vector i−4j−k.

Solution

The vector equation is

r • (i− 4j− k) = (3)(1) + (−2)(−4) + (1)(−1) = 10

and, hence, the cartesian equation is

x− 4y − z = 10.

8.6.2 THE PLANE PASSING THROUGH THREE GIVEN POINTS

We consider a plane passing through the points, P1(x1, y1, z1), P2(x2, y2, z2) and P3(x3, y3, z3).
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In the diagram, a suitable vector for n is
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P1P2 x P1P3 =

∣∣∣∣∣∣∣
i j k

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

∣∣∣∣∣∣∣
and, hence, the equation,

(r− r1) • n = 0,

of the plane becomes

∣∣∣∣∣∣∣
x− x1 y − y1 z − z1

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

∣∣∣∣∣∣∣ = 0.

But, from the properties of determinants, this is equivalent to

∣∣∣∣∣∣∣∣∣
x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣∣∣ = 0,

which is the standard equation of the plane through the three given points.

EXAMPLE

Determine the cartesian equation of the plane passing through the three points, (0, 2,−1),
(3, 0, 1) and (−3,−2, 0).

Solution

The equation of the plane is

∣∣∣∣∣∣∣∣∣
x y z 1
0 2 −1 1
3 0 1 1
−3 −2 0 1

∣∣∣∣∣∣∣∣∣ = 0,

which, on expansion and simplification, gives
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2x− 3y − 6z = 0,

showing that the plane also passes through the origin.

8.6.3 THE POINT OF INTERSECTION OF A STRAIGHT LINE AND A
PLANE

First, we recall (from Unit 8.5) that the vector equation of a straight line passing through
the fixed point, with position vector r1, and parallel to the fixed vector a, is

r = r1 + ta.

For the point of intersection of this line with the plane, whose vector equation is

r • n = d,

the value of t must be such that

(r1 + ta) • n = d,

which is an equation from which the appropriate value of t and, hence, the point of intersec-
tion may be found.

EXAMPLE

Determine the point of intersection of the plane, whose vector equation is

r • (i− 3j− k) = 7,

and the straight line passing through the point, (4,−1, 3), which is parallel to the vector
2i− 2j + 5k.

Solution

We need to obtain the value of the parameter, t, such that

(4i− j + 3k + t[2i− 2j + 5k]) • (i− 3j− k) = 7.
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That is,

(4 + 2t)(1) + (−1− 2t)(−3) + (3 + 5t)(−1) = 7 or 4 + 3t = 7,

which gives t = 1; and, hence, the point of intersection is (4 + 2,−1− 2, 3 + 5) = (6,−3, 8).

8.6.4 THE LINE OF INTERSECTION OF TWO PLANES

Suppose we are given two non-parallel planes whose vector equations are

r • n1 = d1 and r • n2 = d2.

Their line of intersection will be perpendicular to both n1 and n2, since these are the normals
to the two planes.

The line of intersection will thus be parallel to n1 x n2, and all it remains to do, to obtain
the vector equation of this line, is to determine any point on it.

For convenience, we may take the point (common to both planes) for which one of x, y or z
is zero.

EXAMPLE

Determine the vector equation, and hence the cartesian equations (in standard form), of the
line of intersection of the planes whose vector equations are

r • n1 = 2 and r • n2 = 17,

where

n1 = i + j + k and n2 = 4i + j + 2k.

Solution

Firstly,

n1 x n2 =

∣∣∣∣∣∣∣
i j k
1 1 1
4 1 2

∣∣∣∣∣∣∣ = i + 2j− 3k.
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Secondly, the cartesian equations of the two planes are

x + y + z = 2 and 4x + y + 2z = 17;

and, when z = 0, these become

x + y = 2 and 4x + y = 17,

which, as simultaneous linear equations, have a common solution of x = 5, y = −3.

Thirdly, therefore, a point on the line of intersection is (5,−3, 0), which has position vector
5i− 3j.

Hence, the vector equation of the line of intersection is

r = 5i− 3j + t(i + 2j− 3k).

Finally, since x = 5 + t, y = −3 + 2t and z = −3t the line of intersection is represented, in
standard cartesian form, by

x− 5

1
=

y + 3

2
=

z

−3
(= t).

8.6.5 THE PERPENDICULAR DISTANCE OF A POINT FROM A PLANE

Given the plane whose vector equation is r • n = d and the point, P1, whose position vector
is r1, the straight line through the point, P1, which is perpendicular to the plane has vector
equation

r = r1 + tn.

This line meets the plane at the point, P0, with position vector r1 + t0n, where

(r1 + t0n) • n = d.

That is,
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(r1 • n) + t0n
2 = d.

Hence,

t0 =
d− (r1 • n)

n2

Finally, the vector P0P1 = (r1 + t0n)− r1 = t0n

and its magnitude, t0n, will be the perpendicular distance, p, of the point P1 from the plane.

In other words,

p =
d− (r1 • n)

n
.

Note:
In terms of cartesian co-ordinates, this formula is equivalent to

p =
d− (ax1 + by1 + cz1)√

a2 + b2 + c2
,

where a, b and c are the i, j and k components of n respectively.

EXAMPLE

Determine the perpendicular distance, p, of the point (2,−3, 4) from the plane whose carte-
sian equation is x + 2y + 2z = 13.

Solution

From the cartesian formula

p =
13− [(1)(2) + (2)(−3) + (2)(4)]√

12 + 22 + 22
=

9

3
= 3.

7



8.6.6 EXERCISES

1. Determine the vector equation and hence the cartesian equation of the plane, passing
through the point with position vector i + 5j − k, and perpendicular to the vector
2i + j− 3k.

2. Determine the cartesian equation of the plane passing through the three points (1,−1, 2),
(3,−2,−1) and (−1, 4, 0).

3. Determine the point of intersection of the plane, whose vector equation is

r • (5i− 2j− k) = −3,

and the straight line passing through the point (2, 1,−3), which is parallel to the vector
i + j− 4k.

4. Determine the vector equation, and hence the cartesian equations (in standard form),
of the line of intersection of the planes, whose vector equations are

r • n1 = 14 and r • n2 = −1,

where

n1 = −4i + 2j− k and n2 = 2i + j + 3k.

5. Determine, in surd form, the perpendicular distance of the point (−5,−2, 8) from the
plane whose cartesian equation is 2x− y + 3z = 17.

8.6.7 ANSWERS TO EXERCISES

1.

r • (2i + j− 3k) = 10, or 2x + y − 3z = 10.

2.

17x + 10y + 8z = 23.

3.

(0,−1, 5).
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4.

r = −2i + 3j + t(7i + 10j− 8k)

or

x + 2

7
=

y − 3

10
=

z

−8
(= t).

5.

1√
14

.
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UNIT 9.1 - MATRICES 1
DEFINITIONS AND ELEMENTARY MATRIX ALGEBRA

9.1.1 INTRODUCTION

(a) Presentation of Data
Sets of numerical information can often be presented as a rectangular “array” of numbers.
For example, a football results table might look like this:

TEAM PLAYED WON DRAWN LOST
Blackburn 22 11 6 5
Burnley 22 9 6 7
Chelsea 21 7 8 6
Leicester 21 6 8 7
Stoke 21 6 6 9

If the headings are taken for granted, we write simply
22 11 6 5
22 9 6 7
21 7 8 6
21 6 8 7
21 6 6 9



and this symbol is called a “matrix”.

Note:
The mould in which printers once cast type was called a matrix. In mathematics, the word
“matrix” signifies that we have spaces into which numbers can be placed.

(b) Presentation of Algebraic Results
In two-dimensional geometry, the “vector”, OP0, joining the origin to the point P0(x0, y0)
can be moved to the position OP1 joining the origin to the point P1(x1, y1) by means of
a “reflection”, a “rotation”, a “magnification” or a combination of such operations.
It can be shown that the relationship between the co-ordinates of P0 and P1 in any such
operation is given by

x1 = ax0 + by0,

y1 = cx0 + dy0.

1



ILLUSTRATIONS

1. The equations

x1 = −x0,

y1 = y0

represent a reflection in the y-axis.

2. The equations

x1 = kx0,

y1 = ky0

represent a magnification when | k |> 1 and a contraction when | k |< 1.

3. The equations

x1 = x0 cos θ − y0 sin θ,

y1 = x0 sin θ + y0 cos θ

represent a rotation of OP0 through an angle θ in a counter-clockwise direction.

Such an operation is called a “linear transformation” and is completely specified by the
coefficients a, b, c, d in the correct positions. When referring to a linear transformation, it is
therefore more convenient to write the matrix symbol[

a b
c d

]
.

Sometimes, we want to show that a transformation[
a b
c d

]

operates on the vector OP0, transforming it into the vector OP1. We write[
x1

y1

]
=

[
a b
c d

]
.
[
x0

y0

]
.

The two new symbols are still called matrices but can be given a special name as we see
later.
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9.1.2 DEFINITIONS

(i) A matrix is a rectangular array of numbers arranged in rows (horizontally), columns
(vertically) and enclosed in brackets.

ILLUSTRATIONS:

[
1 3 7
9 9 10

]
,

 10 16 17
3 5 11
4 0 10

, [ 1 5 7 ].

Note:
The rows are counted from the top to the bottom of the matrix and the columns are counted
from the left to the right of the matrix.

(ii) Any number within the array is called an “element” of the matrix. The term ij − th element
refers to the element lying in the i-th row and the j-th column of the matrix.

(iii) If a matrix has m rows and n columns, it is called a “matrix of order m × n” or
simply an “m× n matrix”. It clearly has mn elements.

(iv) A matrix of order m×m is called a “square matrix”.

Note:
A matrix of order 1 × 1 is considered to be the same as a single number. This assumption
has particular significance in the definition of a matrix product (see later).

(v) A matrix of order m × 1 is called a “column vector” and a matrix of order 1 × n is
called a “row vector”.

Note:
Matrices of order 2× 1, 1× 2, 3× 1 and 1× 3 have easy physical interpretations as vectors.
But, in abstract linear algebra, there are vectors of any dimension; so the names “column
vector” and “row vector” are retained no matter how many elements there are.

(vi) An arbitrary matrix whose elements and order do not have to be specified may be
denoted by a single capital letter such as A,B,C, etc.

An arbitrary matrix of order m× n may be denoted fully by the symbol
a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

. . . . . . . . . . . . . . .
am1 am2 am3 . . . amn
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where, in each double-subscript, the first number is the row number and the second number
is the column number. In a situation where the matrix has already been denoted by a single
capital letter, the subsequent use of the full notation should include the corresponding small
letter on which to attach the double-subscripts.

If the matrix is square, the elements a11, a22, a33, ...amm are called the “diagonal elements”
and their sum is called the “trace” of the matrix. This line of elements is called the “leading
diagonal” of the matrix.

An abbreviated form of the full notation is [aij]m×n

EXAMPLE
A matrix A = [aij]2×3 is such that aij = i2 + 2j. Write out A in full.

Solution

This is an artificially contrived example, but will serve to illustrate the use of the double-
subscript notation. We obtain

A =
[
3 5 7
6 8 10

]
.

(vii) Given a matrix, A, of order m × n, the matrix of order n × m obtained from A by
writing the rows as columns is called the “transpose” of A and is denoted by AT - some
books use A′ or Ã.

ILLUSTRATION

If

A =

 a1 b1

a2 b2

a3 b3

 ,

then,

AT =
[
a1 a2 a3

b1 b2 b3

]

(viii) A matrix, A, is said to be “symmetric” if A = AT.

ILLUSTRATION

A =

 a h g
h b f
g f c

 is symmetric.
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(ix) A matrix, A, is said to be “skew-symmetric” if the elements of AT are minus the
corresponding elements of A itself. This will mean that the leading diagonal elements must
be zero.

ILLUSTRATION

A =

 0 a −b
−a 0 c
b −c 0

 is skew − symmetric.

(x) A matrix is said to be “diagonal” if the elements which are not on the leading diagonal
have value zero while the elements on the leading diagonal are not all equal to zero.

9.1.3 THE ALGEBRA OF MATRICES (Part One)

An “Algebra” (coming from the Arabic word AL-JABR) refers to any mathematical system
which uses the concepts of equality, addition, subtraction, multiplication and division. For
example, the algebra of numbers is what we normally call “arithmetic”; but algebraical
concepts can be applied to other mathematical systems of which matrices is one.

In meeting a new mathematical system for the first time, the concepts of equality, addition,
subtraction, multiplication and division need to be properly defined, and that is the purpose
of the present section. In some cases, the definitions are fairly obvious, but they need to
be made without contradicting ideas already established in the system of numbers which
matrices depend on.

1. Equality

Unlike a determinant, a matrix does not have a numerical value; so the use of equality here
is not that which is made in elementary arithmetic. Rather we use it to mean “is the same
as”.

Two matrices are said to be equal if they have the same order and also pairs of elements
in corresponding positions are equal in value.

In symbols, we could say that
[aij]m×n = [bij]m×n

provided
aij = bij.
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For example,  x
y
z

 =

 1
2
3


implies that x = 1, y = 2 and z = 3.

We shall meet this type of conclusion later in a discussion on the solution, by matrices, of a
set of simultaneous equations (see Unit 9.3).

2. Addition and Subtraction

The scientific applications of matrices require us to define the sum and difference of two
matrices only when they have the same order.

The sum of two matrices of order m× n is formed by adding together the pairs of elements
in corresponding positions. Similarly, the difference of two matrices of order m×n is formed
by subtracting the pairs of elements in corresponding positions.

In symbols, we could say that

[aij]m×n ± [bij]m×n = [cij]m×n ,

where
cij = aij ± bij.

Note:
It may occur, in a calculation, that a matrix has to be subtracted from itself, in which case
we would obtain another matrix of the same order but whose elements are all zero. This
type of matrix is called a“null matrix” and may be denoted, for short, by [0]m×n or just
[0] when the order is understood.

ILLUSTRATION
A grocer has two shops and, in each shop, he sells apples, oranges and bananas. The sales,
in kilogrammes, of each fruit for the two shops on two separate days are represented by the
matrices

[
36 25 10
20 30 15

]
and

[
40 30 12
22 35 20

]
where the rows refer to the two shops and the columns refer to apples, oranges and bananas
respectively.

The total sales, in kilogrammes, of each fruit for the two shops on both days together are
represented by the matrix
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[
76 55 22
42 65 35

]
.

The differences in sales of each fruit for the two shops between the second day and the first
day are represented by the matrix

[
4 5 2
2 5 5

]

3. Additive Identities and Additive Inverses

For the sake of completeness, we mention here that

(a) A null matrix, when added to any other matrix of the same order, leaves that other
matrix identically the same as it was to start with. For this reason, a null matrix behaves
as an “additive identity”.

(b) If any matrix A is added to the matrix −A (that is, the matrix obtained from A by
reversing the signs of all the elements) the result obtained is the corresponding null matrix.
For this reason −A can be called the “additive inverse” of A.

9.1.4 EXERCISES

1. State the order of each of the following matrices:

(a)
[

1 3 0
−1 2 4

]
; (b)

[
5
6

]
; (c) [ 3 5 4 ].

2. Two of the following matrices are equal to each other. Which are they ?

(a)
[ 1

2
1√
3

1 0

]
; (b)

[
sin 60◦ tan 30◦

tan 45◦ sin 90◦

]
; (c)

[
cos 60◦

√
3

3
sin 90◦ cos 90◦

]
.

3. Determine the values of x, y and z given that[
x + y y + z
x + z 3x− 2y

]
=

[
5 7
6 0

]
.

4. If A =
[
1 −3 2
4 0 1

]
, B =

[
4 3 2
−1 0 2

]
and C =

[−1 4 −2
0 1 0

]
,

determine the elements of the following matrices:

(a) A + B; (b) (A + B) + C; (c) A + (B + C);

(d) A - B - C; (e) AT + BT; (f) (A + B)T.
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5. Determine which pairs of the following matrices can be added and, for those which can,
state the sum:

A =
[
1
2

]
, B =

 4
2
1

, C = [ 4 2 1 ], D =
[
0 0
0 0

]
,

E =
[
2
1

]
, F =

[
2 3
5 0

]
, G =

 1
0
1

, H =

 0
0
0

, J = [ 3 3 3 ].

9.1.5 ANSWERS TO EXERCISES

1. (a) 2× 3; (b) 2× 1; (c) 1× 3.

2. (a) and (c) are equal to each other.

3. x = 2, y = 3 and z = 4.

4. (a)
[
5 0 4
3 0 3

]
; (b)

[
4 4 2
3 1 3

]
; (c)

[
4 4 2
3 1 3

]
;

(d)
[−2 −10 2

5 −1 −1

]
; (e)

 5 3
0 0
4 3

; (f)

 5 3
0 0
4 3

.

5. A + E = E + A =
[
3
3

]
, B + G = G + B =

 5
2
2


C + J = J + C = [ 7 5 4 ], D + F = F + D =

[
2 3
5 0

]

G + H = H + G =

 1
0
1

, B + H = H + B =

 4
2
1

.

That is, twelve possible additions but only six distinct results.
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UNIT 9.2 - MATRICES 2 - THE ALGEBRA OF MATRICES (Part Two)

9.2.1 MULTIPLICATION BY A SINGLE NUMBER

If we were required to multiply a matrix of any order by a positive whole number, n,
we would clearly regard the operation as equivalent to adding together n copies of the given
matrix. Thus, in the result, every element of this given matrix would be multiplied by n;
but it is logical to extend the idea to the multiplication of a matrix by any number, λ, not
necessarily a positive whole number, the rule being to multiply every element of the matrix
by λ.

In symbols we could say that
λ [aij]m×n = [bij]m×n ,

where
bij = λaij.

Note:
The rule for multiplying a matrix by a single number can also be used in reverse to remove
common factors from the elements of a matrix as illustrated as follows:

ILLUSTRATION [
5 10
15 20

]
= 5

[
1 2
3 4

]
.

9.2.2 THE PRODUCT OF TWO MATRICES

The definition of a matrix product is more difficult to justify than the previous concepts,
partly because it is by no means an obvious definition and partly because we cannot be sure
exactly what originally led to the making of the definition.

Some hint is given by the matrix equation at the end of the introduction to Unit 9.1, where
the product of a 2 × 2 matrix and a 2 × 1 matrix is another 2 × 1 matrix; but we must be
prepared to meet other orders of matrix as well.

We shall introduce the definition with a semi-practical illustration, then make a formal
statement of the definition itself.

ILLUSTRATION

A motor manufacturer, with three separate factories, makes two types of car, one called
“standard” and the other called “luxury”.
In order to manufacture each type of car, he needs a certain number of units of material and
a certain number of units of labour each unit representing £300.
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A table of data to represent this information could be

Type Materials Labour
Standard 12 15
Luxury 16 20

The manufacturer receives an order from another country to supply 400 standard cars and
900 luxury cars; but he distributes the export order amongst his three factories as follows:

Location Standard Luxury
Factory A 100 400
Factory B 200 200
Factory C 100 300

The number of units of material and the number of units of labour needed by each factory
to complete the order may be given by another table, namely

Location Materials Labour
Factory A 100× 12 + 400× 16 100× 15 + 400× 20
Factory B 200× 12 + 200× 16 200× 15 + 200× 20
Factory C 100× 12 + 300× 16 100× 15 + 300× 20

If we now replace each table by the corresponding matrix, the calculations appear as the
product of a 3× 2 matrix and a 2× 2 matrix. That is,

 100 400
200 200
100 300

 .
[
12 15
16 20

]
=

 100× 12 + 400× 16 100× 15 + 400× 20
200× 12 + 200× 16 200× 15 + 200× 20
100× 12 + 300× 16 100× 15 + 300× 20

 =

 7600 9500
5600 7000
6000 7500


3× 2 2× 2 3× 2 3× 2

OBSERVATIONS
(i) The product matrix has 3 rows because the first matrix on the left has 3 rows.

(ii) The product matrix has 2 columns because the second matrix on the left has 2 columns.

(iii) The product cannot be worked out unless the number of columns in the first matrix
matches the number of rows in the second matrix with no elements left over in the pairing-up
process.

(iv) The elements of the product matrix are systematically obtained by multiplying (in pairs)
the corresponding elements of each row in the first matrix with each column in the second
matrix. To pair up the correct elements, we read each row of the first matrix from left to
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right and each column of the second matrix from top to bottom.

The Formal Definition of a Matrix Product
If A and B are matrices, then the product AB is defined (that is, it has a meaning) only
when the number of columns in A is equal to the number of rows in B.

If A is of order m× n and B is of order n× p, then AB is of order m× p.

To obtain the element in the i-th row and j-th column of AB, we multiply corresponding
elements of the i-th row of A and the j-th column of B, then add up the results.

ILLUSTRATION

[
1 2 1
0 −1 4

]
.

 1 0 1 6
3 2 −1 1
1 −2 0 4

 =
[
8 2 −1 12
1 −10 1 15

]

Note:
Confusion could arise when multiplying a matrix of order 1× 1 by another matrix. Appar-
ently, the other matrix would need to have either a single row or a single column depending
on the order of multiplication.

However, as stated in Unit 9.1, a matrix of order 1 × 1 is considered to be a special case,
and is defined separately to be the same as a single number. Hence a matrix of any order
can be multiplied by a matrix of order 1 × 1 even though this does not fit the formal rules
for matrix multiplication in general.

9.2.3 THE NON-COMMUTATIVITY OF MATRIX PRODUCTS

In elementary arithmetic, if a and b are two numbers, then ab = ba (that is, the product
“commutes”). But this is not so for matrices A and B as we now show:

(a) If A is of order m × n, then B must be of order n × m if both AB and BA are to be
defined.

(b) AB and BA will have different orders unless m = n, in which case the two products will
be square matrices of order m×m.

(c) Even if A and B are both square matrices of order m ×m, it will not normally be the
case that AB is the same as BA. A simple numerical example will illustrate this fact:

[
2 1
3 7

]
.
[−1 0

2 5

]
=

[
0 5
11 35

]
; but

[−1 0
2 5

]
.
[
2 1
3 7

]
=

[−2 −1
19 37

]
.
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Notes:
(i) If we simply wanted to show that AB 6= BA, we would need only to demonstrate that
one pair of corresponding elements were unequal in value.

(ii) If such a basic rule of elementary arithmetic is false for matrices, we should, strictly
speaking, be prepared to justify other basic rules of arithmetic. But it turns out that the
non-commutativity of matrix products is the only one which causes problems.

For instance, it can be shown that, provided the matrices involved are compatible for addition
or multiplication,

A + B ≡ B + A; the “Commutative Law of Addition”.

A + (B + C) ≡ (A + B) + C; the “Associative Law of Addition”.

A(BC) ≡ (AB)C; the “Associative Law of Multiplication”.

A(B + C) ≡ AB + BC or (A + B)C ≡ AC + BC; the “Distributive Laws”.

(iii) In the matrix product, AB, we say either that B is “pre-multiplied” by A or that A
is “post-multiplied” by B.

9.2.4 MULTIPLICATIVE IDENTITY MATRICES

In connection with matrix multiplication and, subsequently, the solution of simultaneous
linear equations, an important type of matrix is a square matrix with the number 1 in each
position of the leading diagonal, but zeros everywhere else. Such a matrix is denoted by In
if there are n rows and (of course) n columns. If it is not necessary to specify the number of
rows and columns, the notation I, without a subscript, is sufficient.

ILLUSTRATIONS

I2 ≡
[
1 0
0 1

]
I3 ≡

 1 0 0
0 1 0
0 0 1

 and I4 ≡


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Any matrix of the type In multiplies another matrix (with an appropriate number of rows
or columns) to leave it identically the same as it was to start with. For this reason, In is
called a “multiplicative identity matrix”, although we normally call it just an “identity
matrix” (unless it becomes necessary to distinguish it from the additive identity matrix
referred to earlier). Another common name for it is a “unit matrix”.
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For example, suppose that

A =

 a1 b1

a2 b2

a3 b3

 .

Then, post-multiplying by I2, it is easily checked that

AI2 = A.

Similarly, pre-multiplying by I3, it is easily checked that

I3A = A.

In general, if A is of order m× n, then

AIn = ImA = A.

9.2.5 EXERCISES

1. If A =
[
1 −3 2
4 0 1

]
, B =

[
4 3 2
−1 0 2

]
and C =

[−1 4 −2
0 1 0

]
,

determine the elements of the following matrices:

(a) A + 2B; (b) A + 2B - 3C; (c) 3AT − BT.

2. Remove a common factor from each of the following matrices in order to express it as
the product of a number and a matrix:

(a)
[

8 −4
−32 16

]
; (b)

[−x3 −x2

x2 −4x2

]
.

3. State the order of the product matrix in each of the following cases:

(a) A1×2.B2×2; (b) A3×1.B1×2; (c) A4×3.B3×5.

4. For the matrices A2×2, B2×3, C3×3 and D2×4, which of the following products are defined.

(a) A.B; (b) B.C; (c) C.D; (d) A.C; (e) A.D.

5



5. Determine the elements of the product matrix in each of the following:

(a)
[
1 2
3 4

]
.
[
2 1
4 3

]
; (b)

[
1
2

1
3

1
4

1

]
.
[
12 24
24 36

]
; (c)

[
0 4 −3
1 −1 0

]
.

 2 6
5 −3
−1 7

;

(d)

 1 2
3 0
1 4

 .
[

7 −3
−1 4

]
; (e) [ 4 2 1 ] .

−1
3
2

; (f)

−1
3
2

 . [ 4 2 1 ];

(g) [−1 2 ] .
[
1 0 1
0 1 0

]
; (h)

 1 2 3
4 6 7
5 8 9

 .

 −1 3 −2
−0.5 −3 2.5

1 1 −1

.

6. If A =
[
cos θ − sin θ
sin θ cos θ

]
, verify that A.AT = I2.

7. If A =
[
2 1
1 3

]
and B =

[−2 5
3 4

]
, verify that (A.B)T = BT.AT not AT.BT.

9.2.6 ANSWERS TO EXERCISES

1. (a)
[
9 3 6
2 0 5

]
; (b)

[
12 −9 12
2 −3 5

]
; (c)

 −1 13
−12 0
4 1

.

2. (a) 4.
[

2 −1
−8 4

]
; (b) −x2.

[
x 1
−1 4

]
.

3. (a) 1× 2; (b) 3× 2; (c) 4× 5.

4. (a), (b) and (e) are defined.

5. (a)
[
10 7
22 15

]
; (b)

[
14 24
27 42

]
; (c)

[
23 −33
−3 9

]
;

(d)

 5 5
21 −9
3 13

; (e) [4] defined as 4; (f)

−4 −2 −1
12 6 3
8 4 2

;

(g) [−1 2 −1 ]; (h)

 1 0 0
0 1 0
0 0 1

.
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UNIT 9.3 - MATRICES 3

MATRIX INVERSION AND SIMULTANEOUS LINEAR EQUATIONS

9.3.1 INTRODUCTION

In Matrix Algebra, there is no such thing as division in the usual sense of this word since we
would effectively be dividing by a table of numbers with the headings of the table removed.

However, we may discuss an equivalent operation called inversion which is roughly sim-
ilar to the process in elementary arithmetic where division by a value, a, is the same as
multiplication by 1

a
.

For example, consider the solution of a single linear equation in one variable, x, namely

mx = k,

for which the solution is obviously

x =
k

m
.

An apparently over-detailed solution may be set out as follows:

(a) Pre-multiply both sides of the given equation by m−1, giving

m−1.(mx) = m−1k.

(b) Use the Associative Law of Multiplication in elementary arithmetic to rearrange this as

(m−1.m)x = m−1k.

(c) Use the property that m−1.m = 1 to conclude that

1.x = m−1k.

(d) Use the fact that the number 1 is the multiplicative identity in elementary arithmetic to
conclude that

x = m−1k.

We shall see later how an almost identical sequence of steps, with matrices instead of num-
bers, can be used to solve a set of simultaneous linear equations with what is called the
“multiplicative inverse” of a matrix.

Matrix inversion is a concept which is developed from the rules for matrix multiplication.
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9.3.2 MATRIX REPRESENTATION OF SIMULTANEOUS
LINEAR EQUATIONS

In this section, we consider the matrix equivalent of three simultaneous linear equations in
three unknowns; this case is neither too trivial, nor too difficult to follow. Let the equations
have the form:

a1x + b1y + c1z = k1,

a2x + b2y + c2z = k2,

a3x + b3y + c3z = k3.

Then, from the properties of matrix equality and matrix multiplication, these can be written
as one matrix equation, namely

 a1 b1 c1

a2 b2 c2

a3 b3 c3

 .

 x
y
z

 =

 k1

k2

k3

 ,

which will be written for short in the form

MX = K.

Note:
If we could find a matrix, say N, such that NM = I, we could pre-multiply the above statement
by it to give

N(MX) = NK.

That is,
(NM)X = NK.

In other words,
IX = NK.

Hence,
X = NK.

Clearly N exhibits a similar behaviour to the number m−1 encountered earlier and, for this
reason, a better notation for N would be M−1. This is what we shall use in the work which
follows.
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9.3.3 THE DEFINITION OF A MULTIPLICATIVE INVERSE

The “multiplicative inverse” of a square matrix, M, is another matrix, denoted by M−1,
which has the property

M−1.M = I.

Notes:
(i) It is certainly possible for the product of two matrices to be an identity matrix, as
illustrated, for example, in the exercises on matrix products in Unit 9.2.

(ii) It is usually acceptable to call M−1 the “inverse” of M rather than the “multiplicative
inverse”, unless we wish to distinguish this kind of inverse from the additive inverse defined
in Unit 9.1.

(iii) It can be shown that, when M−1.M = I, it is also true that

M.M−1 = I,

even though matrices do not normally commute in multiplication.

(iv) It is easily shown that a square matrix cannot have more than one inverse; for, suppose
a matrix A had two inverses, B and C.

Then,
C = CI = C(AB) = (CA)B = IB = B,

which means that C and B are the same matrix.

9.3.4 THE FORMULA FOR A MULTIPLICATIVE INVERSE

So far, we have established the fact that a set of simultaneous linear equations is expressible
in the form

MX = K

and their solution is expressible in the form

X = M−1K.

We therefore need to establish a method for determining the inverse, M−1, in order to solve
the equations for the values of the variables involved.

Development of this method will be dependent on the result known as “Cramer’s Rule” for
solving simultaneous equations by determinants. (see Units 7.2 and 7.3)
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(a) The inverse of a 2 x 2 matrix

Taking

M =
[
a1 b1

a2 b2

]
and

M−1 =
[
P Q
R S

]
,

we require that [
a1 b1

a2 b2

]
.
[
P Q
R S

]
=

[
1 0
0 1

]
.

Hence,

a1P + b1R = 1,

a2P + b2R = 0,

a1Q + b1S = 0,

a2Q + b2S = 1.

It is easily verified that these equations are satisfied by the solution

P =
b2

|M|
Q = − b1

|M|
R = − a2

|M|
S =

a1

|M|
,

where

|M| =
∣∣∣∣ a1 b1

a2 b2

∣∣∣∣
and is called “the determinant of the matrix M”.

Summary
The formula for the inverse of a 2 x 2 matrix is given by

M−1 =
1

|M|

[
b2 − b1

− a2 a1

]
,

in which we interchange the diagonal elements of M and reverse the sign of the other two
elements.
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EXAMPLES

1. Write down the inverse of the matrix

M =
[
5 −3
2 7

]
.

Solution

Since | M |= 41, we have

M−1 =
1

41

[
7 3
−2 5

]
.

Check

M−1.M =
1

41

[
7 3
−2 5

]
.
[
5 −3
2 7

]
=

1

41

[
41 0
0 41

]
=

[
1 0
0 1

]
.

2. Use matrices to solve the simultaneous linear equations

3x + y = 1,

x− 2y = 5.

Solution

The equations can be written in the form MX = K, where

M =
[
3 1
1 −2

]
, X =

[
x
y

]
and K =

[
1
5

]
.

Initially, we must check that M is non-singluar by evaluating its determinant:

| M |=
∣∣∣∣ 3 1
1 −2

]
= − 6− 1 = − 7.

The inverse matrix is now given by

M−1 = − 1

7

[−2 −1
−1 3

]
.

Thus, the solution of the simultaneous equations is given by[
x
y

]
= − 1

7

[−2 −1
−1 3

] [
1
5

]
= − 1

7

[−7
14

]
=

[
1
−2

]
.

That is,
x = 1 and y = −2.
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Note:
Example 2 should be regarded as a model solution to this type of problem but the student
should not expect every exercise to yield whole number answers.

(b) The inverse of a 3 x 3 Matrix

The most convenient version of Cramer’s rule to use here may be stated as follows:

The simultaneous linear equations

a1x + b1y + c1z = k1,

a2x + b2y + c2z = k2,

a3x + b3y + c3z = k3

have the solution

x∣∣∣∣∣∣∣
k1 b1 c1

k2 b2 c2

k3 b3 c3

∣∣∣∣∣∣∣
=

y∣∣∣∣∣∣∣
a1 k1 c1

a2 k2 c2

a3 k3 c3

∣∣∣∣∣∣∣
=

z∣∣∣∣∣∣∣
a1 b1 k1

a2 b2 k2

a3 b3 k3

∣∣∣∣∣∣∣
=

1∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣
.

METHOD
(i) We observe, first, that the last determinant in the Cramer’s Rule formula contains the
same arrangement of numbers as the matrix M; as in (a), we call it “the determinant of
the matrix M” and we denote it by | M |.

In this determinant, we let the symbols A1, A2, A3, B1, B2, B3, C1, C2 and C3 denote
the “cofactors” (or “signed minors”) of the elements a1, a2, a3, b1, b2, b3, c1, c2 and c3

respectively.

(ii) We now observe that, for each of the elements k1, k2 and k3 in the first three determinants
of Cramer’s Rule, the cofactor is the same as the cofactor of one of the elements in the final
determinant | M |.

(iii) Expanding each of the first three determinants in Cramer’s Rule along the column of
k-values, the solutions for x, y and z can be written as follows:

x =
1

| M |
(k1A1 + k2A2 + k3A3) ;
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y =
1

| M |
(k1B1 + k2B2 + k3B3) ;

z =
1

| M |
(k1C1 + k2C2 + k3C3) ;

or, in matrix format,  x
y
z

 =
1

| M |

 A1 A2 A3

B1 B2 B3

C1 C2 C3


 k1

k2

k3

 .

Comparing this statement with the statement

X = M−1K,

we conclude that

M−1 =
1

| M |

 A1 A2 A3

B1 B2 B3

C1 C2 C3

 .

Summary
Since it is known that Cramer’s Rule is applicable to any number of equations in the same
number of unknowns, similar working would occur for larger or smaller systems of equations.
In general, the inverse of a square matrix is the transpose of the matrix of cofactors
times the reciprocal of the determinant of the matrix.

Notes:
(i) If it should happen that | M |= 0, then the matrix M does not have an inverse and is said
to be “singular”. In all other cases, it is said to be “non-singular”.

(ii) The transpose of the matrix of cofactors is called the “adjoint” of M, denoted by AdjM.
There is always an adjoint though not always an inverse; but, when the inverse does exist,
we can say that

M−1 =
1

| M |
AdjM.

(iii) The inverse of a matrix of order 2× 2 fits the above scheme also. The cofactor of each
element will be a single number associated with a “place-sign” according to the following
pattern:

∣∣∣∣ + −
− +

∣∣∣∣ .
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Hence, if

M =
[
a1 b1

a2 b2

]
,

then,

M−1 =
1

a1b2 − a2b1

[
b2 −b1

−a2 a1

]
.

As before, we see that the matrix part of the result can be obtained by interchanging the
diagonal elements of M and reversing the signs of the other two elements.

EXAMPLE

Use matrices to solve the simultaneous linear equations

3x + y − z = 1,

x− 2y + z = 0,

2x + 2y + z = 13.

Solution

The equations can be written in the form MX = K, where

M =

 3 1 −1
1 −2 1
2 2 1

 X =

 x
y
z

 and K =

 1
0
13

 .

Initially, we must check that M is non-singluar by evaluating its determinant:

| M |=

∣∣∣∣∣∣∣
3 1 −1
1 −2 1
2 2 1

 = 3(−2− 2)− 1(1− 2) + (−1)(2 + 4) = −17.

If C denotes the matrix of cofactors, then

C =

 -4 1 6
−3 5 −4
-1 −4 -7

 .
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Notes:
(i) The framed elements indicate those for which the place sign is positive and hence no
changes of sign are required to convert the minor of the corresponding elements of M into
their cofactor. It is a good idea to work these out first.

(ii) The remaining four elements are those for which the place sign is negative and so the
cofactor is minus the value of the minor in these cases. If these, too, are worked out together,
there is less scope for making mistakes.

(iii) It is important to remember that, in finding the elements of C, we do not multiply
the cofactors of the elements in M by the elements themselves.

The transpose of C now provides the adjoint matrix and hence the inverse as follows:

M−1 =
1

| M |
AdjM =

1

−17
CT =

1

−17

−4 −3 −1
1 5 −4
6 −4 −7

 .

Thus, the solution of the simultaneous equations is given by

 x
y
z

 =
1

−17

−4 −3 −1
1 5 −4
6 −4 −7


 1

0
13

 =
1

−17

−17
−51
−85

 =

 1
3
5

 .

That is,
x = 1 y = 3 and z = 5.

Note:
Once again, the example should be regarded as a model solution to this type of problem but
the student should not expect every exercise to yield whole number answers.

9.3.5 EXERCISES

1. Determine, where possible, the multiplicative inverses of the following matrices:

(a)
[
1 5
7 9

]
; (b)

[−2 1
−6 3

]
; (c)

[−1 2
1 2

]
;

(d)

 1 4 −2
−3 2 −7
1 0 5

; (e)

 6 3 1
0 −5 2
1 1 4

; (f)

 11 3 5
6 2 2
10 3 4

.
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2. Use a matrix inverse method to solve the following sets of simultaneous linear equations:

(a)

4x− 3y = 9,

3x− 2y = 7;

(b)

x + 2y = −2,

5x− 4y = 3;

(c)

3x + 2y + z = 3,

5x + 4y + 3z = 3,

6x + y + z = 5;

(d)

x + 2y + 2z = 0,

2x + 5y + 4z = 2,

x− y − 6z = 4;

(e)

3x + 2y − 2z = 16,

4x + 3y + 3z = 2′

2x− y + z = −1;

(f)

2(i3 − i2) + 5(i3 − i1) = 4,

(i2 − i3) + 2i2 + (i2 − i1) = 0,

5(i1 − i3) + 2(i1 − i2) + i2 = 1.
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3. If A =

 4 0 1
2 1 3
−1 −2 5

 and C =

−1 2 1
3 1 −4
0 5 −2

,

determine a matrix, B, such that A.B = C.

9.3.6 ANSWERS TO EXERCISES

1. (a) − 1
26

[
9 −5
−7 1

]
; (b) No Inverse, (c) −1

4

[
2 −2
−1 −1

]
;

(d) 1
46

 10 −20 −24
8 7 13
−2 4 14

; (e) − 1
121

−22 −11 11
2 23 −12
5 −3 −30

; (f) There is no inverse.

2. (a) x = 3 and y = 1; (b) x = 1
7

and y = −13
14

; (c) x = 1, y = 1 and z = −2;

(d) x = −3
2
, y = 2 and z = −5

4
; (e) x = 2, y = 3

2
and z = −7

2
;

(f) i1 = 11
6
, i2 = 1 and i3 = 13

6
.

3.

B =
1

41

 11 −2 −1
−13 21 −10
−3 8 4

 .

−1 2 1
3 1 −4
0 5 −2

 =
1

41

−17 15 21
76 −55 −77
27 22 −43

 .
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UNIT 9.4 - MATRICES 4 - ROW OPERATIONS

9.4.1 MATRIX INVERSES BY ROW OPERATIONS

In this section, we shall examine an alternative method for finding the multiplicative inverse
of a matrix but the techniques introduced will lead on to other aspects of solving simultaneous
linear equations not discussed in earlier units.

DEFINITION
An “elementary row operation” on a matrix is any one of the following three possibilities:

(a) The interchange of two rows;
(b) The multiplication of the elements in any row by a non-zero number;
(c) The addition of the elements in any row to the corresponding elements in another row.

Notes:
(i) Elementary row operations are essentially the same kind of operations as those used in
the solution of a set of simultaneous linear equations by the method of elimination; but here
we shall be considering sets of coefficients in the form of matrices rather than complete sets
of equations.

(ii) Elementary row operations of types (b) and (c) imply that the elements in any row
may be subtracted from the corresponding elements in another row and, more generally,
multiples of the elements in any row may be added to or subtracted from the corresponding
elements in another row.

RESULT 1.
To perform an elementary row operation on a matrix algebraically, we may pre-multiply
the matrix by an identity matrix on which the same elementary row operation has been
already performed. For example, in the matrix a1 b1

a2 b2

a3 b3

 ,

suppose we wished to subtract twice the third row from the second row. It is easy enough to
carry this out by inspection, but could also be regarded as the succession of two elementary
row operations as follows:

 1 0 0
0 1 −1
0 0 1

 .

 1 0 0
0 1 0
0 0 2

 .

 a1 b1

a2 b2

a3 b3



1



=

 1 0 0
0 1 −1
0 0 1

 .

 a1 b1

a2 b2

2a3 2b3

 =

 a1 b1

a2 − 2a3 b2 − 2b3

a3 b3

 .

DEFINITION
An “elementary matrix” is a matrix obtained from an identity matrix by performing upon
it one elementary row operation.

RESULT 2.
If a certain sequence of elementary row operations converts a given square matrix, M, into
the corresponding identity matrix, then the same sequence of elementary row operations in
the same order will convert the identity matrix into M−1.

Proof:

Suppose that
En.En−1....E4.E3.E2.E1.M = I

where E1, E2, E3, E4, ...., En−1, En are elementary matrices.

Then, by post-multiplying both sides with M−1, we obtain

En.En−1....E4.E3.E2.E1.M.M−1 = I.M−1.

In other words,
En.En−1....E4.E3.E2.E1.I = M−1,

which proves the result.

EXAMPLES

1. Use elementary row operations to determine the inverse of the matrix[
3 7
2 5

]
.

Solution

First we write down the given matrix side-by-side with the corresponding identity matrix
in the following format:  3 7

... 1 0

2 5
... 0 1

 .
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Secondly, we try to arrange that the first element in the first column of this arrangement
is 1; and this can be carried out by subtracting the second row from the first row.
(Instruction: R1 → R1 −R2).  1 2

... 1 −1

2 5
... 0 1

 .

Thirdly, we try to convert the first column of the display into the first column of the
identity matrix; and this can be carried out by subtracting twice the first row from the
second row.
(Instruction: R2 → R2 − 2R1).  1 2

... 1 −1

0 1
... −2 3

 .

Lastly, we try to convert the second column of the display into the second column of
the identity matrix: and this can be carried out by subtracting twice the second row
from the first row.
(Instruction: R1 → R1 − 2R2).  1 0

... 5 −7

0 1
... −2 3

 .

The inverse matrix is therefore [
5 −7
−2 3

]
,

as we would have obtained by the cofactor method.

Notes:
(i) The technique used for a 2× 2 matrix applies to square matrices of all orders with
appropriate modifications.

(ii) The idea of the method is to obtain, in chronological order, the columns of the
identity matrix from the columns of the given matrix. We do this by using elementary
row operations to convert each diagonal element in the given matrix to 1 and then using
multiples of 1 to reduce the remaining elements in the same column to zero.

(iii) Once any row has been used to reduce elements to zero, that row must not be used
again as the operator; otherwise the zeros obtained may change to other values.
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2. Use elementary row operations to show that the matrix[
1 3
2 6

]
has no inverse.

Solution

We set up the scheme in the following format: 1 3
... 1 0

2 6
... 0 1

 .

Then, we proceed according to the instructions indicated:

R2 → R2 − 2R1  1 3
... 1 0

0 0
... −1 1

 .

There is no way now of continuing to convert the given matrix into the identity matrix;
hence, there is no inverse.

3. Use elementary row operations to determine the inverse of the matrix 4 1 6
2 1 3
3 2 5

 .

Solution

We set up the scheme in the following format: 4 1 6
... 1 0 0

2 1 3
... 0 1 0

3 2 5
... 0 0 1

 .

Then, we proceed according to the instructions indicated:

R1 → R1 −R3  1 −1 1
... 1 0 1

2 1 3
... 0 1 0

3 2 5
... 0 0 1

 ;
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R2 → R2 − 2R1 and R3 → R3 − 3R1 1 −1 1
... 1 0 −1

0 3 1
... −2 1 2

0 5 2
... −3 0 4

 ;

R2 → 2R2 −R3  1 −1 1
... 1 0 −1

0 1 0
... −1 2 0

0 5 2
... −3 0 4

 ;

R1 → R1 + R2 and R3 → R3 − 5R2 1 0 1
... 0 2 −1

0 1 0
... −1 2 0

0 0 2
... 2 −10 4

 ;

R3 → R3 × 1
2  1 0 1

... 0 2 −1

0 1 0
... −1 2 0

0 0 1
... 1 −5 2

 ;

R1 → R1 −R3  1 0 0
... −1 7 −3

0 1 0
... −1 2 0

0 0 1
... 1 5 2

 .

The required inverse matrix is therefore−1 7 −3
−1 2 0
1 −5 2

 .
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9.4.2 GAUSSIAN ELIMINATION - THE ELEMENTARY VERSION

Elementary row operations can also be conveniently used in another method of solving
simultaneous linear equations which relates closely again to the elimination method some-
times encountered in courses which do not include matrices. The method will be introduced
through the case of three equations in three unkowns, but may be applied in other cases as
well.

Suppose a set of simultaneous linear equations in the variables x, y and z appeared in the
special form:

a1x + b1y + c1z = k1,

b2y + c2z = k2,

c3z = k3.

Then it is very simple to solve the equations by first obtaining z from the third equation,
substituting its value into the second equation in order to find y, then substituting for both
y and z in the first equation in order to find x.

The method of Gaussian Elimination reduces any set of linear equations to this triangular
form by adding or subtracting suitable multiples of pairs of the equations; but the method
is more conveniently laid out in a tabular form using only the coefficients of the variables
and the constant terms. We illustrate with an example.

EXAMPLE
Solve the simultaneous linear equations

2x + y + z = 3,

x− 2y − z = 2,

3x− y + z = 8.

Solution
For the simplest arithmetic, we try to arrange that the first coefficient in the first equation
is 1. In the current example, we could interchange the first two equations.

1 -2 -1 2
2 1 1 3
3 -1 1 8
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This format is known as an “augmented matrix”. The matrix of coefficients has been
augmented by the matrix of constant terms.

Using the notation of the previous section, we apply the instructions R2 → R2 − 2R1 and
R3 → R3 − 3R1 giving a new table, namely

1 -2 -1 2

0 5 3 -1
0 5 4 2

Next, we apply the instruction R3 → R3 −R2 giving

1 -2 -1 2
0 5 3 -1
0 0 1 3

The numbers enclosed in the boxes are called the “pivot elements” and are used to reduce
to zero the elements below them in the same column.

The final table above provides a new set of equations, equivalent to the original, namely

x− 2y − z = 2,

5y + 3z = −1,

z = 3.

Hence, z = 3, y = −2, x = 1 .

INSERTING A CHECK COLUMN

In the above example, the numbers were fairly simple, giving little scope for careless mistakes.
However, with large numbers of equations, often involving awkward decimal quantities, the
margin for error is greatly increased.

As a check on the arithmetic at each stage, we deliberately introduce some additional
arithmetic which has to remain consistent with the calculations already being carried out.
The method is to add together the numbers in each row in order to produce an extra column;
each row operation is then performed on the extended rows with the result that, in the new
table, the final column should still be the sum of the numbers to the left of it.

The working for our previous example would be as follows:
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1 -2 -1 2 0
2 1 1 3 7
3 -1 1 8 11

R2 → R2 − 2R1, R3 → R3 − 3R1

1 -2 -1 2 0

0 5 3 -1 7
0 5 4 2 11

R3 → R3 −R2

1 -2 -1 2 0
0 5 3 -1 7
0 0 1 3 4

9.4.4 EXERCISES

1. Use elementary row operations to determine (where possible) the inverses
of the following matrices:

(a)
[
1 0
1 1

]
;

(b)
[
1 2
1 1

]
;

(c)
[
2 4
3 5

]
;

(d)

 1 2 −1
2 0 −7
3 11 3

;

(e)

 0 3 −2
1 −1 5
1 5 1

;

(f)

 2 −3 4
−1 3 −4
1 0 2

;

(g)


−8 −7 −6 −5
−4 −3 −2 −1
1 2 3 4
5 6 7 8

.
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2. Use Gaussian Elimination (with a check column) to solve the following sets of simulta-
neous linear equations:

(a)

x + 3y = −8,

5x− 2y = 11;

(b)

x + 2y = −2,

5x− 4y = 3;

(c)

2x− y + z = 7,

3x + y − 5z = 13,

x + y + z = 5;

(d)

3x + 2y − 2z = 16,

4x + 3y + 3z = 2,

2x− y + z = −1.

9



9.4.5 ANSWERS TO EXERCISES

1. (a)
[

1 0
−1 1

]
;

(b)
[−1 2

1 −1

]
;

(c)

[
−5

2
2

3
2

−1

]
;

(d)

 77 −17 −14
−27 6 5
22 −5 −4

;

(e) There is no inverse;

(f)

 1 1 0
−1

3
0 2

3

−1
2
−1

2
1
2

;

(g) There is no inverse.

2. (a) x = 1 and y = −3;

(b) x = −1
7

and y = −13
14

;

(c) x = 4, y = 1 and z = 0;

(d) x = 2, y = 3
2

and z = −7
2
.
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UNIT 9.5 - MATRICES 5 - CONSISTENCY AND RANK

9.5.1 THE CONSISTENCY OF SIMULTANEOUS LINEAR EQUATIONS

Introduction

Methods of solving simultaneous linear equations in earlier Units have already shown that
some sets of equations cannot be solved to give a unique solution. The Gaussian Elimination
method described in Unit 9.4 is able to detect such situations as illustrated in the work below:

ILLUSTRATION 1.
Suppose, firstly, that we were required to investigate the solution of the simultaneous linear
equations

3x− y + z = 1,

2x + 2y − 5z = 0,

5x + y − 4z = 7.

The Gaussian Elimination solution, with check column, proceeds as follows

3 -1 1 1 4
2 2 -5 0 -1
5 1 -4 7 9

R1 → R1 −R2

1 -3 6 1 5
2 2 -5 0 -1
5 1 -4 7 9

R2 → R2 − 2R1 and R3 → R3 − 5R1

1 -3 6 1 5
0 8 -17 -2 -11
0 16 -34 2 -16

R3 → R3 − 2R2

1 -3 6 1 5
0 8 -17 -2 -11
0 0 0 6 6

The third line seems to imply that 0.z = 6; that is, 0 = 6 which is impossible.
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Hence the equations have no solution and are said to be “inconsistent”.

ILLUSTRATION 2.
Secondly, let us consider the simultaneous linear equations

3x− y + z = 1,

2x + 2y − 5z = 0,

5x + y − 4z = 1,

which differ from the first illustration in one number only, the constant term of the third
equation; but the conclusion will be very different.

This time, the Gaussian Elimination method gives the following sequence of steps:

3 -1 1 1 4
2 2 -5 0 -1
5 1 -4 1 3

R1 → R1 −R2

1 -3 6 1 5
2 2 -5 0 -1
5 1 -4 1 3

R2 → R2 − 2R1 and R3 → R3 − 5R1

1 -3 6 1 5
0 8 -17 -2 -11
0 16 -34 -4 -22

R3 → R3 − 2R2

1 -3 6 1 5
0 8 -17 -2 -11
0 0 0 0 0

The third line here implies that the third equation is redundant since any set of x, y and z
values would satisfy it. Hence, the original set of equations is equivalent to two equations in
three unknowns, namely
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x− 3y + 6z = 1,

8y − 17z = −2.

To state a suitable form of the conclusion, we could use the fact that any one of the three
variables may be chosen at random, the other two being expressed in terms of it. For
instance, if we choose z at random, then

x =
3z + 2

8
and y =

17z − 2

8
.

However, there is a neater way of arriving at the conclusion.

Neater form of solution
Suppose that x = x0, y = y0, z = z0 is any known solution to the equations. It could be
determined, for instance, by starting with z = 0; in this case, z = 0, y = −1

4
and x = 1

4
.

Let us now substitute

x = x1 + x0,

y = y1 + y0,

z = z1 + z0,

from which we obtain

(x1 + x0)− 3(y1 + y0) + 6(z1 + z0) = 1,

8(y1 + y0)− 17(z1 + z0) = −2.

But, because (x0, y0, z0) is a known solution, this reduces to

x1 − 3y1 + 6z1 = 0,

8y1 − 17z1 = 0.
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This is a set of “homogeneous linear equations” and, although clearly satisfied by x1 = 0,
y1 = 0, z1 = 0, we regard this as a “trivial solution” and ignore it.

Of more use to us is the fact that an infinite number of non-trivial solutions can be found
for each of which the variables x1, y1 and z1 are in a certain set of ratios. In the present
case, from the second equation, we have

y1 = 17
8
z1 which means that y1 : z1 = 17 : 8.

Substituting into the first equation gives

x1 − 51
8
z1 + 6z1 = 0 which means that x1 = 3

8
z1; that is, x1 : z1 = 3 : 8.

Combining these conclusions, we can say that

x1 : y1 : z1 = 3 : 17 : 8

and any three numbers in these ratios will serve as a set of values for x1, y1 and z1.

The neater form of solution can, in general, be written

 x
y
z

 =

 x0

y0

z0

 + α

 x1

y1

z1

 ,

where α may be any non-zero number.

In our present example,  x
y
z

 =


1
4

−1
4

0

 + α

 3
17
8

 .

Notes:
(i) An alternative way of determining the ratios x1 : y1 : z1 is to use the fact that, since at
least one of the variables is going to be non-zero, we may begin by letting it equal 1.

In the above illustration, suppose we let z1 = 1; then

y1 =
17

8
and x1 =

3

8
.

Hence,

x1 : y1 : z1 =
3

8
:
17

8
: 1,
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which can be rewritten
x1 : y1 : z1 = 3 : 17 : 8,

as before.

(ii) Should it happen that a set of simultaneous linear equations reduces to only one equation
(that is, each equation is just a multiple of the first) then a similar procedure can be applied
as in the following illustration:

ILLUSTRATION 3.

Using trial and error, the equation

3x− 2y + 5z = 6

has a particular solution x0 = 1, y0 = 1, z0 = 1, so that the general solution is given by

x = x0 + x1, y = y0 + y1, z = z0 + z1,

where
3x1 − 2y1 + 5z1 = 0.

We could choose x1 = α and y1 = β at random for this equation to give z1 = 2β−3α
5

. That is,

 x1

y1

z1

 = α

 1
0
−3

5

 + β

 0
1
2
5

 .

Hence,

 x
y
z

 =

 1
1
1

 + α

 1
0
−3

5

 + β

 0
1
2
5

 .
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9.5.2 THE ROW-ECHELON FORM OF A MATRIX

In the Gaussian Elimination method to solve a set of simltaneous linear equations,

MX = K,

we begin with the augmented matrix M|K and use elementary row operations to obtain more
zeros at the beginning of each row than at the beginning of the previous row.

If desired, the first non-zero element in each row could be reduced to 1 by simply dividing
that row throughout by the value of the first non-zero element. This leads to the following
definition:

DEFINITION
The “row echelon form” of a matrix is that for which the first non-zero element in each
row is 1 and occurs to the right of the first non-zero element in the previous row.

Note:
When using the term “row echelon form” in future, we shall not insist that the first non-zero
element in each row has actually been reduced to 1.

9.5.3 THE RANK OF A MATRIX

The two illustrations of Gaussian Elimination discussed in section 9.5.1 may be used to imply
that special conclusions are reached when, in the final row echelon form, either a complete
row of M has reduced to zero (Illustration 1.) or a complete row of M|K has reduced to zero
(Illustration 2.) This leads to another definition as follows:

DEFINITION
The “rank” of a matrix is the number or rows which do not reduce to a complete row of
zeros when the matrix has been converted to row echelon form.

ILLUSTRATIONS

1. In our previous Illustration 1, M had rank 2 but M|K had rank 3. The equations were
inconsistent.

2. In our previous Illustration 2, M had rank 2 and M|K also had rank 2. The equations
had an infinite number of solutions.

3. In the examples of Unit 9.4 both M and M|K had rank 3. There was a unique solution
to the simultaneous equations.

A general summary of these observations may be set out as follows:
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1. The equations MX = K are inconsistent if rank M < rank M|K.

2. The equations MX = K have an infinite number of solutions if
rank M = rank M|K < n where n is the number of equations.

3. The equations MX = K have a unique solution if rank M = rank M|K = n where n is
the number of equations.

9.5.4 EXERCISES

1. Use Gaussian Elimination to show that the following sets of simultaneous equations are
inconsistent:

(a)

x− y + 2z = 2,

3x + y − z = 3,

5x− y + 3z = 4;

(b)

x− y + 2z = 1,

−x + 3y − z = −1,

3x− 7y + 4z = 5.

2. Determine the rank of the following matrices:

(a)

 1 2 3 4
0 1 −1 5
3 4 11 2

; (b)


a 1 2
−1 −3 8
1 12 −3
4 −3 7

.

3. Determine the general solution of the following equations by reducing the augmented
matrix to row echelon form:

x + 3y − z = 6,

8x + 9y + 4z = 21,

2x + y + 2z = 3.
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4. State the value of t for which the matrix

M =

 2 1 −3
4 t −6
3t 3 −9


has rank 1 and determine the general solution of the system of equations

MX = K,

where

X =

 x
y
z

 and K =

 1
2
3

 .

5. For the system of simultaneous linear equations

x1 − x2 + 2x3 = 1,

2x1 − x2 + tx3 = 2,

−x1 + 2x2 + x3 = s,

determine for which values of s and t there exists

(a) no solution;

(b) a unique solution;

(c) an infinite number of solutions.

Solve the equations for the two cases s = 1, t = 1 and s = −1, t = 7.

6. Determine the values of t for which the matrix

M =

 1 1 1
2 1 t
3t 2 −2


has rank 2.

For each of these two values of t, solve the system of equations

MX = K,

where X =

 x
y
z

 and K =

 1
2
2

.
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9.5.5 ANSWERS TO EXERCISES

1. The rank of the matrix of x, y and z coefficients is less than the rank of the augmented
matrix.

2. (a) 2; (b) 3.

3.

 x
y
z

 =


3
5
9
5
0

 + α

−7
4
5

.

4.

t = 2

and  x
y
z

 =

 1
1
1

 + α

 1
0
2
3

 + β

 0
1
1
3

 .

5. (a) t = 7 and s 6= −1; (b) t 6= 7; (c) t = 7 and s = −1.

If s = 1 and t = −1, then x1 = 7
4
, x2 = 5

4
and x3 = 1

4
.

If s = −1 and t = 7, then  x1

x2

x3

 =

 1
0
0

 + α

 5
3
−1

 .

6. The rank is 2 when t = −1 or when t = 2
3
.

If t = −1, the equations are inconsistent.

If t = 2
3
, the equations have general solution x

y
z

 =

 1
0
0

 + α

−5
8
3

 .
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UNIT 9.6 - MATRICES 6

EIGENVALUES AND EIGENVECTORS

9.6.1 THE STATEMENT OF THE PROBLEM

Suppose A is any square matrix, and let X be a column vector with the same number of
rows as there are columns in A. For example, if A is of order m × m, then X must be of
order m× 1 and AX will also be of order m× 1.

We ask the question:

“Is it ever possible that AX can be just a scalar multiple of X ?”

We exclude the case when the elements of X are all zero since, in a practical application,
these elements will usally be the components of an actual vector quantity; and, if they are
all zero, the direction of the vector will be indeterminate.

ILLUSTRATIONS

1.  2 2 1
1 3 1
1 2 2


 7
−2
−3

 =

 7
−2
−3

 .

2.  2 2 1
1 3 1
1 2 2


 1

1
1

 =

 5
5
5

 = 5

 1
1
1

 .

The formal statement of the problem

For a given square matrix, A, we investigate the existence of column vectors, X, such that

AX = λX

for some scalar quantity λ. Each such column vector is called an “eigenvector” of the
matrix, A; and each corresponding value of λ is called an “eigenvalue” of the matrix, A.
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Notes:

(i) The German word “eigen” (meaning “hidden”) gives rise to the above names, but other
alternatives are “latent values and latent vectors” or “characteristic values and characteristic
vectors”.

(ii) In the discussion which follows, A will be, mostly, a matrix of order 3× 3, but the ideas
involved will apply to square matrices of other orders also (see Example 1 and
Exercises 9.6.3, question 1).

9.6.2 THE SOLUTION OF THE PROBLEM

Assuming that

A =

 a1 b1 c1

a2 b2 c2

a3 b3 c3

 and X =

 x
y
z

 ,

the matrix equation, AX = λX, may be written out fully in the following form:

a1x + b1y + c1z = λx,

a2x + b2y + c2z = λy,

a3x + b3y + c3z = λz;

or, on rearrangement,

(a1 − λ)x + b1y + c1z = 0,

a2x + (b2 − λ)y + c2z = 0,

a3x + b3y + (c3 − λ)z = 0,

which is a set of homogeneous linear equations in x, y and z and may be written, for short,
in the form

(A− λI)X = [0],

where I denotes the identity matrix of order 3× 3.

From the results of Unit 7.4, the condition that the three homogeneous linear equations have
a solution other than x = 0, y = 0, z = 0 is
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|A− λI| =

∣∣∣∣∣∣∣
a1 − λ b1 c1

a2 b2 − λ c2

a3 b3 c3 − λ

∣∣∣∣∣∣∣ = 0.

This equation will give, on expansion, a cubic equation in λ called the “characteristic
equation” of A. Its left-hand side is called the “characteristic polynomial” of A.

The characteristic equation of a 3× 3 matrix, being a cubic equation, will (in general) have
three solutions.

EXAMPLES

1. Determine the eigenvalues and eigenvectors of the matrix

A =
[
2 4
5 3

]
.

Solution

(a) The eigenvalues

The characteristic equation is given by

0 = |A− λI| =
∣∣∣∣ 2− λ 4

5 3− λ

∣∣∣∣ = λ2 − 5λ− 14 = (λ + 2)(λ− 7).

The eigenvalues are therefore λ = −2 and λ = 7.

(b) The eigenvectors

Case 1. λ = −2

We require to solve the equation x + y = 0,

giving x : y = −1 : 1 and a corresponding eigenvector

X = α
[−1

1

]
,

where α is any non-zero scalar.

Case 2. λ = 7

We require to solve the equation 5x− 4y = 0,

giving x : y = 4 : 5 and a corresponding eigenvector
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X = β
[
4
5

]
,

where β is any non-zero scalar.

2. Determine the eigenvalues and eigenvectors of the matrix

A =

 3 2 4
2 0 2
4 2 3

 .

Solution

(a) The eigenvalues

The characteristic equation is given by

0 = |A− λI| =

∣∣∣∣∣∣∣
3− λ 2 4

2 −λ 2
4 2 3− λ

∣∣∣∣∣∣∣ .
Direct expansion of the determinant gives the equation

−λ3 + 6λ2 + 15λ + 8 = 0,

which will factorise into

(1 + λ)2(8− λ) = 0.

Note:
Students who have studied row and column operations for determinants (see Unit 7.3)
may obtain this by simplifying the determinant first. (One way is to subtract the third
column from the first column and then add the third row to the first row).

The eigenvalues are therefore λ = −1(repeated) and λ = 8.

(b) The eigenvectors

Case 1. λ = 8

We require to solve the homogeneous equations

−5x + 2y + 4z = 0,

2x− 8y + 2z = 0,

4x + 2y − 5z = 0.
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Eliminating x from the second and third equations gives 18y − 9z = 0.

Eliminating y from the second and third equations gives 18x− 18z = 0.

Since z appears twice in the two statements, we may try letting z = 1 to give y = 1
2

and x = 1.

Hence,

x : y : z = 1 :
1

2
: 1 = 2 : 1 : 2

The eigenvectors corresponding to λ = 8 are thus given by

X = α

 2
1
2

 ,

where α is any non-zero scalar.

Case 2. λ = −1

This time, we require to solve the homogeneous equations

4x + 2y + 4z = 0,

2x + y + 2z = 0,

4x + 2y + 4z = 0,

which, of course, are all the same equation, 2x + y + 2z = 0.

Hence, two of the variables may be chosen at random (say y = β and z = γ), then the
third variable may be expressed in terms of them; (in this case x = −1

2
β − γ).

However, a neater technique is to obtain, first, a pair of independent particular solutions
by setting one pair of the variables at 1 and 0, in both orders. For example y = 1 and
z = 0 gives x = −1

2
while y = 0 and z = 1 gives x = −1.

The general solution (in which y and z are randomly chosen as β and γ respectively) is
then given by

X = β

−
1
2

1
0

 + γ

−1
0
1

 ,

where β and γ are not both equal to zero at the same time.
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Notes:

(i) Similar results in Case 2 could be obtained by choosing different pairs of the three
variables at random.

(ii) Other special cases arise if the three homogeneous equations reduce to a single equation
in which one or even two of the variables is absent.

For example, if they reduced to y = 0, the corresponding eigenvectors could be given by

X = α

 1
0
0

 + γ

 0
0
1

 ,

allowing x = α and z = γ to be chosen at random, assuming that α and γ are not both zero
simultaneously.

Alternatively, if the homogeneous equations reduced to 3x + 5z = 0, then the corresponding
eigenvectors could be given by

X = α

 1
0
−3

5

 + β

 0
1
0

 ,

allowing x = α and y = β to be chosen at random, assuming that α and β are not both zero
simultaneously.

9.6.3 EXERCISES

Determine the eigenvalues and eigenvectors of the following matrices:

1. [
1 3
2 6

]
.

2.  1 0 −1
1 2 1
2 2 3

 .
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3.  1 1 −2
−1 2 1
0 1 −1

 .

4.  1 2 2
0 2 1
−1 2 2

 .

5.  0 1 0
0 0 1
1 −3 3

 .

6. −2 −8 −12
1 4 4
0 0 1

 .

7. −3 −9 −12
1 3 4
0 0 1

 .

8.  2 2 1
1 3 1
1 2 2

 .

9.  2 0 0
3 2 0
4 0 2

 .

10.  4 −2 0
1 1 0
1 −2 3

 .

7



9.6.4 ANSWERS TO EXERCISES

The eigenvectors will be written as XT instead of X, in order to avoid unnecessary waste of
space.

1. λ = 0, giving XT = α[−3 1],
where α is any non-zero scalar;

λ = 7, giving XT = β[1 2],
where β is any non-zero scalar.

2. λ = 1, giving XT = α[1 − 1 0],
where α is any non-zero scalar;

λ = 2, giving XT = β[−2 1 2],
where β is any non-zero scalar;

λ = 3, giving XT = γ[−1 1 2],
where γ is any non-zero scalar.

3. λ = 1, giving XT = α[3 2 1],
where α is any non-zero scalar;

λ = −1, giving XT = β[1 0 1],
where β is any non-zero scalar;

λ = 2, giving XT = γ[1 3 1],
where γ is any non-zero scalar.

4. λ = 1, giving XT = α[1 1 − 1],
where α is any non-zero scalar;

λ = 2 (repeated), giving XT = β[2 1 0],
where β is any non-zero scalar.

5. λ = 1 (repeated), giving XT = α[1 1 1],
where α is any non-zero scalar.

6. λ = 0, giving XT = α[−4 1 0],
where α is any non-zero scalar;

λ = 2, giving XT = β[−2 1 0],
where β is any non-zero scalar;

λ = −1, giving XT = γ[28 − 8 3],
where γ is any non-zero scalar.
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7. λ = 1, giving XT = α[−12 4 1],
where α is any non-zero scalar;

λ = 0 (repeated), giving XT = β[−3 1 0] + γ[−4 0 1],
where β and γ are any scalar numbers which are not simultaneously zero.

8. λ = 5, giving XT = α[1 1 1],
where α is any non-zero scalar;

λ = 1 (repeated), giving XT = β[−2 1 0] + γ[−1 0 1],
where β and γ are any scalar numbers which are not simultaneously zero.

9. λ = 2 (repeated), giving XT = β[0 1 0] + γ[0 0 1]
where β and γ are any scalar numbers which are not simultaneously zero.

10. λ = 2, giving XT = α[1 1 1],
where α is any non-zero number;

λ = 3, giving XT = α[1 1
2

0] + γ[0 0 1],
where α and γ are any scalar numbers which are not simultaneously zero.

9
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UNIT 9.7 - MATRICES 7

LINEARLY INDEPENDENT AND NORMALISED EIGENVECTORS

9.7.1 LINEARLY INDEPENDENT EIGENVECTORS

It is often useful to know if an n × n matrix, A, possesses a full set of n eigenvectors
X1, X2, X3, . . . , Xn, which are “linearly independent”.

That is, they are not connected by any relationship of the form

a1X1 + a2X2 + a3X3 + . . . ≡ 0,

where a1, a2, a3, . . . are constants.

If the eigenvalues of A are distinct, it turns out that the eigenvectors are linearly independent;
but, if any of the eigenvalues are repeated, further investigation may be necessary.

ILLUSTRATIONS

1. In Unit 9.6, it was shown that the matrix

A =

 3 2 4
2 0 2
4 2 3


has eigenvalues λ = 8 and λ = −1(repeated), with corresponding eigenvectors,

α

 2
1
2

 ,

where α is any non-zero scalar and

β

−
1
2

1
0

 + γ

−1
0
1

 ,

where β and γ are not both equal to zero at the same time.
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The matrix, A, possesses a set of three linearly independent eigenvectors which may,
conveniently, be chosen as

X1 =

 2
1
2

 , X2 =

−1
2
0

 , and X3 =

−1
0
1

 .

It is reasonably obvious that these are linearly independent, but a formal check would
be to show that the matrix,  2 −1 −1

1 2 0
2 0 1

 ,

has rank 3.

2. It may be shown that the matrix,  1 2 2
0 2 1
−1 2 2

 ,

has eigenvalues λ = 2 (repeated) and λ = 1, with corresponding eigenvectors,

α

 2
1
0

 and β

 1
1
−1

 ,

where α and β are any non-zero numbers.

In this case, it is not possible to obtain a full set of three linearly independent eigen-
vectors.

9.7.2 NORMALISED EIGENVECTORS

It is sometimes convenient to use a set of “normalised” eigenvectors, which means that,
for each eigenvector, the sum of the squares of its elements is equal to 1.

An eigenvector may be normalised if we multiply it by (plus or minus) the reciprocal of the
square root of the sum of the squares of its elements.
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ILLUSTRATIONS

1. A set of linearly independent normalised eigenvectors for the matrix, 3 2 4
2 0 2
4 2 3

 ,

is

1

3

 2
1
2

 ,
1√
5

−1
2
0

 and
1√
2

−1
0
1

 .

2. A set of linearly independent normalised eigenvectors for the matrix, 1 2 2
0 2 1
−1 2 2

 ,

is

1√
5

 2
1
0

 , and
1√
3

 1
1
−1

 .

9.7.3 EXERCISES

1. Determine the eigenvalues and a set of linearly independent normalised eigenvectors for
the following 2× 2 matrices:

(a)
[
17 −6
45 −16

]
, (b)

[
5 −2
7 −4

]
, (c)

[
16 −8
24 −12

]
.

2. Determine the eigenvalues and a set of linearly independent normalised eigenvectors for
the following 3× 3 matrices:

(a)  2 −3 1
3 1 3
−5 2 −4

 ;

3



(b)  7 0 4
7 0 4
0 0 11

 ;

(c)  2 −2 2
1 1 1
1 3 −1

 ;

(d) −2 0 −14
−7 5 −14
0 0 5

 ;

(e)  3 0 0
1 4 0
1 0 4

 .

9.7.4 ANSWERS TO EXERCISES

1. (a) The eigenvalues are 2 and −1.

A set of linearly independent normalised eigenvectors is

1√
29

[
2
5

]
,

1√
10

[
1
3

]
.

(b) The eigenvalues are 3 and −2.

A set of linearly independent normalised eigenvectors is

1√
2

[
1
1

]
,

1√
53

[
2
7

]
.

(c) The eigenvalues are 4 and 0.

A set if linearly independent normalised eigenvectors is

1√
13

[
2
3

]
,

1√
5

[
1
2

]
,

4



2. (a) The eigenvalues are 1, 0 and −2.

A set of linearly independent normalised eigenvectors is

1√
2

 1
0
−1

 ,
1√
230

 10
3
−11

 and
1√
74

 4
3
−7

 .

(b) The eigenvalues are 11, 7 and 0.

A set of linearly independent normalised eigenvectors are

1√
3

 1
1
1

 ,
1√
2

 1
1
0

 and

 0
1
0

 .

(c) The eigenvalues are 2 (repeated) and −2.

A set of linearly independent normalised eigenvectors is

1√
2

 0
1
1

 , and
1√
66

 4
1
7

 .

(d) The eigenvalues are 5 (repeated) and −2.

A set of linearly independent normalised eigenvectors is

1√
6

−2
1
1

 ,
1√
6

−2
0
1

 and
1√
2

 1
1
0

 .

(e) The eigenvalues are 4 (repeated) and 3.

A set of linearly independent normalised eigenvectors is 0
1
0

 ,

 0
0
1

 and
1√
3

 1
−1
−1

 .
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UNIT 9.8 - MATRICES 8

CHARACTERISTIC PROPERTIES AND
SIMILARITY TRANSFORMATIONS

9.8.1 PROPERTIES OF EIGENVALUES AND EIGENVECTORS

We list, here, a number of standard properties, together with either their proofs or an
illustration of their proofs.

(i) The eigenvalues of a matrix are the same as those of its transpose.

Proof:

Given a square matrix, A, the eigenvalues of AT are the solutions of the equation

|AT − λI| = 0.

But, since I is a symmetric matrix, this is equivalent to

|(A− λI)T| = 0.

The result follows since a determinant is unchanged in value when it is transposed.

(ii) The eigenvalues of the multiplicative inverse of a matrix are the reciprocals
of the eigenvalues of the matrix itself.

Proof:

If λ is any eigenvalue of a square matrix, A, then

AX = λX,

for some column vector, X.

Premultiplying this relationship by A−1, we obtain

A−1AX = A−1(λX) = λ(A−1X).
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Thus,

A−1X =
1

λ
X.

(iii) The eigenvectors of a matrix and its multiplicative inverse are the same.

Proof:

This follows from the proof of (ii), since

A−1X =
1

λ
X

implies that X is an eigenvector of A−1.

(iv) If a matrix is multiplied by a single number, the eigenvalues are multiplied
by that number, but the eigenvectors remain the same.

Proof:

If A is multiplied by α, we may write the equation AX = λX in the form αAX = αλX.

Thus, αA has eigenvalues, αλ, and eigenvectors, X.

(v) If λ1, λ2, λ3, . . are the eigenvalues of the matrix A and n is a positive
integer, then λn

1 , λn
2 , λn

3 , . . are the eigenvalues of An.

Proof:

If λ denotes any one of the eigenvalues of the matrix, A, then AX = λX.

Premultiplying both sides by A, we obtain A2X = AλX = λAX = λ2X

Hence, λ2 is an eigenvlaue of A2.

Similarly, A3X = λ3X, and so on.

(vi) If λ1, λ2, λ3, . . . are the eigenvalues of the n × n matrix A, I is the n × n
multiplicative identity matrix and k is a single number, then the eigenvalues of
the matrix A + kI are λ1 + k, λ2 + k, λ3 + k, . . ..
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Proof:

If λ is any eigenvalue of A, then AX = λX.

Hence,

(A + kI)X = AX + kX = λX + kX = (λ + k)X.

(vii) A matrix is singular (|A| = 0) if and only if at least one eigenvalue is equal
to zero.

Proof:

(a) If X is an eigenvector corresponding to an eigenvalue, λ = 0, then AX = λX = [0].

From the theory of homogeneous linear equations (see Unit 7.4), it follows that |A| = 0.

(b) Conversely, if |A| = 0, the homogeneous system AX = [0] has a solution for X other than
X = [0]. Hence, at least one eigenvalue must be zero.

(viii) If A is an orthogonal matrix (AAT = I), then every eigenvalue is either +1
or −1.

Proof:

The statement AAT = I can be written A−1 = AT so that, by (i) and (ii), the eigenvalues
of A are equal to their own reciprocals.

That is, they must have values +1 or −1.

(ix) If the elements of a matrix below the leading diagonal or the elements
above the leading diagonal are all equal zero, then the eigenvalues are equal to
the diagonal elements.

ILLUSTRATION

An “upper-triangular matrix”, A, of order 3× 3, has the form

A =

 a1 b1 c1

0 b2 c2

0 0 c3

 .
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The characteristic equation is given by

0 = |A− λI| =

∣∣∣∣∣∣∣
a1 − λ b1 c1

0 b2 − λ c2

0 0 c3 − λ

∣∣∣∣∣∣∣ = (a1 − λ)(b2 − λ)(c3 − λ).

Hence, λ = a1, b2 or c3.

A similar proof holds for a “lower-triangular matrix”.

Note:
A special case of both a lower-triangular matrix and an upper-triangular matrix is a diagonal
matrix.

(x) The sum of the eigenvalues of a matrix is equal to the trace of the matrix
(the sum of the diagonal elements) and the product of the eigenvalues is equal
to the determinant of the matrix.

ILLUSTRATION

We consider the case of a 2× 2 matrix, A, given by

A =
[
a1 b1

a2 b2

]
.

The characteristic equation is

0 =
∣∣∣∣ a1 − λ b1

a2 b2 − λ

∣∣∣∣ = λ2 − (a1 + b2)λ + (a1b2 − a2b1).

But, for any quadratic equation, aλ2 + bλ + c = 0, the sum of the solutions is equal to −b/a
and the product of the solutions is equal to c/a.

In this case, therefore, the sum of the solutions is a1 + b2, while the product of the solutions
is a1b2 − a2b1.
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9.8.2 SIMILAR MATRICES

In the previous section, a matrix and its transpose illustrated how two matrices can have
the same eigenvalues. In this section, we deal with a more general case of this occurrence.

DEFINITION

Two matrices, A and B, are said to be “similar” if

B = P−1AP,

for some non-singular matrix, P.

Notes:

(i) P is certainly square, so that A and B must also be square and of the same order as P.

(ii) The relationship B = P−1AP is regarded as a “transformation” of the matrix, A, into
the matrix, B.

(iii) A relationship of the form B = QAQ−1 may also be regarded as a similarity transfor-
mation on A, since Q is the multiplicative inverse of Q−1.

THEOREM

Two similar matrices, A and B, have the same eigenvalues. Furthermore, if the similarity
transformation from A to B is B = P−1AP, then the eigenvectors, X and Y, of A and B
respectively are related by the equation

Y = P−1X.

Proof:

The eigenvalues, λ, and the eigenvectors, X, of A satisfy the relationship AX = λX.

Hence,

P−1AX = λP−1X.

Secondly, using the fact that PP−1 = I, we have
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P−1APP−1X = λP−1X,

which may be written

(P−1AP)(P−1X) = λ(P−1X)

or

BY = λY,

where B = P−1AP and Y = P−1X.

This shows that the eigenvalues of A are also the eigenvalues of B and that the eigenvectors
of B are of the form P−1X.

Reminders

[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
;

and, in general, for a square matrix M,

M−1 = 1
|M|× the transpose of the cofactor matrix.

9.8.3 EXERCISES

1. For the matrix,

A =

 1 −1 0
2 4 0
−2 −1 1

 ,

and its multiplicative inverse, A−1, determine the eigenvalues and a set of corresponding
linearly independent normalised eigenvectors.
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2. State the eigenvalues for the upper-triangular matrix 2 −4 1
0 3 2
0 0 −1


and, hence, obtain a set of linearly independent normalised eigenvectors for the matrix.

3. State the eigenvalues of the lower-triangular matrix 6 0 0
3 0 0
2 1 −10


and, hence, obtain a set of linearly independent normalised eigenvectors for the matrix.

4. Determine the eigenvalues and a set of corresponding linearly independent eigenvectors
for the matrix B = P−1AP, where

A =
[
1 3
2 6

]
and P =

[
4 7
1 2

]
.

5. Determine the eigenvalues and a set of corresponding linearly independent eigenvectors
for the matrix B = P−1AP, where

A =

 1 −1 0
2 4 0
−2 −1 1

 and P =

 2 −1 3
0 −2 4
5 1 6

 .

6. Show that the matrix

C =


1
2

1
2

√
2

2
1
2

1
2

−
√

2
2√

2
2

−
√

2
2

0


is orthogonal and verify that its eigenvalues are either 1 or −1.

9.8.4 ANSWERS TO EXERCISES

1. The eigenvalues of A are 3, 2 and 1 with corresponding normalised eigenvectors,

1√
5

−1
2
0

 ,
1√
3

−1
1
1

 and

 0
0
1

 .
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The eigenvalues of A−1 are 1
3
, 1

2
and 1, with corresponding normalised eigenvectors the

same as for A.

2. The eigenvalues are 3, 2 and −1, with corresponding linearly independent normalised
eigenvectors,

1√
17

 4
−1
0

 ,

 1
0
0

 and
1

3

 2
2
−2

 .

3. The eigenvalues are 6, 0 and −10, with corresponding linearly independent normalised
eigenvectors,

1√
1305

 32
16
5

 ,
1√
101

 0
10
1

 and

 0
0
1

 .

4. The eigenvalues of B are the same as those of A, namely 0 and 7.

Also, P−1 =
[

2 −7
−1 4

]
.

Hence, a set of linearly independent eigenvectors for B is

[−13
7

]
and

[−12
7

]
.

5. The eigenvalues of B are the same as those of A which, from question 1, are 3, 2 and 1.

Also,

P−1 = − 1

22

−16 9 2
20 −3 −8
10 −7 −4

 ,

so that a set of linearly independent eigenvectors for B are−17
13
12

 ,

−27
31
21

 and

−1
4
2

 .

6. CCT = I and the eigenvalues are 1 (repeated) and −1.
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UNIT 9.9 - MATRICES 9

MODAL AND SPECTRAL MATRICES

9.9.1 ASSUMPTIONS AND DEFINITIONS

For convenience, we shall make, here, the following assumptions:

(a) The n eigenvalues, λ1, λ2, λ3, . . . , λn, of an n × n matrix, A, are arranged in order of
decreasing value.

(b) Corresponding to λ1, λ2, λ3, . . . , λn, respectively, A possesses a full set of eigenvectors
X1, X2, X3, . . . , Xn, which are linearly independent.

If two eigenvalues coincide, the order of writing down the corresponding pair of eigenvectors
will be immaterial.

DEFINITION 1

The square matrix obtained by using as its columns any set of linearly independent eigen-
vectors of a matrix A is called a “modal matrix” of A, and may be denoted by M.

Notes:

(i) There are infinitely many modal matrices for a given matrix, A, since any multiple of an
eigenvector is also an eigenvector.

(ii) It is sometimes convenient to use a set of normalised eigenvectors.

When using normalised eigenvectors, the modal matrix may be denoted by N and, for an n×n
matrix, A, there are 2n possibilities for N since each of the n columns has two possibilities.

DEFINITION 2

If λ1, λ2, λ3, . . . , λn are the eigenvalues of an n× n matrix, A, then the diagonal matrix,


λ1 0 0 . . 0
0 λ2 0 . . 0
0 0 λ3 . . 0
. . . . . .
0 0 0 . . λn



is called the “spectral matrix” of A, and may be denoted by S.
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EXAMPLE

For the matrix,

A =

 1 1 −2
−1 2 1
0 1 −1

 ,

determine a modal matrix, a modal matrix of normalised eigenvectors and the spectral
matrix.

Solution

The characteristic equation is

∣∣∣∣∣∣∣
1− λ 1 −2
−1 2− λ 1
0 1 −1− λ

∣∣∣∣∣∣∣ = 0,

which may be shown to give

−(1 + λ)(1− λ)(2− λ) = 0.

Hence, the eigenvalues are λ1 = 2, λ2 = 1 and λ3 = −1 in order of decreasing value.

Case 1. λ = 2

We solve the simultaneous equations

−x + y − 2z = 0,

−x + 0y + z = 0,

0x + y − 3z = 0,

which give x : y : z = 1 : 3 : 1
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Case 2. λ = 1

We solve the simultaneous equations

0x + y − 2z = 0,

−x + y + z = 0,

0x + y − 2z = 0,

which give x : y : z = 3 : 2 : 1

Case 3. λ = −1

We solve the simultaneous equations

2x + y − 2z = 0,

−x + 3y + z = 0,

0x + y + 0z = 0,

which give x : y : z = 1 : 0 : 1

A modal matrix for A may therefore be given by

M =

 1 3 1
3 2 0
1 1 1

 .

A modal matrix of normalised eigenvectors may be given by

N =


1√
11

3√
14

1√
2

3√
11

2√
14

0
1√
11

1√
14

1√
2

 .
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The spectral matrix is given by

S =

 2 0 0
0 1 0
0 0 −1

 .

9.9.2 DIAGONALISATION OF A MATRIX

Since the eigenvalues of a diagonal matrix are equal to its diagonal elements, it is clear that
a matrix, A, and its spectral matrix, S, have the same eigenvalues.

From the Theorem in Unit 9.8, therefore, it seems reasonable that A and S could be similar
matrices; and this is the content of the following result which will be illustrated rather than
proven.

THEOREM

The matrix, A, is similar to its spectral matrix, S, the similarity transformation being

M−1AM = S,

where M is a modal matrix for A.

ILLUSTRATION:

Suppose that X1, X2 and X3 are linearly independent eigenvectors of a 3 × 3 matrix, A,
corresponding to eigenvalues λ1, λ2 and λ3, respectively.

Then,

AX1 = λ1X1, AX2 = λ2X2, and AX3 = λ3X3.

Also,

M =

 x1 x2 x3

y1 y2 y3

z1 z2 z3

 .

If M is premultiplied by A, we obtain a 3×3 matrix whose columns are AX1, AX2, and AX3.

4



That is,

AM = [ AX1 AX2 AX3 ] = [ λ1X1 λ2X2 λ3X3 ]

or

AM =

 x1 x2 x3

y1 y2 y3

z1 z2 z3

 .

 λ1 0 0
0 λ2 0
0 0 λ3

 = MS.

We conclude that

M−1AM = S.

Notes:

(i) M−1 exists only because X1, X2 and X3 are linearly independent.

(ii) The similarity transformation in the above theorem reduces the matrix, A, to “diagonal
form” or “canonical form” and the process is often referred to as the “diagonalisation”
of the matrix, A.

EXAMPLE

Verify the above Theorem for the matrix

A =

 1 1 −2
−1 2 1
0 1 −1

 .

Solution

From an earlier example, a modal matrix for A may be given by

M =

 1 3 1
3 2 0
1 1 1

 .
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The spectral matrix is given by

S =

 2 0 0
0 1 0
0 0 −1

 .

It may be shown that

M−1 =
1

6

−2 2 2
3 0 −3
−1 −2 7



and, hence,

M−1AM =
1

6

−2 2 2
3 0 −3
−1 −2 7

 .

 1 1 −2
−1 2 1
0 1 −1

 .

 1 3 1
3 2 0
1 1 1



=
1

6

−2 2 2
3 0 −3
−1 −2 7

 .

 2 3 −1
6 2 0
2 1 −1



=

 2 0 0
0 1 0
0 0 −1

 = S.
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9.9.3 EXERCISES

1. Determine a modal matrix, M, of linearly independent eigenvectors for the matrix

A =

−1 6 −12
0 −13 30
0 −9 20

 .

Verify that M−1AM = S, where S is the spectral matrix of A.

2. Determine a modal matrix, M, of linearly independent eigenvectors for the matrix

B =

 1 2 2
0 2 1
−1 1 2

 .

Verify that M−1AM = S, where S is the spectral matrix of B.

3. Determine a modal matrix, N, of linearly independent normalised eigenvectors for the
matrix

C =

 2 −2 0
0 4 0
2 5 1

 .

Verify that N−1AN = S, where S is the spectral matrix of C.

4. Show that the following matrices are not similar to a diagonal matrix:

(a)

 1 2 2
0 2 1
−1 2 2

 , (b)

 0 1 0
0 0 1
1 −3 3

 .
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9.9.4 ANSWERS TO EXERCISES

1. The eigenvalues are 5,2 and −1, which gives

M =

−1 0 1
5 2 0
3 1 0

 .

2. The eigenvalues are 2, 1 and −1, which gives

M =

 1 3 1
3 2 0
1 1 1

 .

3. The eigenvalues are 4, 2 and 1, which gives

N =


− 1√

3
1√
5

0
1√
3

0 0
1√
3

2√
5

1

 .

4. (a) The eigenvalues are 2 (repeated) and 1 but there are only two linearly independent
eigenvectors, namely  2

1
0

 and

 1
1
−1

 .

(b) There is only one eigenvalue, 1 (repeated), and only one linearly independent
eigenvector, namely  1

1
1

 .
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UNIT 9.10 - MATRICES 10

SYMMETRIC MATRICES AND QUADRATIC FORMS

9.10.1 SYMMETRIC MATRICES

The definition of a symmetric matrix was introduced in Unit 9.1 and matrices of this type
have certain special properties with regard to eigenvalues and eigenvectors. We list them as
follows:

(i) All of the eigenvalues of a symmetric matrix are real and, hence, so are the eigenvectors.

(ii) A symmetric matrix of order n× n always has n linearly independent eigenvectors.

(iii) For a symmetric matrix, suppose that Xi and Xj are linearly independent eigenvectors
associated with different eigenvectors; then

XiX
T
j ≡ xixj + yiyj + zizj = 0.

We say that Xi and Xj are “mutually orthogonal”.

If a symmetric matrix has any repeated eigenvalues, it is still possible to determine a full
set of mutually orthogonal eigenvectors, but not every full set of eigenvectors will have the
orthogonality property.

(iv) A symmetric matrix always has a modal matrix whose columns are mutually orthogonal.
When the eigenvalues are distinct, this is true for every modal matrix.

(v) A modal matrix, N, of normalised eigenvectors is an orthogonal matrix.

ILLUSTRATIONS

1. If N is of order 3× 3, we have

NT.N =

 x1 y1 z1

x2 y2 z2

x3 y3 z3

 .

 x1 x2 x3

y1 y2 y3

z1 z2 z3

 =

 1 0 0
0 1 0
0 0 1

 .

1



2. It was shown in Unit 9.6 that the matrix

A =

 3 2 4
2 0 2
4 2 3


has eigenvalues λ = 8, and λ = −1 (repeated), with associated eigenvectors

α

 2
1
2

 , and β

−
1
2

1
0

 + γ

−1
0
1

 ≡
−

1
2
β − γ
β
γ

 .

A set of linearly independent eigenvectors may therefore be given by

X1 =

 2
1
2

 , X2 =

−
1
2

1
0

 , and X3 =

−1
0
1

 .

Clearly, X1 is orthogonal to X2 and X3, but X2 and X3 are not orthogonal to each other.

However, we may find β and γ such that

β

−
1
2

1
0

 + γ

−1
0
1

 is orthogonal to

−1
0
1

 .

We simply require that

1

2
β + 2γ = 0

or

β + 4γ = 0;

and this will be so, for example, when β = 4 and γ = −1.

2



A new set of linearly independent mutually orthogonal eigenvectors can thus be given
by

X1 =

 2
1
2

 , X2 =

−1
4
−1

 , and X3 =

−1
0
1

 .

9.10.2 QUADRATIC FORMS

An algebraic expression of the form

ax2 + by2 + cz2 + 2fyz + 2yzx + 2hxy

is called a “quadratic form”.

In matrix notation, it may be written as

[ x y z ]

 a h g
h b f
g f c


 x

y
z

 ≡ XTAX,

and we note that the matrix A is symmetric.

In the scientific applications of quadratic forms, it is desirable to know whether such a form
is

(a) always positive,

(b) always negative,

(c) both positive and negative.

It may be shown that, if we change to new variables, (u, v, w), using a linear transformation

X = PU,

where P is some non-singular matrix, then the new quadratic form has the same properties
as the original, concerning its sign.

We now show that a good choice for P is a modal matrix, N, of normalised, linearly inde-
pendent, mutually orthogonal eigenvectors for A.

3



Putting X = NU, the expression XTAX becomes UTNTANX.

But, since N is orthogonal when A is symmetric, NT = N−1 and, hence, NTAN is the spectral
matrix, S, for A.

The new quadratic form is therefore

UTSU ≡ [ u v w ] .

 λ1 0 0
0 λ2 0
0 0 λ3

 .

 u
v
w

 ≡ λ1u
2 + λ2v

2 + λ3w
2.

Clearly, if all of the eigenvalues are positive, then the new quadratic form is always positive;
and, if all of the eigenvalues are negative, then the new quadratic form is always negative.

The new quadratic form is called the “canonical form under similarity” of the original
quadratic form.

9.10.3 EXERCISES

1. For the following symmetric matrices, determine a set of three linearly independent and
mutually orthogonal eigenvectors:

(a)

 2 0 0
0 10 6
0 6 5

 , (b)

 2 2 0
2 5 0
0 0 3

 .

2. Repeat the previous question for the following symmetric matrices:

(a)

 3 3 3
√

2
3 3 3

√
2

3
√

2 3
√

2 6

 , (b)

 2 0 0
0 1 2
0 2 −2

 .

3. Using the results of question 1, show that the following quadratic forms are always
positive:

(a)

2x2 + 10y2 + 5z2 + 12yz;

(b)

2x2 + 5y2 + 3z2 + 4xy.

4



4. Using the results of question 2(b), obtain the matrix, P, of the orthogonal transforma-
tion, X = PU, which transforms the quadratic function

2x2 + y2 − 2z2 + 4xz

into the quadratic function

2u2 + 2v2 − 3w2.

State whether or the not the original quadratic form is always positive.

9.10.4 ANSWERS TO EXERCISES

1. (a) The eigenvalues are 14, 2 and 1 and a set of linearly independent mutually orthog-
onal eigenvectors is  0

3
2

 ,

 1
0
0

 and

 0
−2
3

 .

(b) The eigenvalues are 6, 3 and 1 and a set of linearly independent mutually orthogonal
eigenvectors is  1

2
0

 ,

 0
0
1

 and

 2
−1
0

 .

2. (a) The eigenvalues are 12 and 0 (repeated) and set of linearly independent mutually
orthogonal eigenvectors is 1

1√
2

 ,

 1
−1
0

 and

 1
1

−
√

2

 .

(b) The eigenvalues are 2 and −3 (repeated) and a set of linearly independent mutually
orthogonal eigenvectors is  0

2
1

 ,

 1
0
0

 and

 0
1
−2

 .

5



3. The eigenvalues are all positive and hence the quadratic forms are always positive.

4.

P =

 0 1 0
2√
5

0 1√
5

1√
5

0 − 2√
5

 .

The original quadratic form may take both positive and negative values since the asso-
ciated eigenvalues are not all positive.

6
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UNIT 10.1 - DIFFERENTIATION 1

10.1.1 FUNCTIONAL NOTATION

Introduction

If a variable quantity, y, depends for its values on another variable quantity, x, we say that
“y is a function of x” and we write, in general:

y = f(x),

which is pronounced “y equals f of x”.

Notes:

(i) y is called the “dependent variable” and x is called the “independent variable”.
The choice of value for x will be arbitrary, within certain possible constraints, but, once it
is chosen, the value of y is then fixed.

(ii) The use of the letter f in f(x) is logical because it stands for the word “function”; but
once the format of the notation is understood, we can use other letters as appropriate. For
example:
the statement P = P (T ) could be used to indicate that a pressure, P , is a function of
absolute temperature, T ;
the statement i = i(t) could be used to indicate that an electric current, i, is a function of
time t;
the original statement could have been written y = y(x) without using f at all.

The general format of functional notation may be described as follows:

DEPENDENT VARIABLE =
DEPENDENT VARIABLE(INDEPENDENT VARIABLE)

10.1.2 NUMERICAL EVALUATION OF FUNCTIONS

If α is a number, then f(α) denotes the value of the function f(x) when x = α is substituted
into it.

For example, if
f(x) ≡ 4 sin 3x,

then,

f
(

π

4

)
= 4 sin

3π

4
= 4× 1√

2
∼= 2.828

1



10.1.3 FUNCTIONS OF A LINEAR FUNCTION

The notation
f(ax + b),

where a and b are constants, implies a known function, f(x), in which x has been replaced
by the linear function ax + b.

For example, if
f(x) ≡ 3x2 − 7x + 4,

then,
f(5x− 1) ≡ 3(5x− 1)2 − 7(5x− 1) + 4;

but, in the applications of this kind of notation, it usually best to leave the expression in the
bracketed form rather than to expand out the brackets and so lose any obvious connection
between f(x) and f(ax + b).

10.1.4 COMPOSITE FUNCTIONS (or Functions of a Function) IN GENERAL

The symbol
f [g(x)]

implies a known function, f(x), in which x has been replaced by another known function,
g(x).

For example, if
f(x) ≡ x2 + 2x− 5

and
g(x) ≡ sin x,

then,
f [g(x)] ≡ sin2x + 2 sin x− 5;

but we can observe also that

g[f(x)] ≡ sin(x2 + 2x− 5),

which is not identical to the first result. Hence, in general,

f [g(x)] 6≡ g[f(x)].

There are some exceptions to this, however, as in the case when

f(x) ≡ ex and g(x) ≡ loge x,

2



whereupon we obtain
f [g(x)] ≡ eloge x ≡ x

and
g[f(x)] ≡ loge (ex) ≡ x.

The functions loge x and ex are said to be “inverses” of each other.

10.1.5 INDETERMINATE FORMS

Certain fractional expressions involving functions can become problematic if the values of
the variable being substituted into them reduce them to either of the forms

0

0
or

∞
∞

.

Both of these forms are meaningless or “indeterminate” and need to be dealt with using
a concept called “limiting values”.

(a) The Indeterminate Form 0
0

Suppose the fractional expression
f(x)

g(x)

is such that both f(x) and g(x) take the value zero when x = α; that is, f(α) = 0 and
g(α) = 0. It is impossible, therefore, to evaluate the fraction when x = α; but we may
consider its values as x becomes increasingly close to α with out actually reaching it. The
standard terminology is to say that “x tends to α”, written x→ α, for short.

We note that, by the Factor Theorem, discussed in Unit 1.8, (x− α) must be a factor of
both numerator and denominator; and it turns out that, by cancelling this common factor
(which is allowed if x is not going to reach α) we can assign a value to f(x)

g(x)
called a limiting

value. It still will not be the value of this fraction at x = α, but represents the value it
approaches as x tends to α. The result is denoted by

lim
x→α

f(x)

g(x)
.

EXAMPLE
Calculate

lim
x→1

x− 1

x2 + 2x− 3
.

3



Solution

First we factorise the denominator, knowing already that one of its factors must be x − 1
because it takes the value zero when x = 1.

The result is therefore

lim
x→1

x− 1

(x− 1)(x + 3)

= lim
x→1

1

x + 3
.

What we now need to establish is the fixed value which this new fraction approaches as x be-
comes increasingly close to 1. But since there are no longer any problems with indeterminate
forms, we do in fact simply substitute x = 1, obtaining the number 1

4
.

Hence,

lim
x→1

x− 1

x2 + 2x− 3
=

1

4
.

(b) The Indeterminate Form ∞
∞

This kind of indeterminate form is usually encountered when the value of x itself becomes
infinite, either positively or negatively. The object is to evaluate either

lim
x→∞

f(x)

g(x)

or

lim
x→−∞

f(x)

g(x)
.

EXAMPLE
Calculate

lim
x→∞

2x2 + 3x− 1

7x2 − 2x + 5
.

4



Solution

There is no factorising to do in this type of exercise; we simply divide the numerator and
the denominator by the highest power of x appearing, then allow x to become infinite.

The result is therefore

lim
x→∞

2 + 3
x
− 1

x2

7− 2
x

+ 5
x2

=
2

7
.

Note:
In the case of the ratio of two polynomials of equal degree, the limiting value as x → ±∞
will always be the ratio of the leading coefficients of x. The same principle can be applied
to the ratio of two polynomials of unequal degree if we insert zero coefficients in appropriate
places to consider them as being of equal degree. The results then obtained will be either
zero or infinity.

ILLUSTRATION

lim
x→∞

5x + 11

3x2 − 4x + 1
= lim

x→∞

0x2 + 5x + 11

3x2 − 4x + 1
=

0

3
= 0.

A Useful Standard Limit

In Unit 3.3, it is shown that, for very small values of x in radians, sin x ' x.

This suggests that

lim
x→0

sin x

x
= 1,

though we may not actually use the result from Unit 3.3 to prove the validity of this new
limiting value. We shall see later that “sin x ' x for small x” is developed from a calculus
technique which assumes that sin x

x
→ 1 as x→ 0; so, we would be using the result to prove

itself !

An alternative, non-rigorous, proof is to consider the following diagram in which the angle
x is situated at the centre of a circle with radius 1:

5















B

A
x

1

CO

In the diagram, the length of line AB = sin x and the length of arc BC = x. Furthermore, as
x decreases almost to zero, the two lengths become closer and closer to each other in value.
That is,

sin x→ x as x→ 0

or

lim
x→0

sin x

x
= 1

10.1.6 EVEN AND ODD FUNCTIONS

It is easy to see that any even power of x will be unchanged in value if x is replaced by
−x. In a similar way, any odd power of x will be unchanged in numerical value, though
altered in sign, if x is replaced by −x. These two powers of x are examples of an “even
function” and an “odd function” respectively; but the true definition includes a wider
range of functions as follows:

DEFINITION
A function f(x) is said to be “even” if it satisfies the identity

f(−x) ≡ f(x).

ILLUSTRATIONS: x2, 2x6 − 4x2 + 5, cos x.

6



DEFINITION
A function f(x) is aid to be “odd” if it satisfies the identity

f(−x) ≡ −f(x).

ILLUSTRATIONS x3, x5 − 3x3 + 2x, sin x.

Note:
It is not necessary for every function to be either even or odd. For example, the function
x + 3 is neither even nor odd.

EXAMPLE

Express an arbitrary function, f(x), as the sum of an even function and an odd function.

Solution

We may write

f(x) ≡ f(x) + f(−x)

2
+

f(x)− f(−x)

2
,

in which the first term on the right hand side is unchanged if x is replaced by −x and the
second term on the right hand side is reversed in sign if x is replaced by −x.

We have thus expressed f(x) as the sum of an even function and an odd function.

(ii) GRAPHS OF EVEN AND ODD FUNCTIONS

(i) The graph of the relationship y = f(x), where f(x) is even, will be symmetrical about
the y-axis since, for every point (x, y) on the graph, there is also the point (−x, y).

7



-

6

x

y

O

(ii) The graph of the relationship y = f(x), where f(x) is odd, will be symmetrical with
respect to the origin since, for every point (x, y) on the graph, there is also the point (−x,−y).
However, odd functions are more easily recognised by noticing that the part of the graph for
x < 0 can be obtained from the part for x > 0 by reflecting it first in the x-axis and then in
the y-axis.

-

6

x

y

O

EXAMPLE

Sketch the graph, from x = −3 to x = 3, of the even function, f(x), defined in the interval
0 < x < 3 by the formula

f(x) ≡ 3 + x3.

8



Solution

-

6

x

y

O

3

ALGEBRAIC PROPERTIES OF ODD AND EVEN FUNCTIONS

1. The product of an even function and an odd function is an odd function.

Proof:

If f(x) is even and g(x) is odd, then

f(−x).g(−x) ≡ f(x).[−g(x)] ≡ −f(x).g(x).

2. The product of an even function and an even function is an even function.

Proof:

If f(x) and g(x) are both even functions, then

f(−x).g(−x) ≡ f(x).g(x).

3. The product of an odd function and an odd function is and even function.

Proof:

If f(x) and g(x) are both odd functions, then

f(−x).g(−x) ≡ [−f(x)].[−g(x)] ≡ f(x).g(x).

9



EXAMPLE

Classify the function f(x) ≡ sin4x. tan x as even, odd or neither even nor odd.

Solution

f(−x) ≡ sin4(−x). tan(−x) ≡ sin4x.[− tan x] ≡ −sin4x. tan x.

The function, f(x), is therefore odd.

10.1.7 EXERCISES

1. If

f(x) ≡ 3 + cos2
(

x

2

)
determine the values of f(0), f(π), f(π

2
).

2. If
f(x) ≡ 2x and g(x) ≡ x2,

verify that
f [g(x)] 6≡ g[f(x)].

3. If
f(x) ≡ x2 − 4x + 6,

verify that
f(2− x) ≡ f(2 + x).

4. Determine simple functions f(x) and g(x) such that the following functions can be
identified with f [g(x)]:

(a)

3(x2 + 2)3;

(b)

(x2 + 1)−
1
2 ;

(c)

cos2x.

10



5. Evaluate the following limits:

(a)

lim
x→1

x2 + 2x− 3

x2 − 8x + 7
;

(b)

lim
x→2

x− 2

x2 − (x + 2)
;

(c)

lim
x→∞

3x2 + 5x− 4

5x2 − x + 7
;

(d)

lim
r→−∞

(2r + 1)2

(r − 1)(r + 3)
;

(e)

lim
θ→0

sin 3θ

θ
.

6. Express the function ex as the sum of an even function and an odd function.

7. Sketch the graph, from x = −5 to x = 5 of the odd function, f(x), defined in the
interval 0 < x < 5 by the formula

f(x) ≡ cos
πx

10
.

8. Classify the function

f(x) ≡ tan2x + cosec3x. cos x

as even, odd or neither even nor odd.

10.1.8 ANSWERS TO EXERCISES

1. 4, 3, 7
2
.

2. 2x2 6≡ (2x)2.

11



3. Both are identically equal to x2 + 2.

4. (a)

f(x) ≡ 3x3 and g(x) ≡ x2 + 2;

(b)

f(x) ≡ x−
1
2 and g(x) ≡ x2 + 1;

(c)

f(x) ≡ x2 and g(x) ≡ cos x.

5. (a) −2
3
;

(b) 1
3
;

(c) 3
5
;

(d) 4;

(e) 3.

6.

ex ≡ ex + e−x

2
+

ex − e−x

2
.

7. The graph is as follows:

-

6

x

y

O 5−5

8. The function is neither even nor odd.
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UNIT 10.2 - DIFFERENTIATION 2

RATES OF CHANGE

10.2.1 INTRODUCTION

The functional relationship
y = f(x)

can be represented diagramatically by drawing the graph of y against x to obtain, in general,
some kind of curve.

Between one point of the curve and another, the values of both x and y will change, in
general; and the purpose of this section is to introduce the concept of the rate of increase
of y with respect to x.

A convenient practical illustration which will provide an aid to understanding is to think of
y as the distance travelled by a moving object at time x; because, in this case, the rate of
increase of y with respect to x becomes the familiar quantity which we know as speed.

10.2.2 AVERAGE RATES OF CHANGE

Suppose that a vehicle travelled a distance of 280 miles in 7 hours, a journey which is likely to
have included short stops, traffic jams, traffic lights and also some fairly high speed motoring.
The ratio

280

7
= 40

represents the “average speed” of 40 miles per hour over the whole journey. It is a
convenient representation of the speed during the journey even though the vehicle might not
have been travelling at that speed very often.

Consider now a graph representing the relationship, y = f(x), between two arbitrary
variables, x and y, not necessarily time and distance variables.

1



-

6

x

y

P(a, b)

Q(c, d)

O

Between the two points P(a, b) and Q(c, d) an increase of c− a in x gives rise to an increase
of d− b in y. Therefore, the average rate of increase of y with respect to x from P to Q is

d− b

c− a
.

If it should happen that y decreases as x increases (between P and Q), this quantity will
automatically turn out negative; hence,

all rates of increase which are POSITIVE correspond to
an INCREASING function,

and

all rates of increase which are NEGATIVE correspond to
a DECREASING function.

Note:
For the purposes of later work, the two points P and Q will need to be considered as very
close together on the graph, and another way of expressing a rate of increase is to consider
notations such as P(x, y) and Q(x + δx, y + δy) for the pair of points.

Here, we are using the symbols δx and δy to represent “a small fraction of x” and “a
small fraction of y”, respectively. We do not mean δ times x and δ times y. We normally
consider that δx is positive, but δy may turn out to be negative.

The average rate of increase in this alternative notation is given by

δy

δx
=

f(x + δx)− f(x)

δx
.

2



In other words,

The average rate of increase is equal to

(new value of y) minus (old value of y)

(new value of x) minus (old value of x)

EXAMPLE
Determine the average rate of increase of the function

y = x2

between the following pairs of points on its graph:

(a) (3, 9) and (3.3, 10.89);

(b) (3, 9) and (3.2, 10.24);

(c) (3, 9) and (3.1, 9.61).

Solution

The results are

(a) δy
δx

= 1.89
0.3

= 6.3;

(b) δy
δx

= 1.24
0.2

= 6.2;

(c) δy
δx

= 0.61
0.1

= 6.1

10.2.3 INSTANTANEOUS RATES OF CHANGE

The results of the example at the end of the previous section seem to suggest that, by
letting the second point become increasingly close to the first point along the curve, we
could determine the actual rate of increase of y with respect to x at the first point only,
rather than the average rate of increase between the two points.

In the above example, the indications are that the rate of increase of y = x2 with respect to
x at the point (3, 9) is equal to 6; and this is called the “instantaneous rate of increase
of y with respect to x” at the chosen point.

The instantaneous rate of increase in this example has been obtained by guesswork on the
strength of just three points approaching (3, 9). In general, we need to consider a limiting
process in which an infinite number of points approach the chosen one along the curve.

3



This process is represented by

lim
δx→0

δy

δx
and it forms the basis of our main discussion on differential calculus which now follows.

10.2.4 DERIVATIVES

(a) The Definition of a Derivative

In the functional relationship
y = f(x)

the “derivative of y with respect to x” at any point (x, y) on the graph of the function
is defined to be the instantaneous rate of increase of y with respect to x at that point.

Assuming that a small increase of δx in x gives rise to a corresponding increase (positive or
negative) of δy in y, the derivative will be given by

lim
δx→0

δy

δx
= lim

δx→0

f(x + δx)− f(x)

δx
.

This limiting value is usually denoted by one of the three symbols

dy

dx
, f ′(x) or

d

dx
[f(x)].

Notes:

(i) In the third of these notations, the symbol d
dx

is called a “differential operator”; it
cannot exist on its own, but needs to be operating on some function of x. In fact, the first
alternative notation is really this differential operator operating on y, which we certainly
know to be a function of x.

(ii) The second and third alternative notations are normally used when the derivative of a
function of x is being considered without reference to a second variable, y.

(iii) The derivative of a constant function must be zero since the rate of change of something
which never changes is obviously zero.

(iv) Geometrically, the derivative represents the gradient of the tangent at the point
(x, y) to the curve whose equation is

y = f(x).

4



(b) Differentiation from First Principles

Ultimately, the derivatives of simple functions may be quoted from a table of standard
results; but the establishing of such results requires the use of the definition of a derivative.
We illustrate with two examples the process involved:

EXAMPLES

1. Differentiate the function x4 from first principles.

Solution

Here we have a situation where the variable y is not mentioned; so, we could say “let
y = x4”, and determine dy

dx
from first principles in order to answer the question.

However, we shall choose the alternative notation which does not require the use of y
at all.

d

dx

[
x4
]

= lim
δx→0

(x + δx)4 − x4

δx
.

Then, from Pascal’s Triangle (Unit 2.2),

d

dx

[
x4
]

= lim
δx→0

x4 + 4x3δx + 6x2(δx)2 + 4x(δx)3 + (δx)4 − x4

δx

= lim
δx→0

[
4x3 + 6x2δx + 4x(δx)2 + (δx)3

]

= 4x3.

Note:
This result illustrates a general result which will not be proved here that

d

dx
[xn] = nxn−1

for any constant value n, not necessarily an integer.

2. Differentiate the function sin x from first principles.

Solution

d

dx
[sin x] = lim

δx→0

sin(x + δx)− sin x

δx
,

5



which, from Trigonometric Identities (Unit 3.5), becomes

d

dx
[sin x] = lim

δx→0

2 cos
(
x + δx

2

)
sin

(
δx
2

)
δx

= lim
δx→0

cos

(
x +

δx

2

)
sin

(
δx
2

)
δx
2

.

Finally, using the standard limit (Unit 10.1),

lim
x→0

sin x

x
= 1,

we conclude that

d

dx
[sin x] = cos x.

Note:
The derivative of cos x may be obtained in the same way (see EXERCISES 10.2.5,
question 2) but it will also be possible to obtain this later (Unit 10.3) by regarding

cos x as sin
(

π
2
− x

)
.

3. Differentiate from first principles the function

logbx

where b is any base of logarithms.

Solution

d

dx
[logbx] = lim

δx→0

logb(x + δx)− logbx

δx

= lim
δx→0

logb

(
1 + δx

x

)
δx

.

But writing
δx

x
= r that is δx = rx,

we have

d

dx
[logbx] =

1

x
lim
r→0

logb(1 + r)

r

6



=
1

x
lim
r→0

logb(1 + r)
1
r .

For convenience, we may choose a base of logarithms which causes the limiting value
above to equal 1; and this will occur when

b = lim
r→0

(1 + r)
1
r .

The appropriate value of b turns out to be approximately 2.71828 and this is the stan-
dard base of natural logarithms denoted by e.

Hence,
d

dx
[logex] =

1

x
.

Note:
In scientific work, the natural logarithm of x is usually denoted by ln x and this notation
will be used in future.

10.2.5 EXERCISES

1. Differentiate from first principles the function x3 + 2.

2. Differentiate from first principles the function cos x.

3. Differentiate from first principles the function
√

x.
Hint:

(
√

x + δx−
√

x)(
√

x + δx +
√

x) = δx.

10.2.6 ANSWERS TO EXERCISES

1. 3x2.

2. − sin x.

3. 1
2
√

x
.

7
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UNIT 10.3 - DIFFERENTIATION 3

ELEMENTARY TECHNIQUES OF DIFFERENTIATION

10.3.1 STANDARD DERIVATIVES

In Unit 10.2, reference was made to the use of a table of standard derivatives and such a
table can be found in the appendix at the end of this Unit.

However, for the time being, a very short list of standard derivatives is all that is necessary
since other derivatives may be developed from them using techniques to be discussed later
in this and subsequent Units.

f(x) f ′(x)
a const. 0
xn nxn−1

sin x cos x
cos x − sin x
ln x 1

x

Note:
In the work which now follows, standard derivatives may be used which have not, here, been
obtained from first principles; but the student is expected to be able to quote results from a
table of derivatives including those for which no proof has been given.

10.3.2 RULES OF DIFFERENTIATION

(a) Linearity

Suppose f(x) and g(x) are two functions of x while A and B are constants. Then

d

dx
[Af(x) + Bg(x)] = A

d

dx
[f(x)] + B

d

dx
[g(x)].

Proof:

The left-hand side is equivalent to

lim
δx→0

[Af(x + δx) + Bg(x + δx)]− [Af(x) + Bg(x)]

δx

= A

[
lim
δx→0

f(x + δx)− f(x)

δx

]
+ B

[
lim
δx→0

g(x + δx)− g(x)

δx

]

1



= A
d

dx
[f(x)] + B

d

dx
[g(x)].

The result, so far, deals with a “linear combination” of two functions of x but is easily
extended to linear combinations of three or more functions of x.

EXAMPLES

1. Write down the expression for dy
dx

in the case when

y = 6x2 + 2x6 + 13x− 7.

Solution

Using the linearity property, the standard derivative of xn, and the derivative of a
constant, we obtain

dy

dx
= 6

d

dx
[x2] + 2

d

dx
[x6] + 13

d

dx
[x1]− d

dx
[7]

= 12x + 12x5 + 13.

2. Write down the derivative with respect to x of the function

5

x2
− 4 sin x + 2 ln x.

Solution

d

dx

[
5

x2
− 4 sin x + 2 ln x

]

=
d

dx

[
5x−2 − 4 sin x + 2 ln x

]
= −10x−3 − 4 cos x +

2

x

=
−10

x3
− 4 cos x +

2

x
.

2



(b) Composite Functions (or Functions of a Function)

(i) Functions of a Linear Function

Expressions such as (5x + 2)16, sin(2x + 3) and ln(7 − 4x) may be called “functions of a
linear function” and have the general form

f(ax + b),

where a and b are constants. The function f(x) would, of course, be the one obtained on
replacing ax + b by a single x; hence, in the above illustrations, f(x) would be x16, sin x and
ln x, respectively.

Functions of a linear function may be differentiated as easily as f(x) itself on the strength
of the following argument:

Suppose we write
y = f(u) where u = ax + b.

Suppose, also, that a small increase of δx in x gives rise to increases (positive or negative)
of δy in y and δu in u. Then:

dy

dx
= lim

δx→0

δy

δx
= lim

δx→0

δy

δu

δu

δx
.

Assuming that δy and δu tend to zero as δx tends to zero, we can say that

dy

dx
= lim

δu→0

δy

δu
× lim

δx→0

δu

δx
.

That is,
dy

dx
=

dy

du
.
du

dx
.

This rule is called the “Function of a Function Rule” or “Composite Function Rule”
or “Chain Rule” and has applications to a much wider class of composite functions than
has so far been discussed. But, for the moment we restrict the discussion to functions of a
linear function.

3



EXAMPLES

1. Determine dy
dx

when y = (5x + 2)16.

Solution

First, we write y = u16 where u = 5x + 2.

Then, dy
du

= 16u15 and du
dx

= 5.

Hence, dy
dx

= 16u15.5 = 80(5x + 2)15.

2. Determine dy
dx

when y = sin(2x + 3).

Solution

First, we write y = sin u where u = 2x + 3.

Then, dy
du

= cos u and du
dx

= 2.

Hence, dy
dx

= cos u.2 = 2 cos(2x + 3).

3. Determine dy
dx

when y = ln(7− 4x).

Solution

First, we write y = ln u where u = 7− 4x.

Then, dy
du

= 1
u

and du
dx

= −4.

Hence, dy
dx

= 1
u
.(−4) = −4

7−4x
.

Note:
It is hoped that the student will quickly appreciate how the fastest way to obtain the deriva-
tive of a function of a linear function is to treat the expression ax + b initially as if it were
a single x; then, multiply the final result by the constant value, a.

(ii) Functions of a Function in general

The formula

dy

dx
=

dy

du
.
du

dx

is in no way dependent on the fact that the examples so far used to illustrate it have involved
functions of a linear function. Exactly the same formula may be used for the composite
function

4



f [g(x)],

whatever the functions f(x) and g(x) happen to be. All we need to do is to write

y = f(u) where u = g(x),

then apply the formula.

EXAMPLES

1. Determine an expression for dy
dx

in the case when

y = (x2 + 7x− 3)4.

Solution

Letting y = u4 where u = x2 + 7x− 3, we have

dy

dx
=

dy

du
.
du

dx
= 4u3.(2x + 7)

= 4(x2 + 7x− 3)3(2x + 7).

2. Determine an expression for dy
dx

in the case when

y = ln(x2 − 3x + 1).

Solution

Letting y = ln u where u = x2 − 3x + 1, we have

dy

dx
=

dy

du
.
du

dx
=

1

u
.(2x− 3) =

2x− 3

x2 − 3x + 1
.

3. Determine the value of dy
dx

at x = 1 in the case when

y = 2 sin(5x2 − 1) + 19x.

Solution

Consider, first, the function 2 sin(5x2 − 1) which we shall call z.

Its derivative is dz
dx

, where z = 2 sin(5x2 − 1).

5



Let z = 2 sin u where u = 5x2 − 1; then,

dz

dx
=

dz

du
.
du

dx
= 2 cos u.10x = 20x cos(5x2 − 1).

Hence, the complete derivative is given by

dy

dx
= 20x cos(5x2 − 1) + 19.

Finally, when x = 1, this derivative has the value 20 cos 4 + 19, which is approximately
equal to 5.927, remembering that the calculator must be in radian mode.

Note:
Again, it is hoped that the student will appreciate how there is a faster way of differentiating
composite functions in general. We simply treat g(x) initially as if it were a single x, then
multiply by g′(x) afterwards.

For example,

d

dx

[
sin3x

]
=

d

dx

[
(sin x)3

]
= 3(sin x)2. cos x = 3sin2x. cos x.

10.3.3 EXERCISES

1. Determine an expression for dy
dx

in the following cases:

(a)

y = 3x3 − 8x2 + 11x + 9;

(b)

y = 10 cos x + 5 sin x− 14x7;

(c)

y = (2x− 7)5;

(d)

y = (2− 5x)−
5
2 ;
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(e)

y = sin
(

π

2
− x

)
; that is, cos x;

(f)

y = cos(4x + 1);

(g)

y = ln(4− 2x);

(h)

y = ln
[
3x− 8

6x + 2

]
.

2. Determine an expression for dy
dx

in the cases when

(a)

y = (4− 7x3)8;

(b)

y = (x2 + 1)
3
2 ;

(c)

y = cos5x;

(d)

y = ln(ln x).

3. If y = sin(cos x), evaluate dy
dx

at x = π
2
.

4. If y = cos(7x5 − 3), evaluate dy
dx

at x = 1.

10.3.4 ANSWERS TO EXERCISES

1. (a)

9x2 − 16x + 11;

(b)

−10 sin x + 5 cos x− 98x6;
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(c)

10(2x− 7)4;

(d)

25

2
(2− 5x)−

7
2 ;

(e)

− cos
(

π

2
− x

)
; that is, − sin x;

(f)

−4 sin(4x + 1);

(g)

−2

4− 2x
or

2

2x− 4
;

(h)

3

3x− 8
− 6

6x + 2
=

54

(3x− 8)(6x + 2)
.

2. (a)

−168x2(4− 7x3)7;

(b)

3x(x2 + 1)
1
2 ;

(c)

−5cos4x. sin x;

(d)

1

x ln x
.

3.

−1

4.

−35 sin 4 ∼= 26.488

8



APPENDIX - A Table of Standard Derivatives

f(x) f ′(x)

a (const.) 0
xn nxn−1

sin ax a cos ax
cos ax −a sin ax
tan ax asec2ax
cot ax −acosec2 ax
sec ax asec ax. tan ax

cosec ax −acosec ax. cot ax
ln x 1/x
eax aeax

ax ax. ln a
sinh ax a cosh ax
cosh ax a sinh ax
tanh ax asech2 ax
sech ax −asech ax. tanh ax

cosech ax −acosech ax. coth x
ln(sin x) cot x
ln(cos x) − tan x
ln(sinh x) coth x
ln(cosh x) tanh x
sin−1(x/a) 1/

√
(a2 − x2)

cos−1(x/a) −1/
√

(a2 − x2)
tan−1(x/a) a/(a2 + x2)
sinh−1(x/a) 1/

√
(x2 + a2)

cosh−1(x/a) 1/
√

(x2 − a2)
tanh−1(x/a) a/(a2 − x2)
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UNIT 10.4 - DIFFERENTIATION 4

PRODUCTS, QUOTIENTS AND LOGARITHMIC DIFFERENTIATION

10.4.1 PRODUCTS

Suppose
y = u(x)v(x),

where u(x) and v(x) are two functions of x.

Suppose, also, that a small increase of δx in x gives rise to increases (positive or negative)
of δu in u, δv in v and δy in y.

Then,
dy

dx
= lim

δx→0

(u + δu)(v + δv)− uv

δx

= lim
δx→0

uv + uδv + vδu + δuδv − uv

δx

= lim
δx→0

[
u

δv

δx
+ v

δu

δx

]
.

Hence,
d

dx
[u.v] = u

dv

dx
+ v

du

dx
.

Hint: Think of this as
(FIRST x DERIVATIVE OF SECOND) + (SECOND x DERIVATIVE OF FIRST)

EXAMPLES

1. Determine an expression for dy
dx

in the case when

y = x7 cos 3x.

Solution

dy

dx
= x7.− 3 sin 3x + cos 3x.7x6 = x6[7 cos 3x− 3x sin 3x].

1



2. Evaluate dy
dx

at x = −1 in the case when

y = (x2 − 8) ln(2x + 3).

Solution

dy

dx
= (x2 − 8).

1

2x + 3
.2 + ln(2x + 3).2x = 2

[
x2 − 8

2x + 3
+ x ln(2x + 3)

]
.

When x = −1, this has value −14 since ln 1 = 0.

10.4.2 QUOTIENTS

Suppose, this time, that

y =
u(x)

v(x)
.

Then, we may write
y = u(x).[v(x)]−1

in order to use the rule already known for products.

We obtain
dy

dx
= u.(−1)[v]−2.

dv

dx
+ v−1.

du

dx
,

which can be rewritten as

d

dx

[
u

v

]
=

v du
dx
− udv

dx

v2
.

EXAMPLES

1. Using the formula for the derivative of a quotient, show that the derivative with respect
to x of the function tan x is the function sec2x.

Solution

d

dx
[tan x] =

d

dx

[
sin x

cos x

]
=

(cos x).(cos x)− (sin x).(− sin x)

cos2x

=
cos2x + sin2x

cos2x
=

1

cos2x
= sec2x.
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2. Determine an expression for dy
dx

in the case when

y =
2x + 1

(5x− 3)3
.

Solution

Using u(x) ≡ 2x + 1 and v(x) ≡ (5x− 3)3, we have

dy

dx
=

(5x− 3)3.2− (2x + 1).3(5x− 3)2.5

(5x− 3)6
.

The expression (5x− 3)2 may be cancelled as a common factor of both numerator and
denominator, leaving

dy

dx
=

(5x− 3).2− 15(2x + 1)

(5x− 3)4
= − 20x + 21

(5x− 3)4
.

Note:
The step in the second example above, where a common factor could be cancelled, may
be avoided if we use a modified version of the rule for quotients when the function can be
considered in the form u

vn
.

It can be shown that, if

y =
u

vn
,

then,
dy

dx
=

v du
dx
− nudv

dx

vn+1
.

For instance, in Example 2 above, we could write

u ≡ 2x + 1 v ≡ 5x− 3 and n = 3

Hence,
dy

dx
=

(5x− 3).2− 3(2x + 1).5

(5x− 3)4
,

as before.
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10.4.3 LOGARITHMIC DIFFERENTIATION

The algebraic properties of natural logarithms (see Unit 1.4), together with the standard
derivative of ln x and the rules of differentiation, enable us to differentiate two specific kinds
of function as described below:

(a) Functions containing a variable index

The most familiar function with which to introduce this technique is the
“exponential function”, ex.

Suppose we let
y = ex;

then, by properties of natural logarithms, we can write

ln y = x;

and, if we differentiate both sides with respect to x, we obtain

1

y

dy

dx
= 1.

That is,
dy

dx
= y = ex.

Hence,
d

dx
[ex] = ex.

Notes:

(i) After taking logarithms, we could have differentiated the statement x = ln y with respect
to y, obtaining

dx

dy
=

1

y
.

But it can be shown that, for most functions,

dy

dx
=

1
dx
dy

so that the same result is obtained as before.
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(ii) The derivative of ex may easily be used to establish the standard derivatives of the
hyperbolic functions, sinh x, cosh x and tanh x as follows:

d

dx
[sinh x] = cosh x,

d

dx
[cosh x] = sinh x,

d

dx
[tanh x] = sech2 x.

The first two of these follow from the definitions

sinh x ≡ ex − e−x

2
and cosh x ≡ ex + e−x

2
,

while the third may be obtained using the definition

tanh x ≡ sinh x

cosh x
,

together with the Quotient Rule.

FURTHER EXAMPLES

1. Write down the derivative with respect to x of the function

esin x

Solution

All that is required in this example is the standard derivative of ex together with the
Function of a Function Rule. We obtain

d

dx

[
esin x

]
= esin x. cos x.

2. Determine an expression for dy
dx

in the case when

y = (3x + 2)x.

Solution

Taking natural logarithms of both sides,

ln y = x ln(3x + 2).
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Differentiating both sides with respect to x and using the Product Rule gives

1

y

dy

dx
= x.

3

3x + 2
+ ln(3x + 2).1.

Hence,

dy

dx
= (3x + 2)x

[
3x

3x + 2
+ ln(3x + 2)

]
.

(b) Products or Quotients with more than two elements

We have already discussed the rules for differentiating products and quotients; but, in cer-
tain cases, it is easier to make use of logarithmic differentiation. Essentially, we use this
alternative method when a product or a quotient involves more than the two functions u(x)
and v(x) mentioned earlier.

We illustrate with examples:

EXAMPLES

1. Determine an expression for dy
dx

in the case when

y = ex2

. cos x.(x + 1)5.

Solution

Taking natural logarithms of both sides,

ln y = x2 + ln(cos x) + 5 ln(x + 1).

Differentiating both sides with respect to x,

1

y

dy

dx
= 2x− sin x

cos x
+

5

x + 1
.

Hence,
dy

dx
= ex2

. cos x.(x + 1)5
[
2x− tan x +

5

x + 1

]
.

2. Determine an expression for dy
dx

in the case when

y =
ex. sin x

(7x + 1)4
.
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Solution

Taking natural logarithms of both sides,

ln y = x + ln(sin x)− 4 ln(7x + 1).

Differentiating both sides with respect to x,

1

y

dy

dx
= 1 +

cos x

sin x
− 4.

7

7x + 1
.

Hence,
dy

dx
=

ex. sin x

(7x + 1)4

[
1 + cot x− 28

7x + 1

]
.

Note:
In all examples on logarithmic differentiation, the original function will appear as a factor
at the beginning of its derivative.

10.4.4 EXERCISES

1. Differentiate the following functions with respect to x:

(a)

sin x. cos x;

(b)

(x2 + 3). sin 2x;

(c)

x.(x2 + 1)
1
2 ;

(d)

x2 ln(1− 2x).

2. Differentiate the following functions with respect to x:

(a)

cos x

sin x
(that is, cot x);
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(b)

x2 − 2

(x + 1)2
;

(c)

cos x + sin x

cos x− sin x
;

(d)

x

(2x− x2)
1
2

.

3. Differentiate the following functions with respect to x:

(a)

ex2+1;

(b)

e1−x−x2

;

(c)

(2x + 1)e4−x3

;

(d)

e1−7x

3x + 2
;

(e)

x. sinh(x2 + 1);

(f)

sech x.

4. Use logarithms to differentiate the following functions with respect to x:

(a)

ax (a constant);
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(b)

(x2 + 1)3x;

(c)

(sin x)x;

(d)

x(x− 2)

(x + 1)(x + 3)
;

(e)

e2x. ln x

(x− 1)3
.

10.4.5 ANSWERS TO EXERCISES

1. (a)

cos2x− sin2x (or cos 2x);

(b)

2(x2 + 3) cos 2x + 2x sin 2x;

(c)

2x2 + 1

(x2 + 1)
1
2

;

(d)

2x ln(1− 2x)− 2x2

1− 2x
.

2. (a)

−cosec2x;

(b)

4 + 2x

(x + 1)3
;

9



(c)

2

(cos x− sin x)2
;

(d)
x

(2x− x2)
3
2

.

3. (a)

2xex2+1;

(b)

−(1 + 2x)e1−x−x2

;

(c)

2.e4−x3 − 3x2(2x + 1)e4−x3

;

(d)

−e1−7x.(21x + 17)

(3x + 2)2
;

(e)

sinh(x2 + 1) + 2x2 cosh(x2 + 1);

(f)

−cosech2 x.

4. (a)

ax. ln a;

(b)

(x2 + 1)3x

[
3 ln(x2 + 1) +

6x2

x2 + 1

]
;

(c)

(sin x)x [ln sin x + x cot x] ;

(d)

x(x− 2)

(x + 1)(x + 3)

[
1

x
+

1

x− 2
− 1

x + 1
− 1

x + 3

]
;

(e)

e2x. ln x

(x− 1)3

[
2 +

1

x ln x
− 3

x− 1

]
.

10



“JUST THE MATHS”

UNIT NUMBER

10.5

DIFFERENTIATION 5
(Implicit and parametric functions)

by

A.J.Hobson

10.5.1 Implicit functions
10.5.2 Parametric functions
10.5.3 Exercises
10.5.4 Answers to exercises



UNIT 10.5 - DIFFERENTIATION 5
IMPLICIT AND PARAMETRIC FUNCTIONS

10.5.1 IMPLICIT FUNCTIONS

Some relationships between two variables x and y do not give y explicitly in terms of x (or
x explicitly in terms of y); but, nevertheless, it is implied that one of the two variables is
a function of the other. In the work which follows, we shall normally assume that y is a
function of x.

Consider, for instance, the relationship

x2 + y2 = 16,

which is not explicit for either x or y but could, if desired, be written in one of the two forms

y = ±
√

16− x2 or x = ±
√

16− y2.

By contrast, consider the relationship

x2y3 + 9 sin(5x− 7y) = 10.

In this case, there is no apparent way of stating either variable explicitly in terms of the
other; yet we may still wish to calculate dy

dx
or even dx

dy
.

Such relationships between x and y are said to be “implicit relationships” and, in the
technique of “implicit differentiation”, we simply differentiate each term in the relation-
ship with respect to the same variable without attempting to rearrange the formula.

EXAMPLES

1. Determine an expression for dy
dx

in the case when

x2 + y2 = 16.

Solution

Treating y2 as a function of a function, we have

2x + 2y
dy

dx
= 0.

Hence,
dy

dx
=
−2x

2y
= −x

y
.

1



It is perfectly acceptable that the result is expressed in terms of both x and y; this will
normally happen.

2. Determine an expression for dy
dx

in the case when

x2 + 2xy3 + y5 = 4.

Solution

Treating y3 and y5 as functions of a function and using the Product Rule in the second
term on the left hand side,

2x + 2

[
x.3y2 dy

dx
+ y3.1

]
+ 5y4 dy

dx
= 0.

On rearrangement, [
6xy2 + 5y4

] dy

dx
= −(2x + 2y3).

Hence,
dy

dx
= − 2x + 2y3

6xy2 + 5y4
.

3. Determine an expression for dy
dx

in the case when

x2y3 + 9 sin(5x− 7y) = 10.

Solution

Differentiating throughout with respect to x and using both the Product Rule and the
Function of a Function Rule, we obtain

x2.3y2 dy

dx
+ y3.2x + 9 cos(5x− 7y).

[
5− 7

dy

dx

]
= 0.

On rearrangment,[
3x2y2 − 63 cos(5x− 7y)

] dy

dx
= −

[
2xy3 + 45 cos(5x− 7y)

]
.

Thus,
dy

dx
= − 2xy3 + 45 cos(5x− 7y)

3x2y2 − 63 cos(5x− 7y)
.

2



10.5.2 PARAMETRIC FUNCTIONS

In the geometry of straight lines, circles etc, we encounter “parametric equations” in
which the variables x and y, related to each other by a formula, may each be expressed
individually in terms of a third variable, usually t or θ, called a “parameter”.

In general, we write
x = x(t) and y = y(t);

but, in theory, we can imagine that t could be expressed explicitly in terms of x; so, essen-
tially, y is a function of t, where t is a function of x. Hence, from the Function of a Function
Rule,

dy

dx
=

dy

dt
.
dt

dx
.

However, we are not given t explicitly in terms of x and it may not be practical to obtain it
in this form. Therefore, we write

dy

dx
=

dy

dt
/
dx

dt
.

This is the standard formula for differentiating y with respect to x from a pair of parametric
equations.

EXAMPLES

1. Determine an expression for dy
dx

in terms of t in the case when

x = 3t2 and y = 6t.

Solution

dy

dt
= 6 and

dx

dt
= 6t.

Hence,
dy

dx
=

6

6t
=

1

t
.

3



2. Determine an expression for dy
dx

in terms of θ in the case when

x = sin3θ and y = cos3θ.

Solution

dx

dθ
= 3sin2θ. cos θ and

dy

dθ
= −3cos2θ. sin θ.

Hence,
dy

dx
=
−3cos2θ. sin θ

3sin2θ. cos θ
.

That is,
dy

dx
= −cos θ

sin θ
= − cot θ.

10.5.3 EXERCISES

1. Determine an expression for dy
dx

in the following cases:

(a)

x2 + y2 = 10x;

(b)

x3 + y3 − 3xy2 = 8;

(c)

x4 + 2x2y2 + y4 = x;

(d)

xey = cos y.

2. Determine an expression for dy
dx

in terms of the appropriate parameter in the following
cases:

(a)

x = 3 sin θ and y = 4 cos θ;

(b)

x = 4t and y =
4

t
;

4



(c)

x = (1− t)
1
2 and y = (1− t2)

1
2 .

10.5.4 ANSWERS TO EXERCISES

1. (a)

dy

dx
=

5− x

y
;

(b)

dy

dx
=

y2 − x2

y2 − 2xy
;

(c)

dy

dx
=

1− 4x3 − 4xy2

4 (x2y + y3)
;

(d)

dy

dx
= − ey

xey + sin y
.

2. (a)

dy

dx
= −4

3
tan θ;

(b)

dy

dx
= − 1

t2
;

(c)

dy

dx
=

2t

(1 + t)
1
2

.

5
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UNIT 10.6 - DIFFERENTIATION 6

DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS

10.6.1 SUMMARY OF RESULTS

The derivatives of inverse trigonometric functions should be considered as standard results.
They will be stated here first, before their proofs are discussed.

1.

d

dx
[sin−1x] =

1√
1− x2

,

where −π
2
≤ sin−1x ≤ π

2
.

2.

d

dx
[cos−1x] = − 1√

1− x2
,

where 0 ≤ cos−1x ≤ π.

3.

d

dx
[tan−1x] =

1

1 + x2
,

where −π
2
≤ tan−1x ≤ π

2
.

10.6.2 THE DERIVATIVE OF AN INVERSE SINE

We shall consider the formula
y = Sin−1x

and determine an expression for dy
dx

.

Note:
There is a special significance in using the upper-case S in the formula; the reason will be
explained later.

The formula is equivalent to
x = sin y,

so we may say that
dx

dy
= cos y ≡ ±

√
1− sin2y ≡ ±

√
1− x2.

1



Thus,
dy

dx
= ± 1√

1− x2
.

Consider now the graph of the formula

y = Sin−1x,

which may be obtained from the graph of y = sin x by reversing the roles of x and y and
rearranging the new axes into the usual positions. We obtain:

6
y

xO
q π
2

−π
2

q -
−1 1

Observations

(i)The variable x must lie in the interval −1 ≤ x ≤ 1;

(ii) For each value of x in the interval −1 ≤ x ≤ 1, the variable y has infinitely many values
which are spaced at regular intervals of π

2
.

(iii) For each value of x in the interval −1 ≤ x ≤ 1, there are only two possible values of dy
dx

,
one of which is positive and the other negative.

(iv) By restricting the discussion to the part of the graph from y = −π
2

to y = π
2
, there

will be only one value of y and one (positive) value of dy
dx

for each value of x in the interval
−1 ≤ x ≤ 1.

The restricted part of the graph defines what is called the “principal value” of the inverse
sine function and is denoted by sin−1x using a lower-case s.

Hence,
d

dx
[sin−1x] =

1√
1− x2

.

2



10.6.3 THE DERIVATIVE OF AN INVERSE COSINE

We shall consider the formula
y = Cos−1x

and determine an expression for dy
dx

.

Note:
There is a special significance in using the upper-case C in the formula; the reason will be
explained later.

The formula is equivalent to
x = cos y,

so we may say that
dx

dy
= − sin y ≡ ±

√
1− cos2y ≡ ±

√
1− x2.

Thus,
dy

dx
= ± 1√

1− x2
.

Consider now the graph of the formula

y = Cos−1x

which may be obtained from the graph of y = cos x by reversing the roles of x and y and
rearranging the new axes into the usual positions. We obtain:

6
y

xO

π

2πqq
-

−1 1
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Observations

(i) The variable x must lie in the interval −1 ≤ x ≤ 1;

(ii) For each value of x in the interval −1 ≤ x ≤ 1, the variable y has infinitely many values
which are spaced at regular intervals of π

2
.

(iii) For each value of x in the interval −1 ≤ x ≤ 1, there are only two possible values of dy
dx

,
one of which is positive and the other negative.

(iv) By restricting the discussion to the part of the graph from y = 0 to y = π, we may
distinguish the results from those of the inverse sine function; and there will be only one
value of y with one (negative) value of dy

dx
for each value of x in the interval −1 ≤ x ≤ 1.

The restricted part of the graph defines what is called the “principal value” of the inverse
cosine function and is denoted by cos−1x using a lower-case c.

Hence,
d

dx
[cos−1x] = − 1√

1− x2
.

10.6.4 THE DERIVATIVE OF AN INVERSE TANGENT

We shall consider the formula
y = Tan−1x

and determine an expression for dy
dx

.

Note:
There is a special significance in using the upper-case T in the formula; the reason will be
explained later.

The formula is equivalent to
x = tan y,

so we may say that
dx

dy
= sec2y ≡ 1 + tan2y ≡ 1 + x2.

Thus,
dy

dx
=

1

1 + x2
.

4



Consider now the graph of the formula

y = Tan−1x,

which may be obtained from the graph of y = tan x by reversing the roles of x and y and
rearranging the new axes into the usual positions. We obtain:

-

6

x

y

O

π
2

−π
2

r
r

Observations

(i) The variable x may lie anywhere in the interval −∞ < x <∞;

(ii) For each value of x, the variable y has infinitely many values which are spaced at regular
intervals of π.

(iii) For each value of x, there is only possible value of dy
dx

, which is positive.

(iv) By restricting the discussion to the part of the graph from y = −π
2

to y = π
2
, there will

be only one value of y for each value of x.

The restricted part of the graph defines what is called the “principal value” of the inverse
tangent function and is denoted by tan−1x using a lower-case t.

Hence,
d

dx
[tan−1x] =

1

1 + x2
.

ILLUSTRATIONS

1.

d

dx
[sin−12x] =

2√
1− 4x2

.

2.

d

dx
[cos−1(x + 3)] = − 1√

1− (x + 3)2
.

5



3.

d

dx
[tan−1(sin x)] =

cos x

1 + sin2x
.

4.

d

dx
[sin−1

(
x5

)
] =

5x4

√
1− x10

(real only if − 1 < x < 1).

10.6.5 EXERCISES

1. Determine an expression for dy
dx

in the following cases, assuming any necessary restric-
tions on the values of x:

(a)

y = cos−17x;

(b)

y = tan−1(cos x);

(c)

y = sin−1(3− 2x).

2. Show that
d

dx

[
tan−1

(
1 + tan x

1− tan x

)]
= 1.

3. If

y =
sin−1x√
1− x2

,

show that

(a)

(1− x2)
dy

dx
= xy + 1;

(b)

(1− x2)
d2y

dx2
− 3x

dy

dx
= y.

6



10.6.6 ANSWERS TO EXERCISES

1. (a)

− 7√
1− 49x2

(
real only if − 1

7
< x <

1

7

)
;

(b)

− sin x

1 + cos2x
;

(c)

− 2√
1− (3− 2x)2

(real only if 1 < x < 2).

7
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UNIT 10.7 - DIFFERENTIATION

DERIVATIVES OF INVERSE HYPERBOLIC FUNCTIONS

10.7.1 SUMMARY OF RESULTS

The derivatives of inverse trigonometric and inverse hyperbolic functions should be consid-
ered as standard results. They will be stated here, first, before their proofs are discussed.

1.

d

dx
[sinh−1x] =

1√
1 + x2

,

where −∞ < sinh−1x <∞.

2.

d

dx
[cosh−1x] =

1√
x2 − 1

,

where cosh−1x ≥ 0.

3.

d

dx
[tanh−1x] =

1

1− x2
,

where −∞ < tanh−1x <∞.

10.7.2 THE DERIVATIVE OF AN INVERSE HYPERBOLIC SINE

We shall consider the formula
y = Sinh−1x

and determine an expression for dy
dx

.

Note:
The use of the upper-case S in the formula is temporary; and the reason will be explained
shortly.

The formula is equivalent to
x = sinh y,

so we may say that
dx

dy
= cosh y ≡

√
1 + sin2y ≡

√
1 + x2,

1



noting that cosh y is never negative.

Thus,
dy

dx
=

1√
1 + x2

.

Consider now the graph of the formula

y = Sinh−1x

which may be obtained from the graph of y = sinh x by reversing the roles of x and y and
rearranging the new axes into the usual positions. We obtain:

-x

6
y

O

Observations

(i) The variable x may lie anywhere in the interval −∞ < x <∞.

(ii) For each value of x, the variable y has only one value.

(iii) For each value of x, there is only one possible value of dy
dx

, which is positive.

(iv) In this case (unlike the case of an inverse sine, in Unit 10.6) there is no need to distinguish
between a general value and a principal value of the inverse hyperbolic sine function. This
is because there is only one value of both the function and its derivative.

However, it is customary to denote the inverse function by sinh−1x, using a lower-case s
rather than an upper-case S.

Hence,
d

dx
[sinh−1x] =

1√
1 + x2

.

2



10.7.3 THE DERIVATIVE OF AN INVERSE HYPERBOLIC COSINE

We shall consider the formula
y = Cosh−1x

and determine an expression for dy
dx

.

Note:
There is a special significance in using the upper-case C in the formula; the reason will be
explained shortly.

The formula is equivalent to
x = cosh y,

so we may say that
dx

dy
= sinh y ≡ ±

√
cosh2y − 1 ≡ ±

√
x2 − 1.

Thus,
dy

dx
=

1√
x2 − 1

.

Consider now the graph of the formula

y = Cosh−1x,

which may be obtained from the graph of y = cosh x by reversing the roles of x and y and
rearranging the new axes into the usual positions. We obtain:

-

6
y

xO 1

3



Observations

(i) The variable x must lie in the interval x ≥ 1.

(ii) For each value of x in the interval x > 1, the variable y has two values one of which is
positive and the other negative.

(iii) For each value of x in the interval x > 1, there are only two possible values of dy
dx

, one
of which is postive and the other negative.

(iv) By restricting the discussion to the part of the graph for which y ≥ 0, there will be only
one value of y with one (positive) value of dy

dx
for each value of x in the interval x ≥ 1.

The restricted part of the graph defines what is called the “principal value” of the inverse
cosine function and is denoted by cosh−1x, using a lower-case c.

Hence,
d

dx
[cosh−1x] =

1√
x2 − 1

.

10.7.4 THE DERIVATIVE OF AN INVERSE HYPERBOLIC TANGENT

We shall consider the formula
y = Tanh−1x

and determine an expression for dy
dx

.

Note:
The use of the upper-case T in the formula is temporary; and the reason will be explained
later.

The formula is equivalent to
x = tanh y,

so we may say that
dx

dy
= sech2y ≡ 1− tanh2y ≡ 1− x2.

Thus,
dy

dx
=

1

1− x2
.

Consider now the graph of the formula

y = Tanh−1x,

4



which may be obtained from the graph of y = tanh x by reversing the roles of x and y and
rearranging the new axes into the usual positions. We obtain:

-

6

O

y

x−1 1

Observations

(i) The variable x must lie in the interval −1 < x < 1.

(ii) For each value of x in the interval −1 < x < 1, the variable y has just one value.

(iii) For each value of x in the interval −1 < x < 1, there is only possible value of dy
dx

, which
is positive.

(iv) In this case (unlike the case of an inverse tangent in Unit 10.6) there is no need to
distinguish between a general value and a principal value of the inverse hyperbolic tangent
function. This is because there is only one value of both the function and its derivative.

However, it is customary to denote the inverse hyperbolic tangent by tan−1x using a lower-
case t rather than an upper-case T.

Hence,
d

dx
[tanh−1x] =

1

1− x2
.

ILLUSTRATIONS

1.

d

dx
[sin−1(tanh x)] =

sech2x√
1− tanh2x

= sechx.

5



2.

d

dx
[cosh−1(5x− 4)] =

5√
(5x− 4)2 − 1

,

assuming that 5x− 4 ≥ 1; that is, x ≥ 1.

10.7.5 EXERCISES

Obtain an expression for dy
dx

in the following cases:

1.

y = cosh−1(4 + 3x),

assuming that 4 + 3x ≥ 1; that is, x ≥ −1.

2.

y = cos−1(sinh x),

assuming that −1 ≤ sinh x ≤ 1.

3.

y = tanh−1(cos x).

4.

y = cosh−1(x3),

assuming that x ≥ 1.

5.

y = tanh−1 2x

1 + x2
.

6



10.7.6 ANSWERS TO EXERCISES

1.

3√
(4 + 3x)2 − 1

.

2.

− cosh x√
1− sinh2x

.

3.

−cosecx.

4.

3x2

√
x6 − 1

.

5.

2

1− x2
.

7
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UNIT 10.8 - DIFFERENTIATION 8

HIGHER DERIVATIVES

10.8.1 THE THEORY

In most of the examples (seen in earlier Units) on differentiating a function of x with respect
to x, the result obtained has been another function of x. In general, this will be the case
and the possibilty arises of differentiating again with respect to x.

This would occur, for example, in the case when the formula

y = f(x)

represents the distance, y, travelled by a moving object at time, x.

The speed of the moving object is the rate of increase of distance with respect to time; that
is, dy

dx
. But a second quantity called acceleration is defined as the rate of increase of speed

with respect to time. It is therefore represented by the symbol

d

dx

[
dy

dx

]
;

but this is usually written as
d2y

dx2

and is pronounced “d two y by dx squared”.

We could, if necessary, differentiate over and over again to obtain the derivatives of order
three, four, etc., namely

d3y

dx3
and

d4y

dx4
, etc.

EXAMPLES

1. If y = sin 2x, show that
d2y

dx2
+ 4y = 0.

1



Solution

Firstly,
dy

dx
= 2 cos 2x,

so that, on differentiating a second time, we obtain

d2y

dx2
= −4 sin 2x = −4y.

Hence, the result follows.

2. If y = x4, show that every derivative of y with respect to x after the fourth derivative
is zero.

Solution

dy

dx
= 4x3;

d2y

dx2
= 12x2;

d3y

dx3
= 24x;

d4y

dx4
= 24.

We now have a constant function, so that all future derivatives will be zero.

Note:
In general, every derivative of y = xn after the n-th derivative will be zero.

3. If x = 3t2 and y = 6t, obtain an expression for d2y
dx2 in terms of t.

Solution

dy

dx
=

dy
dt
dx
dt

,

giving
dy

dx
=

6

6t
=

1

t
.

In order to differentiate again with respect to x, we observe that, in the formula for the
first derivative with respect to x, we need to replace y with dy

dx
.

That is,

d2y

dx2
=

d

dx

[
dy

dx

]
=

d
[

dy
dx

]
dx

.

2



Hence,

d2y

dx2
=

d
dt

[
dy
dx

]
dx
dt

.

In the present example, therefore, we obtain

d2y

dx2
=

d
dt

[
1
t

]
6t

=
−1
t2

6t
= − 1

6t3
.

Note:

For a function f(x), an alternative notation for the derivatives of order two, three, four, etc.
is

f ′′(x), f ′′′(x), f (iv)(x), etc.

10.8.2 EXERCISES

1. Obtain expressions for d2y
dx2 in the following cases:

(a)

y = 4x3 − 7x2 + 5x− 17;

(b)

y = (3x− 2)10;

(c)

y = x2e4x;

(d)

y =
x− 1

x + 1
.

2. If y = sin 3x, evaluate d2y
dx2 when x = π

4
.

3. If x2 + y2− 2x + 2y = 23 determine the values of dy
dx

and d2y
dx2 at the point where x = −2

and y = 3.

4. If x = 3(1− cos θ) and y = 3(θ − sin θ), show that

3



(a)

dy

dx
= tan

θ

2
;

(b)

d2y

dx2
=

1

12 sin θ
2
cos3 θ

2

.

5. If y = 3e2x cos(2x− 3), verify that

d2y

dx2
− 4

dy

dx
+ 8y = 0.

10.8.3 ANSWERS TO EXERCISES

1. (a)

d2y

dx2
= 12x2 − 14;

(b)

d2y

dx2
= 810(3x− 2)8;

(c)

d2y

dx2
= e4x

[
16x2 + 16x + 2

]
;

(d)

d2y

dx2
= − 4

(x + 13
.

2.

− 9√
2
.

3.

3

4
and − 25

64
.

4
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UNIT 11.1 - APPLICATIONS OF DIFFERENTIATION 1

TANGENTS AND NORMALS

11.1.1 TANGENTS

In the definition of a derivative (Unit 10.2), it is explained that the derivative of the function
f(x) can be interpreted as the gradient of the tangent to the curve y = f(x) at the point
(x, y).

We may now use this information, together with the geometry of the straight line, in order
to determine the equation of the tangent to a given curve at a particular point on it.

We illustrate with examples which will then be used also in the subsequent paragraph dealing
with normals.

EXAMPLES

1. Determine the equation of the tangent at the point (−1, 2) to the curve whose equation
is

y = 2x3 + 5x2 − 2x− 3.

Solution

dy

dx
= 6x2 + 10x− 2,

which takes the value −6 when x = −1.

Hence the tangent is the straight line passing through the point (−1, 2) having gradient
−6. Its equation is therefore

y − 2 = −6(x + 1).

That is,
6x + y + 4 = 0.

2. Determine the equation of the tangent at the point (2,−2) to the curve to the curve
whose equation is

x2 + y2 + 3xy + 4 = 0.

Solution

2x + 2y
dy

dx
+ 3

[
x

dy

dx
+ y

]
= 0.

That is,

1



dy

dx
= −2x + 3y

3x + 2y
,

which takes the value −2 at the point (2,−2).

Hence, the equation of the tangent is

y + 2 = −2(x− 2).

That is,

2x + y − 2 = 0.

3. Determine the equation of the tangent at the point where t = 2 to the curve given
parametrically by

x =
3t

1 + t
and y =

t2

1 + t
.

Solution

We note first that the point at which t = 2 has co-ordinates
(
2, 4

3

)
.

Furthermore,

dx

dt
=

3

(1 + t)2
and

dy

dt
=

2t + t2

(1 + t)2
,

by the quotient rule.

Thus,
dy

dx
=

2t + t2

3
,

which takes the value 8
3

when t = 2.

Hence, the equation of the tangent is

y − 4

3
=

8

3
(x− 2).

That is,
3y + 12 = 8x.

2



11.1.2 NORMALS

The normal to a curve at a point on it is defined to be a straight line passing through this
point and perpendicular to the tangent there.

Using previous work on perpendicular lines (Unit 5.2), if the gradient of the tangent is m,
then the gradient of the normal will be − 1

m
.

EXAMPLES

In the examples of section 11.1.1, therefore, the normals to each curve at the point given
will have equations as follows:

1.

y − 2 =
1

6
(x + 1).

That is,

6y = x + 13.

2.

y + 2 =
1

2
(x− 2).

That is,

2y = x− 6.

3.

y − 4

3
= −3

8
(x− 2).

That is,

24y + 9x = 50.

Note:
It may occasionally be required to determine the angle, θ, between two curves at one of
their points of intersection. This is defined to be the angle between the tangents at this
point; and, if the gradients of the tangents are m1 = tan θ1 and m2 = tan θ2, then the angle
θ ≡ θ2 − θ1 and is given by

3



tan θ =
tan θ2 − tan θ1

1 + tan θ2 tan θ1

.

That is,

tan θ =
m2 −m1

1 + m2m1

.

O -
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11.1.3 EXERCISES

1. Determine the equations of the tangent and normal to the following curves at the point
given:

(a)

8y = x3 at (2, 1);

(b)

y =
e2x cos x

(1 + x)3
at (0, 1).

2. The parametric equations of a curve are

x = 1 + sin 2t, y = 1 + cos t + cos 2t.

Determine the equation of the tangent to the curve at the point for which t = π
2
.

4



3. Determine the quation of the tangent at the point (2, 3) to the curve whose equation is

3x2 + 2y2 = 30.

4. Determine the equation of the normal at the point (−1, 2) to the curve whose equation
is

2xy + 3xy2 − x2 + y3 + 9 = 0.

11.1.4 ANSWERS TO EXERCISES

1. (a) The tangent is
2y = 3x− 4,

and the normal is
2x + 3y = 7;

(b) The tangent is
y = 1− x,

and the normal is
y = x + 1.

2. The tangent is
2y = x− 1.

3. The tangent is
x + y = 5.

4. The normal is
x + 9y = 17.

5
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UNIT 11.2 - APPLICATIONS OF DIFFERENTIATION 2

LOCAL MAXIMA, LOCAL MINIMA AND POINTS OF INFLEXION

11.2.1 INTRODUCTION

(a) Let us first suppose that the formula

s = f(t)

represents the distance s, travelled in time t, by a moving object from some previously chosen
point on its journey.

The derivative , ds
dt

, of s with respect to t gives the speed of the object at time t and can
be represented by the slope of the tangent at the point (t, s) to the curve whose equation is
s = f(t).

For any instant, t0, of time, at which the object is stationary, the value of the derivative will
be zero and hence, the slope of the tangent will be zero.

The corresponding point (t0, s0), on the graph may thus be called a “stationary point”.

(b) More generally, any relationship,

y = f(x),

between two variable quantities, x and y, can usually be represented by a graph of y against
x and any point (x0, y0) on the graph at which dy

dx
takes the value zero is called a “stationary

point”. The tangent to the curve at the point (x0, y0) will be parallel to x-axis.

-
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In the paragraphs which follow, we shall discuss the definitions and properties
of particular kinds of stationary point.
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11.2.2 LOCAL MAXIMA

A stationary point (x0, y0) on the graph whose equation is

y = f(x)

is said to be a “local maximum” if y0 is greater than the y co-ordinates of all other points
on the curve in the immediate neighbourhood of (x0, y0).
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y0

Note:
It may well happen that, for points on the curve which are some distance away from (x0, y0),
their y co-ordinates are greater than y0; hence, the definition of a local maximum point must
refer to the behaviour of y in the immediate neighbourhood of the point.

11.2.3 LOCAL MINIMA

A stationary point (x0, y0) on the graph whose equation is

y = f(x)

is said to be a “local minimum” if y0 is less than the y co-ordinates of all other points on
the curve in the immediate neighbourhood of (x0, y0).
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Note:
It may well happen that, for points on the curve which are some distance away from (x0, y0),
their y co-ordinates are less than y0; hence, the definition of a local minimum point must
refer to the behaviour of y in the immediate neighbourhood of the point.

11.2.4 POINTS OF INFLEXION

A stationary point (x0, y0) on the graph whose equation is

y = f(x)

is said to be a “point of inflexion” if the curve exhibits a change in the direction bending
there.
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11.2.5 THE LOCATION OF STATIONARY POINTS AND THEIR NATURE

In order to determine the location of any stationary points on the curve whose equation is

y = f(x),

we simply obtain an expression for the derivate of y with respect to x, then equate it to zero.
That is, we solve the equation

dy

dx
= 0.

Having located a stationary point (x0, y0), we may then determine whether it is a local
maximum, a local minimum, or a point of inflexion using two alternative methods. These
methods will be illustrated by examples:

METHOD 1. - The “First Derivative” Method

Suppose ε denotes a number which is relatively small compared with x0.

If we examine the sign of dy
dx

, first at x = x0 − ε and then at x = x0 + ε, the following
conclusions may be drawn:

(a) If the sign of dy
dx

changes from positive to negative, there is a local maximum at (x0, y0).

(b) If the sign of dy
dx

changes from negative to positive, there is a local minimum at (x0, y0).

(c) If the sign of dy
dx

does not change, there is a point of inflexion at (x0, y0).

EXAMPLES

1. Determine the stationary point on the graph whose equation is

y = 3− x2.

Solution:

dy

dx
= −2x,

which is equal to zero at the point where x = 0 and hence, y = 3.

If x = 0− ε, (for example, x = −0.01), then dy
dx

> 0 and

If x = 0 + ε, (for example x = 0.01), then dy
dx

< 0.

Hence, there is a local maximum at the point (0, 3).

4
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2. Determine the stationary point on the graph whose equation is

y = x2 − 2x + 3.

Solution:

dy

dx
= 2x− 2,

which is equal to zero at the point where x = 1 and hence, y = 2.

If x = 1− ε, (for example, x = 1− 0.01 = 0.99), then dy
dx

< 0 and

If x = 1 + ε, (for example, x = 1 + 0.01) = 1.01, then dy
dx

> 0.

Hence, there is a local minimum at the point (1, 2).
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3. Determine the stationary point on the graph whose equation is

y = 5 + x3.

5



Solution:

dy

dx
= 3x2,

which is equal to zero at the point where x = 0 and hence, y = 5.

If x = 0− ε, (for example, x = −0.01), then dy
dx

> 0 and

If x = 0 + ε, (for example, x = 0.01), then dy
dx

> 0.

Hence, there is a point of inflexion at (0, 5).
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METHOD 2. - The “Second Derivative” Method

This method considers the general appearance of the graph of dy
dx

against x, which is called
the “first derived curve”. The properties of the first derived curve in the neighbourhood
of a stationary point (x0, y0) may be used to predict the nature of this point.

6



(a) Local Maxima
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As x passes from values below x0 to values above x0, the corresponding values of dy
dx

steadily
decrease from large positive values to large negative values, passing through zero when
x = x0.

This suggests that the first derived curve exhibits a “going downwards” tendency at
x = x0.

O -
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x

dy
dx

x0

It may be expected, therefore, that the slope at x = x0 on the first derived curve is negative.
In other words,

d2y

dx2
< 0 at x = x0.

This is the second derivative test for a local maximum.
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EXAMPLE

For the curve whose equation is
y = 3− x2,

we have
dy

dx
= −2x and

d2y

dx2
= −2.

The second derivative is negative everywhere, so it is certainly negative at the stationary
point (0, 3) obtained in the previous method. Hence, (0, 3) is a local maximum.

(b) Local Minima
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As x passes from values below x0 to values above x0, the corresponding values of dy
dx

steadily
increase from large negative values to large positive values, passing through zero when x = x0.

This suggests that the first derived curve exhibits a “going upwards” tendency at x = x0.
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It may be expected, therefore, that the slope at x = x0 on the first derived curve is positive.
In other words,

d2y

dx2
> 0 at x = x0.

This is the second derivative test for a local minimum.

EXAMPLE

For the curve whose equation is
y = x2 − 2x + 3,

we have
dy

dx
= 2x− 2 and

d2y

dx2
= 2.

The second derivative is positive everywhere, so it is certainly positive at the stationary
point (1, 2) obtained in the previous method. Hence, (1, 2) is a local minimum.
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(c) Points of inflexion
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As x passes from values below x0 to values above x0, the corresponding values of dy
dx

appear
to reach either a minimum or a maximum value at x = x0.

O -
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It may be expected, therefore, that the slope at x = x0 on the first derived curve is zero and
changes sign as x passes through the value x0.

d2y

dx2
= 0 at x = x0 and changes sign.

This is the second derivative test for a point of inflexion.
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EXAMPLE

For the curve whose equation is
y = 5 + x3,

we have
dy

dx
= 3x2 and

d2y

dx2
= 6x.

The second derivative is zero when x = 0 and changes sign as x passes through the value
zero.

Hence, the stationary point (0, 5) found previously is a point of inflexion.

Notes:
(i) For a stationary point of inflexion, it is not enough that

d2y

dx2
= 0

without also the change of sign.

For example, the curve whose equation is

y = x4

is easily shown (by Method 1) to have a local minimum at the point (0, 0); and yet, for this

curve, d2y
dx2 = 0 at x = 0.
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(ii) Some curves contain what are called “ordinary points of inflexion”. They are not
stationary points and hence, dy

dx
6= 0; but the rest of the condition for a point of inflexion
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still holds. That is,
d2y

dx2
= 0 and changes sign.

EXAMPLE

For the curve whose equation is
y = x3 + x,

we have
dy

dx
= 3x2 + 1 and

d2y

dx2
= 6x.

Hence, there are no stationary points at all; but d2y
dx2 = 0 at x = 0 and changes sign as x

passes through x = 0.

That is, there is an ordinary point of inflexion at (0, 0).
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Notes:
(i) In any interval of the x-axis, the greatest value of a function of x will be either the
greatest maximum or possibly the value at one end of the interval. Similarly, the least value
of the function will be either the smallest minimum or possibly the value at one end of the
interval.

(ii) In sketching a curve whose maxima, minima and points of inflexion are known, it may
also be necessary to determine, from the equation of the curve, its points of intersection with
the axes of reference.
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11.2.6 EXERCISES

1. Determine the local maxima, local minima and points of inflexion (including ordinary
points of inflexion) on the curves whose equations are given in the following:

(a)

y = x3 − 6x2 + 9x + 6;

(b)

y = x +
1

x
.

In each case, give also a sketch of the curve.

2. Show that the curve whose equation is

y =
1

2x + 1
+ ln(2x + 1)

has a local minimum at a point on the y-axis.

3. The horse-power, P , transmitted by a belt is given by

P = k

[
Tv − wv3

g

]
,

where k is a constant, v is the speed of the belt, T is the tension on the driving side
and w is the weight per unit length of the belt. Determine the speed for which the
horse-power is a maximum.

4. For x lying in the interval −3 ≤ x ≤ 5, determine the least and greatest values of the
function

x3 − 12x + 20

13



11.2.7 ANSWERS TO EXERCISES

1. (a) Local maximum at (1, 10), local minumum at (3, 6), ordinary point of inflexion at
(2, 8);

-

6

x

y

O 1 2 3

10

6

(b) Local maximum at (−1,−2), local minimum at (1, 2).
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2. Local minimum at the point (0, 1).

3. The horse-power is maximum when

v =

√
gT

2w
.

4. The greatest value is 85 at (5, 85); the least value is 4 at (2, 4).
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UNIT 11.3 - DIFFERENTIATION APPLICATIONS 3

CURVATURE

11.3.1 INTRODUCTION

In the discussion which follows, consideration will be given to a method of measuring the
“tightness of bends” on a curve. This measure will be called “curvature” and its
definition will imply that very tight bends have large curvature.

We shall also need to distinguish between curves which are “concave upwards” (∪), hav-
ing positive curvature, and curves which are “concave downwards” (∩), having negative
curvature.

DEFINITION
Suppose we are given a curve whose equation is y = f(x); and suppose that θ is the angle
made with the positive x-axis by the tangent to the curve at a point, P(x, y), on it. If s is the
distance to P, measured along the curve from some fixed point, F, on it then the curvature,
κ, at P, is defined as the rate of increase of θ with respect to s.
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κ =
dθ

ds
.
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EXAMPLE

Determine the curvature at any point of a circle with radius a.

Solution
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@

PPPP

A

B
δθ

θ θ + δθ

F

a

O - x

6

y

We shall let A be a point on the circle at which the tangent is inclined to the positive x-axis
at an angle, θ, and let B be a point (close to A) at which the tangent is inclined to the
positive x-axis at an angle, θ + δθ. The length of the arc, AB, will be called δs, where we
shall assume that distances, s, are measured along the circle in a counter-clockwise sense
from the fixed point, F.

The diagram shows that δθ is both the angle between the two tangents and the angle
subtended at the centre of the circle by the arc, AB.

Thus, δs = aδθ which can be written

δθ

δs
=

1

a
.

Allowing δθ, and hence δs, to approach zero, we conclude that

κ =
dθ

ds
=

1

a
.

We note, however, that, for the lower half of the circle, θ increases as s increases, while,
in the upper half of the circle, θ decreases as s increases. The curvature will therefore be
positive for the lower half (which is concave upwards) and negative for the upper half (which
is concave downwards).
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Summary
The curvature at any point of a circle is numerically equal to the reciprocal of the radius.

11.3.2 CURVATURE IN CARTESIAN CO-ORDINATES

Given a curve whose equation is y = f(x), suppose P(x, y) and Q(x + δx, y + δy) are two
neighbouring points on it which are separated by a distance of δs along the curve.

O -

6

P(x, y)

Q(x + δx, y + δy)

���������

���������

θ x

y

δx

δy
δs

In this diagram, we may observe that

dy

dx
= lim

δx→0

δy

δx
= tan θ

and also that

dx

ds
= lim

δs→0

δx

δs
= cos θ.

The curvature may therefore be evaluated as follows:

dθ

ds
=

dθ

dx
.
dx

ds
=

dθ

dx
. cos θ.

But,

dθ

dx
=

d

dx

[
tan−1 dy

dx

]
=

1

1 +
(

dy
dx

)2 .
d2y

dx2
.

3



Finally,

cos θ =
1

secθ
= ± 1√

1 + tan2θ
= ± 1√

1 +
(

dy
dx

)2
;

and so,

κ = ±
d2y
dx2[

1 +
(

dy
dx

)2
] 3

2

.

Notes:

(i) For a curve which is concave upwards at a particular point, the gradient, dy
dx

, will increase

as x increases through the point. Hence, d2y
dx2 will be positive at the point.

(ii) For a curve which is concave downwards at a particular point, the gradient, dy
dx

, will

decrease as x increases through the point. Hence, d2y
dx2 will be negative at the point.

(ii) In future, therefore, we may allow the value of the curvature to take the same sign as
d2y
dx2 , giving the formula

κ =
d2y
dx2[

1 + dy
dx

2
] 3

2

.

EXAMPLE

Use the cartesian formula to determine the curvature at any point on the circle, centre (0, 0)
with radius a.

Solution

The equation of the circle is

x2 + y2 = a2,

which means that, for the upper half,

4



y =
√

a2 − x2

and, for the lower half,

y = −
√

a2 − x2.

Considering, firstly, the upper half,

dy

dx
= − x√

a2 − x2

and

d2y

dx2
= −

√
a2 − x2 + x2

√
a2−x2

a2 − x2
= − a2

(a2 − x2)
3
2

.

Therefore,

κ =
− a2

(a2−x2)
3
2(

1 + x2

a2−x2

) 3
2

= −a2

a3
= −1

a
.

For the lower half of the circle,

κ =
1

a
.

5



11.3.3 EXERCISES

In the following questions, state your answer in decimals correct to three places of decimals:

1. Calculate the curvature at the point (−1, 3) on the curve whose equation is

y = x + 3x2 − x3.

2. Calculate the curvature at the origin on the curve whose equation is

y =
x− x2

1 + x2
.

3. Calculate the curvature at the point (1, 1) on the curve whose equation is

x3 − 2xy + y3 = 0.

4. Calculate the curvature at the point for which θ = 30◦ on the curve whose parametric
equations are

x = 1 + sin θ and y = sin θ − 1

2
cos 2θ.

11.3.4 ANSWERS TO EXERCISES

1. κ = 0.023

2. κ = −0.707

3. κ = −5.650

4. κ = 0.179

6
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UNIT 11.4 DIFFERENTIATION APPLICATIONS 4

CIRCLE, RADIUS AND CENTRE OF CURVATURE

11.4.1 INTRODUCTION

At a point, P, on a given curve, suppose we were to draw a circle which just touches the
curve and has the same value of the curvature (including its sign). This circle is called the
“circle of curvature at P”. Its radius, ρ, is called the “radius of curvature at P” and
its centre is called the “centre of curvature at P”.

@
@

@

ρ

O - x

6

y

C

P

11.4.2 RADIUS OF CURVATURE

Using the earlier examples on the circle (Unit 11.3), we conclude that, if the curvature at P
is κ, then ρ = 1

κ
and, hence,

ρ =
ds

dθ
.

Furthermore, in cartesian co-ordinates,

ρ =

[
1 +

(
dy
dx

)2
] 3

2

d2y
dx2

.

Note:
If we are interested in the radius of curvature simply as a length, then, for curves with

1



negative curvature, we would use only the numerical value obtained in the above formula.
However, in a later discussion, it is necessary to use the appropriate sign for the radius of
curvature.

EXAMPLE

Calculate the radius of curvature at the point (0.5,−1) of the curve whose equation is

y2 = 2x.

Solution

Differentiating implicitly,

2y
dy

dx
= 2.

That is,

dy

dx
=

1

y
.

Also

d2y

dx2
= − 1

y2
.
dy

dx
= − 1

y3
.

Hence, at the point (0.5,−1), dy
dx

= −1 and d2y
dx2 = 1.

We conclude that

ρ =
(1 + 1)

3
2

1
= 2
√

2.

11.4.3 CENTRE OF CURVATURE

We shall consider a point, (x0, y0), on an arc of a curve whose equation is y = f(x) and for
which the curvature is positive, the arc lying in the first quadrant. But it may be shown
that the formulae obtained for the co-ordinates, (xc, yc), of the centre of curvature apply in
any situation, provided that the curvature is associated with its appropriate sign.

2
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From the diagram,

xc = x0 − ρ sin θ,

yc = y0 + ρ cos θ.

Note:
Although the formulae apply in any situation, it is a good idea to sketch the curve in order
estimate, roughly, where the centre of curvature is going to be. This is especially important
where there is uncertainty about the precise value of the angle θ.

EXAMPLE

Determine the centre of curvature at the point (0.5,−1) of the curve whose equation is

y2 = 2x.

Solution

From the earlier example on calculating radius of curvature,

dy

dx
=

1

y
and

d2y

dx2
= − 1

y3
,

giving dy
dx

= −1, d2y
dx2 = 1 and ρ = 2

√
2 at the point (0.5,−1).
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The diagram shows that the co-ordinates, (xc, yc), of the centre of curvature will be such
that xc > 0.5 and yc > −1. This will be so provided that the angle, θ, is a negative acute
angle; (that is, its cosine will be positive and its sine will be negative).

In fact,

θ = tan−1(−1) = −45◦.

Hence,

xc = 0.5− 2
√

2 sin(−45◦),

yc = −1 + 2
√

2 cos(−45◦).

That is,

xc = 2.5 and yc = 1.
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11.4.4 EXERCISES

In the following questions, state your results in decimals correct to three places of decimals:

1. Calculate the radius of curvature at the point (−1, 3) on the curve whose equation is

y = x + 3x2 − x3

and hence obtain the co-ordinates of the centre of curvature.

2. Calculate the radius of curvature at the origin on the curve whose equation is

y =
x− x2

1 + x2

and hence obtain the co-ordinates of the centre of curvature.

3. Calculate the radius of curvature at the point (1, 1) on the curve whose equation is

x3 − 2xy + y3 = 0

and hence obtain the co-ordinates of the centre of curvature.

4. Calculate the radius of curvature at the point for which θ = 30◦ on the curve whose
parametric equations are

x = 1 + sin θ and y = sin θ − 1

2
cos 2θ

and hence obtain the co-ordinates of the centre of curvature.

11.4.5 ANSWERS TO EXERCISES

1. ρ = 43.6705, (xc, yc) = (42.333, 8.417).

2. ρ = −1.414 (xc, yc) = (1,−1).

3. ρ = −0.177 (xc, yc) = (0.875, 0.875).

4. ρ = 0.590 (xc, yc = (−3.500, 2.750).
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UNIT 11.5 - DIFFERENTIATION APPLICATIONS 5

MACLAURIN’S AND TAYLOR’S SERIES

11.5.1 MACLAURIN’S SERIES

One of the simplest kinds of function to deal with, in either algebra or calculus, is a polyno-
mial (see Unit 1.8). Polynomials are easy to substitute numerical values into and they are
easy to differentiate.

One useful application of the present section is to approximate, to a polynomial, functions
which are not already in polynomial form.

THE GENERAL THEORY

Suppose f(x) is a given function of x which is not in the form of a polynomial, and let us
assume that it may be expressed in the form of an infinite series of ascending powers of x;
that is, a “power series”, (see Unit 2.4).

More specifically, we assume that

f(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + . . .

This assumption cannot be justified unless there is a way of determining the “coefficients”,
a0, a1, a2, a3, a4, etc.; but this is possible as an application of differentiation as we now show:

(a) Firstly, if we substitute x = 0 into the assumed formula for f(x), we obtain f(0) = a0;
in other words,

a0 = f(0).

(b) Secondly, if we differentiate the assumed formula for f(x) once with respect to x, we
obtain

f ′(x) = a1 + 2a2x + 3a3x
2 + 4a4x

3 + . . .

which, on substituting x = 0, gives f ′(0) = a1; in other words,

a1 = f ′(0).
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(c) Differentiating a second time leads to the result that

f ′′(x) = 2a2 + (3× 2)a3x + (4× 3)a4x
2 + . . .

which, on substituting x = 0 gives f ′′(0) = 2a2; in other words,

a2 =
1

2
f ′′(0).

(d) Differentiating yet again leads to the result that

f ′′′(x) = (3× 2)a3 + (4× 3× 2)a4x + . . .

which, on substituting x = 0 gives f ′′′(0) = (3× 2)a3; in other words,

a3 =
1

3!
f ′′′(0).

(e) Continuing this process with further differentiation will lead to the general formula

an =
1

n!
f (n)(0),

where f (n)(0) means the value, at x = 0 of the n-th derivative of f(x).

Summary

f(x) = f(0) + xf ′(0) +
x2

2!
f ′′(0) +

x3

3!
f ′′′(0) + . . .

This is called the “Maclaurin’s series for f(x)”.

Notes:

(i) We must assume, ofcourse, that all of the derivatives of f(x) exist at x = 0 in the first
place; otherwise the above result is invalid.
It is also necessary to examine, for convergence or divergence, the Maclaurin’s series obtained
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for a particular function. The result may not be used when the series diverges; (see Units
2.3 and 2.4).

(b) If x is small and it is possible to neglect powers of x after the n-th power, then Maclaurin’s
series approximates f(x) to a polynomial of degree n.

11.5.2 STANDARD SERIES

Here, we determine the Maclaurin’s series for some of the functions which occur frequently
in the applications of mathematics to science and engineering. The ranges of values of x for
which the results are valid will be stated without proof.

1. The Exponential Series

(i) f(x) ≡ ex; hence, f(0) = e0 = 1.

(ii) f ′(x) = ex; hence, f ′(0) = e0 = 1.

(iii) f ′′(x) = ex; hence, f ′′(0) = e0 = 1.

(iv) f ′′′(x) = ex; hence, f ′′′(0) = e0 = 1.

(v) f (iv)(x) = ex; hence, f (iv)(0) = e0 = 1.

Thus,

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ . . .

and it may be shown that this series is valid for all values of x.

2. The Sine Series

(i) f(x) ≡ sin x; hence, f(0) = sin 0 = 0.

(ii) f ′(x) = cos x; hence, f ′(0) = cos 0 = 1.

(iii) f ′′(x) = − sin x; hence, f ′′(0) = − sin 0 = 0.

(iv) f ′′′(x) = − cos x; hence, f ′′′(0) = − cos 0 = −1.

(v) f (iv)(x) = sin x; hence, f (iv)(0) = sin 0 = 0.

(vi) f (v)(x) = cos x; hence, f (v)(0) = cos 0 = 1.

Thus,

sin x = x− x3

3!
+

x5

5!
− . . .

and it may be shown that this series is valid for all values of x.
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3. The Cosine Series

(i) f(x) ≡ cos x; hence, f(0) = cos 0 = 1.

(ii) f ′(x) = − sin x; hence, f ′(0) = − sin 0 = 0.

(iii) f ′′(x) = − cos x; hence, f ′′(0) = − cos 0 = −1.

(iv) f ′′′(x) = sin x; hence, f ′′′(0) = sin 0 = 0.

(v) f (iv)(x) = cos x; hence, f (iv)(0) = cos 0 = 1.

Thus,

cos x = 1− x2

2!
+

x4

4!
− . . .

and it may be shown that this series is valid for all values of x.

4. The Logarithmic Series

It is not possible to find a Maclaurin’s series for the function ln x, since neither the
function nor its derivatives exist at x = 0.

As an alternative, we may consider the function ln(1 + x) instead.

(i) f(x) ≡ ln(1 + x); hence, f(0) = ln 1 = 0.

(ii) f ′(x) = 1
1+x

; hence, f ′(0) = 1.

(iii) f ′′(x) = − 1
(1+x)2

; hence, f ′′(0) = 1.

(iv) f ′′′(x) = 2
(1+x)3

; hence, f ′′′(0) = 2.

(v) f (iv)(x) = − 2×3
(1+x)4

; hence, f (iv)(0) = −(2× 3).

Thus,

ln(1 + x) = x− x2

2!
+ 2

x3

3!
− (2× 3)

x4

4!
+ . . .

which simplifies to

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ . . .

and it may be shown that this series is valid for −1 < x ≤ 1.

5. The Binomial Series

The statement of the Binomial Formula has already appeared in Unit 2.2; and it was
seen there that

(a) When n is a positive integer, the expansion of (1 + x)n in ascending powers of x is
a finite series;
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(b) When n is a negative integer or a fraction, the expansion of (1 + x)n in ascending
powers of x is an infinite series.

Here, we examine the proof of the Binomial Formula.

(i) f(x) ≡ (1 + x)n; hence, f(0) = 1.

(ii) f ′(x) = n(1 + x)n−1; hence, f ′(0) = n.

(iii) f ′′(x) = n(n− 1)(1 + x)n−2; hence, f ′′(0) = n(n− 1).

(iv) f ′′′(x) = n(n− 1)(n− 2)(1 + x)n−3; hence, f ′′′(0) = n(n− 1)(n− 2).

(v) f (iv)(x) = n(n−1)(n−2)(n−3)(1 + x)n−4; hence, f (iv)(0) = n(n−1)(n−2)(n−3).

Thus,

(1 + x)n = 1+nx+
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 +

n(n− 1)(n− 2)(n− 3)

4!
x4 + . . .

If n is a positive integer, all of the derivatives of (1 + x)n after the n-th derivative are
identically equal to zero; so the series is a finite series ending with the term in xn.

In all other cases, the series is an infinite series and it may be shown that it is valid
whenever −1 < x ≤ 1.

EXAMPLES

1. Use the Maclaurin’s series for sin x to evaluate

lim
x→0

x + sin x

x(x + 1)
.

Solution

Substituting the series for sin x gives

lim
x→0

x + x− x3

3!
+ x5

5!
− . . .

x2 + x

= lim
x→0

2x− x3

6
+ x5

120
− . . .

x2 + x

= lim
x→0

2− x2

6
+ x4

120
− . . .

x + 1
= 2.
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2. Use a Maclaurin’s series to evaluate
√

1.01 correct to six places of decimals.

Solution

We shall consider the expansion of the function (1 + x)
1
2 and then substitute x = 0.01.

(1 + x)
1
2 = 1 +

1

2
x +

(
1
2

) (
−1

2

)
2!

x2 +

(
1
2

) (
−1

2

) (
−3

2

)
3!

x3 + . . .

That is,

(1 + x)
1
2 = 1 +

1

2
x− 1

8
x2 +

1

16
x3 + . . .

Substituting x = 0.01 gives

√
1.01 = 1 +

1

2
× 0.01− 1

8
× 0.0001 +

1

16
× 0.000001− . . .

= 1 + 0.005− 0.0000125 + 0.0000000625− . . .

The fourth term will not affect the sixth decimal place in the result given by the first
three terms; and this is equal to 1.004988 correct to six places of decimals.

3. Assuming the Maclaurin’s series for ex and sin x and assuming that they may be multi-
plied together term-by-term, obtain the expansion of ex sin x in ascending powers of x
as far as the term in x5.

Solution

ex sin x =

(
1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ . . .

)(
x− x3

3!
+

x5

120
+ . . .

)

= x− x3

6
+

x5

120
+ x2 − x4

6
+

x3

2
− x5

12
+

x4

6
+

x5

24
+ . . .

= x + x2 +
x3

3
− x5

30
+ . . .

11.5.3 TAYLOR’S SERIES

A useful consequence of Maclaurin’s series is known as Taylor’s series and one form of it may
be stated as follows:
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f(x + h) = f(h) + xf ′(h) +
x2

2!
f ′′(h) +

x3

3!
f ′′′(h) + . . .

Proof:

To obtain this result from Maclaurin’s series, we simply let f(x + h) ≡ F (x). Then,

F (x) = F (0) + xF ′(0) +
x2

2!
F ′′(0) +

x3

3!
F ′′′(0) + . .

But, F (0) = f(h), F ′(0) = f ′(h), F ′′(0) = f ′′(h), F ′′′(0) = f ′′′(h),. . . which proves the
result.

Note: An alternative form of Taylor’s series, often used for approximations, may be obtained
by interchanging the symbols x and h to give

f(x + h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) + . . .

EXAMPLE

Given that sin π
4

= cos π
4

= 1√
2
, use Taylor’s series to evaluate sin(x + h), correct to five

places of decimals, in the case when x = π
4

and h = 0.01.

Solution

Using the sequence of derivatives as in the Maclaurin’s series for sin x, we have

sin(x + h) = sin x + h cos x− h2

2!
sin x− h3

3!
cos x + ......

Subsituting x = π
4

and h = 0.01, we obtain

sin
(

π

4
+ 0.01

)
=

1√
2

(
1 + 0.01− (0.01)2

2!
− (0.01)3

3!
+ . . .

)

=
1√
2
(1 + 0.01− 0.00005− 0.000000017 + ......)
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The fourth term does not affect the fifth decimal place in the sum of the first three terms;
and so

sin
(

π

4
+ 0.01

)
' 1√

2
× 1.00995 ' 0.71414

11.5.4 EXERCISES

1. Determine the first three non-vanishing terms of the Maclaurin’s series for the function
sec x.

2. Determine the Maclaurin’s series for the function tan x as far as the term in x5.

3. Determine the Maclaurin’s series for the function ln(1 + ex) as far as the term in x4.

4. Use the Maclaurin’s series for the function ex to deduce the expansion, in ascending
powers of x of the function e−x and then use these two series to obtain the expansion,
in ascending powers of x, of the functions

(a)

ex + e−x

2
(≡ cosh x);

(b)

ex − e−x

2
(≡ sinh x).

5. Use the Maclaurin’s series for the function cos x and the Binomial Series for the function
1

1+x
to obtain the expansion of the function

cos x

1 + x

in ascending powers of x as far as the term in x4.

6. From the Maclaurin’s series for the function cos x, deduce the expansions of the functions
cos 2x and sin2x as far as the term in x4.
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7. Use appropriate Maclaurin’s series to evaluate the following limits:

(a)

lim
x→0

[
ex + e−x − 2

2 cos 2x− 2

]
;

(b)

lim
x→0

[
sin2x− x2 cos x

x4

]
.

8. Use a Maclaurin’s series to evaluate 3
√

1.05 correct to four places of decimals.

9. Expand cos(x + h) as a series of ascending powers of h.

Given that sin π
6

= 1
2

and cos π
6

=
√

3
2

, evaluate cos(x + h), correct to five places of
decimals, in the case when x = π

6
and h = −0.05.

11.5.5 ANSWERS TO EXERCISES

1.

1 +
x2

2
+

x4

8
+ . .

2.

x +
x3

3
+

2x5

15
+ . . .

3.

ln 2 +
x

2
+

x2

8
− x4

192
+ . . .

4. (a)

cosh x = 1 +
x2

2!
+

x4

4!
+ . . .;

(b)

sinh x = x +
x3

3!
+

x5

5!
+ . .
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5.

1− x +
x2

2
− x3

2
+

13x4

24
− . . .

6.

cos 2x = 1− 2x2 +
2x4

3
− . . .

sin2x = x2 − x4

3
+ . . .

7. (a) −1
4
, (b) 1

6

8. 1.0164

9. 0.74156
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UNIT 11.6 - DIFFERENTIATION APPLICATIONS 6

SMALL INCREMENTS AND SMALL ERRORS

11.6.1 SMALL INCREMENTS

Given that a dependent variable, y, and an independent variable, x are related by means of
the formula

y = f(x),

suppose that x is subject to a small “increment”, δx,

In the present context we use the term “increment” to mean that δx is positive when x is
increased, but negative when x is decreased.

The exact value of the corresponding increment, δy, in y is given by

δy = f(x + δx)− f(x),

but this can often be a cumbersome expression to evaluate.

However, since δx is small, we may recall, from the definition of a derivative (Unit 10.2),
that

f(x + δx)− f(x)

δx
' dy

dx
.

That is,

δy

δx
' dy

dx
;

and we may conclude that

δy ' dy

dx
δx.

For a diagramatic approach to this approximation for the increment in y, let us consider the
graph of y against x in the neighbourhood of the two points P(x, y) and Q(x + δx, y + δy)
on the curve whose equation is y = f(x).

1



O -

6

P(x, y)

Q(x + δx, y + δy)

R(x + δx, y)���������

���������

x

y

δx

S

In the diagram, PR = δx, QR = δy and the gradient of the line PS is given by the value of
dy
dx

at P.

Taking SR as an approximation to QR, we obtain

SR

PR
=

[
dy

dx

]
P

.

In other words,

SR

δx
=

[
dy

dx

]
P

.

Hence,

δy '
[
dy

dx

]
P

δx,

which is the same result as before.

Notes:

(i) The quantity dy
dx

δx is known as the “total differential of y” (or simply the “differential
of y”). It provides an approximation (including the appropriate sign) for the increment,
δy, in y subject to an increment of δx in x.
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(ii) It is important not to use the word “differential” when referring to a “derivative”.
Rather, the correct alternative to “derivative” is “differential coefficient”.

(iii) A more rigorous approach to the calculation of δy is to use the result known as “Taylor’s
Theorem” (see Unit 11.5) which, in this context, would give the formula

f(x + δx) = f(x) + f ′(x)δx +
f ′′(x)

2!
(δx)2 +

f ′′′(x)

3!
(δx)3 + . . . .

Hence, if δx is small enough for powers of two and above to be neglected, then

f(x + δx)− f(x) ' f ′(x)δx

to the first order of approximation.

EXAMPLES

1. If a square has side xcms., determine both the exact and the approximate values of the
increment in the area Acms2. when x is increased by δx.

Solution

(a) Exact Method

x δx

x

δx

The area is given by the formula

A = x2.

If x increases by δx, then the increase, δA, in A may be obtained from the formula
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A + δA = (x + δx)2 = x2 + 2xδx + (δx)2.

That is,

δA = 2xδx + (δx)2.

(b) Approximate Method

Here, we use

dA

dx
= 2x

to give

δA ' 2xδx;

and we observe from the diagram that the two results differ only by the area of the
small square, with side δx.

2. If
y = xe−x,

calculate, approximately, the change in y when x increases from 5 to 5.03.

Solution

We have

dy

dx
= e−x(1− x),

so that

δy ' e−x(1− x)δx,

where x = 5 and δx = 0.3.

Hence,

δy ' e−5.(1− 5).(0.3) ' −0.00809,

showing a decrease of 0.00809 in y.

We may compare this with the exact value which is given by

δy = 5.3e−5.3 − 5e−5 ' −0.00723
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3. If
y = xe−x,

determine, in terms of x, the percentage change in y when x is increased by 2%.

Solution

Once again, we have

δy = e−x(1− x)δx;

but, this time, δx = 0.02x, so that

δy = e−x(1− x)× 0.02x.

The percentage change in y is given by

δy

y
× 100 =

e−x(1− x)× 0.02x

xe−x
× 100 = 2(1− x).

That is, y increases by 2(1−x)%, which will be positive when x < 1 and negative when
x > 1.

Note:

It is usually more meaningful to discuss increments in the form of a percentage, since this
gives a better idea of how much a variable has changed in porportion to its original value.

11.6.2 SMALL ERRORS

In the functional relationship

y = f(x),

let us suppose that x is known to be subject to an error in measurement; then we consider
what error will be likely in the calculated value of y.

In particular, suppose x is known to be too large by a small amount, δx, in which case the
correct value of x could be obtained if we decreased it by δx; or, what amounts to the same
thing, if we increased it by −δx.

Correspondingly, the value of y will increase by approximately −dy
dx

δx; that is, y will

decrease by approximately dy
dx

δx.
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Summary

We conclude that, if x is too large by an amount δx, then y is too large by approximately
dy
dx

δx; though, ofcourse, if dy
dx

itself is negative, y will be too small when x is too large and
vice versa.

EXAMPLES

1. If
y = x2 sin x,

calculate, approximately, the error in y when x is measured as 3, but this measurement
is subsequently discovered to be too large by 0.06.

Solution

We have

dy

dx
= x2 cos x + 2x sin x

and, hence,

δy ' (x2 cos x + 2x sin x)δx,

where x = 3 and δx = 0.06.

The error in y is therefore given approximately by

δy ' (32 cos 3 + 6 sin 3)× 0.06 ' −0.4838

That is, y is too small by approximately 0.4838.

2. If
y =

x

1 + x
,

determine approximately, in terms of x, the percentage error in y when x is subject to
an error of 5%.

Solution

We have

dy

dx
=

1 + x− x

(1 + x)2
=

1

(1 + x)2
,

so that
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δy ' 1

(1 + x)2
δx,

where δx = 0.05x.

The percentage error in y is thus given by

δy

y
× 100 ' 1

(1 + x)2
× 0.05x× x + 1

x
× 100 =

5

1 + x
.

Hence, y is too large by approximately 5
1+x

% which will be positive when x > −1 and
negative when x < −1.

11.6.3 EXERCISES

1. If

y =
e2x

x
,

calculate, approximately, the change in y when x is increased from 1 to 1.0025.

State your answer correct to three significant figures.

2. If
y = (2x + 1)5,

determine approximately, in terms of x, the percentage change in y when x increases
by 0.1%.

3. If
y = x3 ln x,

calculate approximately, correct to the nearest integer, the error in y when x is measured
as 4, but this measurement is subsequently discovered to be too small by 0.12.

4. If
y = cos(3x2 + 2),

determine approximately, in terms of x, the percentage error in y if x is too large by
2%.

You may assume that 3x2 + 2 lies between π and 3π
2

.
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11.6.4 ANSWERS TO EXERCISES

1. y increases by approximately 0.0185.

2. y increases by approximately x
(2x+1)

%

3. y is too small by approximately 10.

4. y is too small by approximately −12x2 tan(3x2 + 2).
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UNIT 12.1 - INTEGRATION 1 - ELEMENTARY INDEFINITE INTEGRALS

12.1.1 THE DEFINITION OF AN INTEGRAL

In Differential Calculus, we are given functions of x and asked to obtain their derivatives;
but, in Integral Calculus, we are given functions of x and asked what they are the derivatives
of. The process of answering this question is called “integration”.

In other words integration is the reverse of differentiation.

DEFINITION
Given a function f(x), another function, z, such that

dz

dx
= f(x)

is called an integral of f(x) with respect to x.

Notes:
(i) The above definition refers to an integral of f(x) rather than the integral of f(x). This
is because, having found a possible function, z, such that

dz

dx
= f(x),

z + C is also an integral for any constant value, C.

(ii) We call z + C the “indefinite integral of f(x) with respect to x” and we write

∫
f(x)dx = z + C.

(iii) C is an arbitrary constant called the “constant of integration”.

(iv) The symbol dx does not denote a number; it is to be taken as a label indicating the
variable with respect to which we are integrating. It may seem obvious that this will be x,
but it could happen, for instance, that x is already dependent upon some other variable, t, in
which case it would be vital to indicate the variable with respect to which we are integrating.

(v) In any integration problem, the function being integrated is called the “integrand”.

Result:
Two functions z1 and z2 are both integrals of the same function f(x) if and only if they differ
by a constant.
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Proof:
(a) Suppose, firstly, that

z1 − z2 = C,

where C is a constant.

Then,
d

dx
[z1 − z2] = 0.

That is,
dz1

dx
− dz2

dx
= 0,

or
dz1

dx
=

dz2

dx
.

From our definition, this shows that both z1 and z2 are integrals of the same function.

(b) Secondly, suppose that z1 and z2 are integrals of the same function. Then

dz1

dx
=

dz2

dx
.

That is,
dz1

dx
− dz2

dx
= 0,

or
d

dx
[z1 − z2] = 0.

Hence,
z1 − z2 = C,

where C may be any constant.

ILLUSTRATIONS
Any result so far encountered in differentiation could be re-stated in reverse as a result on
integration as shown in the following illustrations:

1. ∫
3x2dx = x3 + C.

2. ∫
x2dx =

x3

3
+ C.
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3. ∫
xndx =

xn+1

n + 1
+ C Provided n 6= −1.

4. ∫ 1

x
dx i.e.

∫
x−1dx = ln x + C.

5. ∫
exdx = ex + C.

6. ∫
cos xdx = sin x + C.

7. ∫
sin xdx = − cos x + C.

Note:
Basic integrals of the above kinds may simply be quoted from a table of standard integrals
in a suitable formula booklet. More advanced integrals are obtainable using the rules to be
discussed below.

12.1.2 ELEMENTARY TECHNIQUES OF INTEGRATION

(a) Linearity

Suppose f(x) and g(x) are two functions of x while A and B are constants. Then,∫
[Af(x) + Bg(x)]dx = A

∫
f(x)dx + B

∫
g(x)dx.

The proof follows from the fact that differentiation is already linear and hence the derivative
of the right hand side is the integrand of the left hand side. The result itself is easily extended
to linear combinations of three or more functions.

ILLUSTRATIONS

1. ∫
(x2 + 3x− 7)dx =

x3

3
+ 3

x2

2
− 7x + C.

3



2. ∫
(3 cos x + 4sec2x)dx = 3 sin x + 4 tan x + C.

(b) Functions of a Linear Function

(i) Inspection Method
Provided the method of differentiating functions of a linear function has been fully under-
stood, the fastest method of integrating such functions is to examine, by inspection, what
needs to be differentiated in order to arrive at them.

EXAMPLES

1. Determine the indefinite integral ∫
(2x + 3)12dx.

Solution

In order to arrive at the function (2x + 3)12 by a differentiation process, we would have
to begin with a function related to (2x + 3)13.

In fact,
d

dx

[
(2x + 3)13

]
= 13(2x + 3)12.2 = 26(2x + 3)12.

Since this is 26 times the function we are trying to integrate, we may say that∫
(2x + 3)12 =

(2x + 3)13

26
+ C.

2. Determine the indefinite integral ∫
cos(3− 5x)dx.

Solution

In order to arrive at the function cos(3−5x) by a differentiation process, we would have
to begin with a function related to sin(3− 5x).

In fact,
d

dx
[sin(3− 5x)] = cos(3− 5x).− 5 = −5 cos(3− 5x).

Since this is −5 times the function we are trying to integrate, we may say that∫
cos(3− 5x) = −sin(3− 5x)

5
+ C.

4



3. Determine the indefinite integral ∫
e4x+1dx.

Solution

In order to arrive at the function e4x+1 by a differentiation process, we would have to
begin with a function related to e4x+1 itself because the derivative of a power of e always
contains the same power of e.

In fact
d

dx

[
e4x+1

]
= e4x+1.4.

Since this is 4 times the function we are trying to integrate, we may say that∫
e4x+1dx =

e4x+1

4
+ C.

4. Determine the indefinite integral ∫ 1

7x + 3
dx.

Solution

In order to arrive at the function 1
7x+3

by a differentiation process, we would have to
begin with a function related to ln(7x + 3).

In fact,
d

dx
[ln(7x + 3)] =

1

7x + 3
.7 =

7

7x + 3

Since this is 7 times the function we are trying to integrate, we may say that∫ 1

7x + 3
dx =

ln(7x + 3)

7
+ C.

Note:
In each of these examples, we are essentially treating the linear function as if it were a single
x, then dividing the result by the coefficient of x in that linear function.

(ii) Substitution Method
The method to be discussed here will eventually be applied to functions other than functions
of a linear function; but the latter serve as a useful way of introducing the technique of
“Integration by Substitution”.

In the integral of the form
∫

f(ax+b)dx, we may substitute u = ax+b proceeding as follows:

5



Suppose

z =
∫

f(ax + b)dx.

Then,
dz

dx
= f(ax + b).

That is,
dz

dx
= f(u).

But,
dz

du
=

dz

dx
.
dx

du
= f(u).

dx

du
.

Hence,

z =
∫

f(u)
dx

du
du.

Note:
The secret of this integration by substitution formula is that, apart from putting u = ax + b
into f(ax + b), we replace the symbol dx with dx

du
.du; almost as if we had divided dx by du

then immediately multiplied by it again, though, strictly, this would not be allowed since dx
and du are not numbers.

EXAMPLES

1. Determine the indefinite integral

z =
∫

(2x + 3)12dx.

Solution

Putting u = 2x + 3 gives du
dx

= 2 and, hence, dx
du

= 1
2
.

Thus,

z =
∫

u12.
1

2
du =

u13

13
× 1

2
+ C.

That is,

z =
(2x + 3)13

26
+ C,

as before.

6



2. Determine the indefinite integral

z =
∫

cos(3− 5x)dx.

Solution

Putting u = 3− 5x gives du
dx

= −5 and hence dx
du

= −1
5
.

Thus,

z =
∫

cos u.− 1

5
du = −1

5
sin u + C.

That is,

z = −1

5
sin(3− 5x) + C,

as before.

3. Determine the indefinite integral

z =
∫

e4x+1dx.

Solution

Putting u = 4x + 1 gives du
dx

= 4 and, hence, dx
du

= 1
4
.

Thus,

z =
∫

eu.
1

4
du =

eu

4
+ C.

That is,

z =
e4x+1

4
+ C,

as before.

4. Determine the indefinite integral

z =
∫ 1

7x + 3
dx.

Solution

Putting u = 7x + 3 gives du
dx

= 7 and, hence, dx
du

= 1
7

Thus,

z =
∫ 1

u
.
1

7
du =

1

7
ln u + C.

That is,

z =
1

7
ln(7x + 3) + C,

as before.

7



12.1.3 EXERCISES

1. Integrate the following functions with respect to x:

(a)

x5;

(b)

x
3
2 ;

(c)

1

x6
;

(d)

2x2 − x + 5;

(e)

x3 − 7x2 + x + 1.

2. Use a substitution of the form u = ax + b in order to determine the following integrals:

(a) ∫
sin(5x− 6)dx;

(b) ∫
e2x+11dx;

(c) ∫
(3x + 2)6dx.

3. Write down, by inspection, the indefinite integrals with respect to x of the following
functions:

(a)

(1 + 2x)10;

8



(b)

e12x+4;

(c)

1

3x− 1
;

(d)

sin(3− 5x);

(e)

9

(4− x)5
;

(f)

cosec2(7x + 1).

12.1.4 ANSWERS TO EXERCISES

1. (a)

x6

6
+ C;

(b)

2

5
x

5
2 + C;

(c)

− 1

5x5
+ C;

(d)

2

3
x3 − 1

2
x2 + 5x + C;

(e)

1

4
x4 − 7

3
x3 +

1

2
x2 + x + C.

9



2. (a)

−1

5
cos(5x− 6) + C;

(b)

1

2
e2x+11 + C;

(c)

1

21
(3x + 2)7 + C.

3. (a)

1

22
(1 + 2x)11 + C;

(b)

1

12
e12x+4 + C;

(c)

1

3
ln(3x− 1) + C;

(d)

1

5
cos(3− 5x) + C;

(e)

9

4(4− x)4
+ C;

(f)

−1

7
cot(7x + 1) + C.

10



APPENDIX - A Table of Standard Integrals

f(x)
∫

f(x) dx

a (const.) ax
xn xn+1/(n + 1) n 6= −1
1/x ln x

sin ax −(1/a) cos ax
cos ax (1/a) sin ax
sec2ax (1/a) tan ax

cosec2 ax −(1/a) cot ax
sec ax. tan ax (1/a)secax

cosec ax. cot ax −(1/a)cosecax
eax (1/a)eax

ax ax/ ln a
sinh ax (1/a) cosh ax
cosh ax (1/a) sinh ax
sech2 ax (1/a) tanh ax

sech ax. tanh ax −(1/a)sechax
cosech ax. coth ax −(1/a)cosechax

cot ax (1/a) ln(sin ax)
tan ax −(1/a) ln(cos ax)
tanh ax (1/a) ln(cosh ax)
coth ax (1/a) ln(sinh ax)

1/
√

(a2 − x2) sin−1(x/a)
1/(a2 + x2) (1/a)tan−1(x/a)

1/
√

(x2 + a2) sinh−1(x/a)

or ln(x +
√

x2 + a2)
1/
√

(x2 − a2) cosh−1(x/a)
or ln(x +

√
x2 − a2)

1/(a2 − x2) (1/a)tanh−1(x/a)

or 1
2a

ln
(

a+x
a−x

)
when |x| < a,

1
2a

ln
(

x+a
x−a

)
when |x| > a.

11
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UNIT 12.2 - INTEGRATION 2
INTRODUCTION TO DEFINITE INTEGRALS

12.2.1 DEFINITION AND EXAMPLES

So far, all the integrals considered have been “indefinite integrals” since each result has
contained an arbitrary constant which cannot be assigned a value without further informa-
tion.

In practical applications of integration, however, a different kind of integral, called a “defi-
nite integral”, is encountered and is represented by a numerical value rather than a function
plus an arbitrary constant.

Suppose that ∫
f(x)dx = g(x) + C.

Then the symbol ∫ b

a
f(x)dx

is used to mean

(Value of g(x) + C at x = b) minus (Value of g(x) + C at x = a).

In other words, since C will cancel out,∫ b

a
f(x)dx = g(b)− g(a).

The right hand side of this statement can also be written

[g(x)]ba ,

a notation which is used as the middle stage of a definite integral calculation.

The values a and b are known as the “lower limit” and “upper limit”, respectively, of
the definite integral (even when a is larger than b).

EXAMPLES

1. Evaluate the definite integral ∫ π
2

0
cos xdx.

1



Solution ∫ π
2

0
cos xdx = [sin x]

π
2
0 = sin

π

2
− sin 0 = 1.

2. Evaluate the definite integral ∫ 3

1
(2x + 1)2dx.

Solution

Using the method of integrating a function of a linear function, we obtain

∫ 3

1
(2x + 1)2dx =

[
(2x + 1)3

6

]3

1

=
73

6
− 33

6
' 52.67

Notes:
(i) If we had decided to multiply out the integrand (2x + 1)2 before integrating, giving

4x2 + 4x + 1,

the integration process would have yielded the expression

4
x3

3
+ 2x2 + x,

which differs only from the previous result by the constant value 1
6
; students may like to

check this. Hence the numerical result for the definite integral will be the same.

(ii) An alternative method of evaluating the definite integral would be to make the substi-
tution

u = 2x + 1.

But, whenever substitution is used for definite integrals, it is not necessary to return to the
original variable at the end as long as the limits of integration are changed to the appropriate
values for u.

Replacing dx by dx
du

du (that is, 1
2
du) and the limits x = 1 and x = 3 by u = 2 × 1 + 1 = 3

and u = 2× 3 + 1 = 7, respectively, we obtain

∫ 7

3
u2 1

2
du =

[
u3

6

]7

3

=
73

6
− 33

6
' 52.67

2



12.2.2 EXERCISES

Evaluate the following definite integrals:

1. ∫ π
3

0
sin 4xdx.

2. ∫ 1

−1
(x + 1)7dx.

3. ∫ π
4

0
sec2(x + π) dx.

4. ∫ 2

1

1

4 + 3x
dx.

5. ∫ 1

0
e1−7x dx.

12.2.3 ANSWERS TO EXERCISES

1.

0.375

2.

32.

3.

1.

4.

1

3
ln

10

7
or 0.119 approximately

5.

0.388 approximately

3
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UNIT 12.3 - INTEGRATION 3
THE METHOD OF COMPLETING THE SQUARE

12.3.1 INTRODUCTION AND EXAMPLES

A substitution such as u = αx + β may also be used with integrals of the form∫ 1

px2 + qx + r
dx and

∫ 1√
px2 + qx + r

dx,

where, in the first of these, we assume that the quadratic will not factorise into simple linear
factors; otherwise the method of partial fractions would be used to integrate it (see Unit
12.6).

Note:
The two types of integral here are often written, for convenience, as

∫ dx

px2 + qx + r
and

∫ dx√
px2 + qx + r

.

In order to deal with such functions, we shall need to quote standard results which may
be deduced from previous ones developed in the differentiation of inverse trigonometric and
hyperbolic functions.

They are as follows:

1. ∫ 1

a2 + x2
dx =

1

a
tan−1x

a
+ C.

2. ∫ 1√
a2 − x2

dx = sin−1x

a
+ C.

3. ∫ 1√
a2 + x2

dx = sinh−1x

a
+ C or ln(x +

√
x2 + a2) + C.

4. ∫ 1√
x2 − a2

dx = cosh−1x

a
+ C or ln(x +

√
x2 − a2) + C.

1



5. ∫ 1

a2 − x2
dx =

1

a
tanh−1x

a
+ C;

or

1

2a
ln

(
a + x

a− x

)
+ C when |x| < a,

and

1

2a
ln

(
x + a

x− a

)
+ C when |x| > a.

EXAMPLES

1. Determine the indefinite integral

z =
∫ dx√

x2 + 2x− 3
.

Solution

Completing the square in the quadratic expression gives

x2 + 2x− 3 ≡ (x + 1)2 − 4 ≡ (x + 1)2 − 22.

Hence,

z =
∫ dx√

(x + 1)2 − 22
.

Putting u = x + 1 gives du
dx

= 1; and so dx
du

= 1.

Thus,

z =
∫ du√

u2 − 22
,

giving

z = ln
[
u +

√
u2 − 22

]
+ C.

Returning to the variable, x, we have

z = ln
[
x + 1 +

√
x2 + 2x− 3

]
+ C.

2. Evaluate the definite integral

z =
∫ 7

3

dx

x2 − 6x + 25
.

2



Solution

Completing the square in the quadratic expression gives

x2 − 6x + 25 ≡ (x− 3)2 + 16.

Hence,

z =
∫ 7

3

dx

(x− 3)2 + 16
.

Putting u = x− 3, we obtain du
dx

= 1; and so dx
du

= 1.

Thus,

z =
∫ 4

0

du

u2 + 16
,

giving

z =
[
1

4
tan−1u

4

]4

0
=

π

16
.

Alternatively, without changing the original limits of integration,

z =
[
1

4
tan−1x− 3

4

]7

3
.

Note:
In cases like the two examples discussed above, when du

dx
= 1 and therefore dx

du
= 1, it seems

pointless to go through the laborious process of actually making the substitution in detail.
All we need to do is to treat the linear expression within the completed square as if it were
a single x, then write the result straight down !

12.3.2 EXERCISES

1. Use a table of standard integrals to write down the indefinite integrals of the following
functions:

(a)

1√
4− x2

;

(b)

1

9 + x2
;

3



(c)

1√
x2 − 7

.

2. By completing the square, evaluate the following definite integrals:

(a) ∫ √
3−1

−1

dx

x2 + 2x + 2
;

(b) ∫ 1

0

dx√
3− 2x− x2

.

12.3.3 ANSWERS TO EXERCISES

1. (a)

sin−1x

2
+ C;

(b)

1

3
tan−1x

3
+ C;

(c)

ln(x +
√

x2 − 7) + C.

2. (a) [
tan−1(x + 1)

]√3−1

−1
=

π

3
;

(b) [
sin−1x + 1

2

]1

0
=

π

2
− π

6
=

π

3
.

4
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UNIT 12.4 - INTEGRATION 4
INTEGRATION BY SUBSTITUTION IN GENERAL

12.4.1 EXAMPLES USING THE STANDARD FORMULA

With any integral ∫
f(x)dx,

it may be convenient to make some kind of substitution relating the variable, x, to a new
variable, u. In such cases, we may use the formula discussed in Unit 12.1, namely∫

f(x)dx =
∫

f(x)
dx

du
du,

where it is assumed that, on the right hand side, the integrand has been expressed wholly
in terms of u.

For this Unit, substitutions other than linear ones will be given in the problems to be solved.

EXAMPLES

1. Use the substitution x = a sin u to show that∫ dx√
a2 − x2

= sin−1x

a
+ C.

Solution

To be precise, we shall assume for simplicity that u is the acute angle for which x =
a sin u. In effect, we shall be making the substitution u = sin−1 x

a
using the principal

value of the inverse function; we can certainly do this because the expression
√

a2 − x2

requires that −a < x < a.

If x = a sin u, then dx
du

= a cos u, so that the integral becomes∫ a cos u√
a2 − a2sin2u

du.

But, from trigonometric identities,√
a2 − a2sin2u ≡ a cos u,

both sides being positive when u is an acute angle.

We are thus left with ∫
1du = u + C = sin−1x

a
+ C.

1



2. Use the substitution u = 1
x

to determine the indefinite integral

z =
∫ dx

x
√

1 + x2
.

Solution

Converting the substitution to the form

x =
1

u
,

we have
dx

du
= − 1

u2
.

Hence,

z =
∫ 1

1
u

√
1 + 1

u2

.− 1

u2
du

That is,

z =
∫
− 1√

u2 + 1
= − ln(u +

√
u2 + 1) + C.

Returning to the original variable, x, we have

z = − ln

1

x
+

√
1

x2
+ 1

 + C.

Note:
This example is somewhat harder than would be expected under examination condi-
tions.

12.4.2 INTEGRALS INVOLVING A FUNCTION AND ITS DERIVATIVE

The method of integration by substitution provides two useful results applicable to a wide
range of problems. They are as follows:

(a) ∫
[f(x)]nf ′(x)dx =

[f(x)]n+1

n + 1
+ C

provided n 6= −1.

(b) ∫ f ′(x)

f(x)
dx = ln f(x) + C.

2



These two results are readily established by means of the substitution

u = f(x).

In both cases du
dx

= f ′(x) and hence dx
du

= 1
f ′(x)

. This converts the integrals, respectively, into

(a) ∫
undu =

un+1

n + 1
+ C

and (b) ∫ 1

u
du = ln u + C.

EXAMPLES

1. Evaluate the definite integral ∫ π
3

0
sin3x. cos x dx.

Solution

In this example we can consider sin x to be f(x) and cos x to be f ′(x).

Thus, by quoting result (a), we obtain

∫ π
3

0
sin3x. cos xdx =

[
sin4x

4

]π
3

0

=
9

64
,

using sin π
3

=
√

3
2

.

2. Integrate the function
2x + 1

x2 + x− 11

with respect to x.

Solution

Here, we can identify x2 + x− 11 with f(x) and 2x + 1 with f ′(x).

Thus, by quoting result (b), we obtain∫ 2x + 1

x2 + x− 11
dx = ln(x2 + x− 11) + C.

3



12.4.3 EXERCISES

1. Use the substitution u = x + 3 in order to determine the indefinite integral∫
x
√

3 + x dx.

2. Use the substitution u = x2 − 1 in order to evaluate the definite integral∫ 5

1
x
√

x2 − 1 dx.

3. Integrate the following functions with respect to x:

(a)

sin7x. cos x;

(b)

cos5x. sin x;

(c)

4x− 3

2x2 − 3x + 13
;

(d)

cot x.

12.4.4 ANSWERS TO EXERCISES

1.

2

5
(x + 3)

5
2 − 2(x + 3)

3
2 + C.

2. [
1

3
(x2 − 1)

3
2

]5

1
=

1

3
24

3
2 ' 39.192

4



3. (a)

sin8x

8
+ C;

(b)

−cos6x

6
+ C;

(c)

ln(2x2 − 3x + 13) + C;

(d)

ln sin x + C.

5
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UNIT 12.5 - INTEGRATION 5

INTEGRATION BY PARTS

12.5.1 THE STANDARD FORMULA

The technique to be discussed here provides a convenient method for integrating the product
of two functions. However, it is possible to develop a suitable formula by considering, instead,
the derivative of the product of two functions.

We consider, first, the following comparison:

d
dx

[x sin x] = x cos x + sin x d
dx

[uv] = udv
dx

+ v du
dx

x cos x = d
dx

[x sin x]− sin x udv
dx

= d
dx

[uv]− v du
dx∫

x cos x dx = x sin x−
∫

sin x dx
∫

udv
dx

dx = uv −
∫

v du
dx

dx

= x sin x + cos x + C

We see that, by labelling the product of two given functions as udv
dx

, we may express the
integral of this product in terms of another integral which, it is anticipated, will be simpler
than the original.

To summarise, the formula for “integration by parts” is

∫
u

dv

dx
dx = uv −

∫
v
du

dx
dx.

EXAMPLES

1. Determine

I =
∫

x2e3x dx.

Solution

In theory, it does not matter which element of the product x2e3x is labelled as u and
which is labelled as dv

dx
; but the integral obtained on the right-hand-side of the integration

by parts formula must be simpler than the original.

In this case we shall take

u = x2 and
dv

dx
= e3x.

1



Hence,

I = x2 e3x

3
−

∫ e3x

3
.2x dx.

That is,

I =
1

3
x2e3x − 2

3

∫
xe3x dx.

The integral on the right-hand-side still contains the product of two functions and so
we must use integration by parts a second time, setting

u = x and
dv

dx
= e3x.

Thus,

I =
1

3
x2e3x − 2

3

[
x
e3x

3
−

∫ e3x

3
.1 dx

]
.

The integration may now be completed to obtain

I =
1

3
x2e3x − 2

9
xe3x +

2

27
e3x + C,

or

I =
e3x

27

[
9x2 − 6x + 2

]
+ C.

2. Determine

I =
∫

x ln x dx.

Solution

In this case, we cannot effectively choose dv
dx

= ln x since we would need to know the
integral of ln x in order to find v. Hence, we choose

u = ln x and
dv

dx
= x,

obtaining

2



I = (ln x)
x2

2
−

∫ x2

2
.
1

x
dx.

That is,

I =
1

2
x2 ln x−

∫ x

2
dx,

giving

I =
1

2
x2 ln x− x2

4
+ C.

3. Determine

I =
∫

ln x dx.

Solution

It is possible to regard this as an integration by parts problem if we set

u = ln x and
dv

dx
= 1.

We obtain

I = x ln x−
∫

x.
1

x
dx,

giving

I = x ln x− x + C.

4. Evaluate

I =
∫ 1

0
sin−1x dx.

Solution

In a similar way to the previous example, it is possible to regard this as an integration
by parts problem if we set

u = sin−1x and
dv

dx
= 1.

3



We obtain

I = [xsin−1x]10 −
∫ 1

0
x.

1√
1− x2

dx.

That is,

I = [xsin−1x +
√

1− x2]10 =
π

2
− 1.

5. Determine

I =
∫

e2x cos x dx.

Solution

In this example, it makes little difference whether we choose e2x or cos x to be u; but
we shall set

u = e2x and
dv

dx
= cos x.

Hence,

I = e2x sin x−
∫

(sin x).2e2x dx.

That is,

I = e2x sin x− 2
∫

e2x sin x dx.

Now we need to integrate by parts again, setting

u = e2x and
dv

dx
= sin x.

Therefore,

I = e2x sin x− 2
[
−e2x cos x−

∫
(− cos x).2e2x dx

]
.

In other words, the original integral has appeared again on the right hand side to give

I = e2x sin x− 2
[
−e2x cos x + 2I

]
.

4



On simplification,

5I = e2x sin x + 2e2x cos x,

so that

I =
1

5
e2x[sin x + 2 cos x] + C.

Note:

The above examples suggest a priority order for choosing u in a typical integration by parts
problem. For example, if the product to be integrated contains a logarithm or an inverse
function, then we must choose the logarithm or the inverse function as u; but if there are
powers of x without logarithms or inverse functions, then we choose the power of x to be u.

The order of priorities is as follows:

1. LOGARITHMS or INVERSE FUNCTIONS;

2. POWERS OF x;

3. POWERS OF e.

12.5.2 EXERCISES

1. Use integration by parts to evaluate the definite integral∫ 1

0
x3e2x dx.

2. Use integration by parts to integrate the following functions with respect to x:

(a)

x2 cos 2x;

(b)

x5 ln x;

(c)

tan−1x;

5



(d)

xtan−1x.

3. Use integration by parts to evaluate the definite integral∫ π

0
e−2x sin 3x dx.

12.5.3 ANSWERS TO EXERCISES

1. [
e2x

8
(4x3 − 6x2 + 6x− 3)

]1

0

=
1

8

(
e2 + 3

)
' 1.299

2. (a)

1

4
[2x2 sin 2x + 2x cos 2x− sin 2x] + C;

(b)

x6

36
[6 ln x− 1] + C;

(c)

xtan−1x− 1

2
ln(1 + x2) + C;

(d)

1

2
[x2tan−1x− x + tan−1x] + C.

3. [
e−2x

13
(3 cos 3x− 2 sin 3x)

]π

0

= − 3

13
(e−2π + 1) ' −0.231

6
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UNIT 12.6 - INTEGRATION 6
INTEGRATION BY PARTIAL FRACTIONS

12.6.1 INTRODUCTION AND ILLUSTRATIONS

If the ratio of two polynomials, whose denominator has been factorised, is expressed as a sum
of partial fractions, each partial fraction will be of a type whose integral can be determined
by the methods of preceeding sections of this chapter.

The following summary of results will cover most elementary problems involving partial
fractions:

RESULTS

1. ∫ 1

ax + b
dx =

1

a
ln(ax + b) + C.

2. ∫ 1

(ax + b)n
dx =

1

a
.
(ax + b)−n+1

−n + 1
+ C provided n 6= 1.

3. ∫ 1

a2 + x2
dx =

1

a
tan−1x

a
+ C.

4. ∫ 1

a2 − x2
dx =

1

a
tanh−1x

a
+ C,

or
1

2a
ln

(
a + x

a− x

)
+ C when |x| < a,

and

1

2a
ln

(
x + a

x− a

)
+ C when |x| > a.

5. ∫ 2ax + b

ax2 + bx + c
dx = ln(ax2 + bx + c) + C.

1



ILLUSTRATIONS

We use some of the results of examples on partial fractions in Unit 1.8

1. ∫ 7x + 8

(2x + 3)(x− 1)
dx =

∫ [
1

2x + 3
+

3

x− 1

]
dx

=
1

2
ln(2x + 3) + 3 ln(x− 1) + C.

2. ∫ 8

6

3x2 + 9

(x− 5)(x2 + 2x + 7)
dx =

∫ 8

6

[
2

x− 5
+

x + 1

x2 + 2x + 7

]
dx

=
[
2 ln(x− 5) +

1

2
ln(x2 + 2x + 7)

]8

6
' 2.427

3. ∫ 9

(x + 1)2(x− 2)
=

∫ [
−1

x + 1
− 3

(x + 1)2
+

1

x− 2

]
dx

= − ln(x + 1) +
3

x + 1
+ ln(x− 2) + C.

4. ∫ 4x2 + x + 6

(x− 4)(x2 + 4x + 5)
dx =

∫ [
2

x− 4
+

2x + 1

x2 + 4x + 5

]
dx

= 2 ln(x− 4) + ln(x2 + 4x + 5)− 3tan−1(x + 2) + C.

Note:
In the last example above, the second partial fraction has a numerator of 2x + 1 which is
not the derivative of x2 + 4x + 5. But we simply rearrange the numerator as (2x + 4) − 3
to give a third integral which requires the technique of completing the square (discussed in
Unit 12.3).

2



12.6.2 EXERCISES

Integrate the following functions with respect to x:

1. (a)

3x + 5

(x + 1)(x + 2)
;

(b)

17x + 11

(x + 1)(x− 2)(x + 3)
;

(c)

3x2 − 8

(x− 1)(x2 + x− 7)
.

(d)

2x + 1

(x + 2)2(x− 3)
;

(e)

9 + 11x− x2

(x + 1)2(x + 2)
;

(f)

x5

(x + 2)(x− 4)
.

2. Evaluate the following definite integrals

(a) ∫ 5

2

7x2 + 11x + 47

(x− 1)(x2 + 2x + 10)
dx;

(b) ∫ 3

1

4x2 + 1

x(2x− 1)2
dx.

3



12.6.3 ANSWERS TO EXERCISES

1. (a)

2 ln(x + 1) + ln(x + 2) + C;

(b)

ln(x + 1) + 3 ln(x− 2)− 4 ln(x + 3) + C;

(c)

ln(x− 1) + ln(x2 + x− 7) + C;

(d)

− 3

5(x + 2)
− 7

25
ln(x + 2) +

7

25
ln(x− 3) + C;

(e)

− 3

(x + 1)2
+

16

x + 1
− 17

x + 2

3

x + 1
+ 16 ln(x + 1)− 17 ln(x + 2) + C;

(f)

x4

4
+

2x3

3
+ 6x2 + 40x +

16

3
ln(x + 2) +

512

3
ln(x− 4) + C.

2. (a) [
5 ln(x− 1) + ln(x2 + 2x + 10) +

1

3
tan−1x + 1

3

]5

2
' −2.726;

(b) [
ln x− 2

2x− 1

]3

1
' 2.699

4
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UNIT 12.7 - INTEGRATION 7 - FURTHER TRIGONOMETRIC FUNCTIONS

12.7.1 PRODUCTS OF SINES AND COSINES

In order to integrate the product of a sine and a cosine, or two cosines, or two sines, we may
use one of the following trigonometric identities:

sinAcosB ≡ 1

2
[sin(A + B) + sin(A− B)] ;

cosAsinB ≡ 1

2
[sin(A + B)− sin(A− B)] ;

cosAcosB ≡ 1

2
[cos(A + B) + cos(A− B)] ;

sinAsinB ≡ 1

2
[cos(A− B)− cos(A + B)] .

EXAMPLES

1. Determine the indefinite integral ∫
sin 2x cos 5x dx.

Solution ∫
sin 2x cos 5x dx =

1

2

∫
[sin 7x− sin 3x] dx

= −cos 7x

14
+

cos 3x

6
+ C.

2. Determine the indefinite integral ∫
sin 3x sin x dx.

Solution ∫
sin 3x sin x dx =

1

2

∫
[cos 2x− cos 4x] dx

=
sin 2x

4
− sin 4x

8
+ C.

1



12.7.2 POWERS OF SINES AND COSINES

In this section, we consider the two integrals,

∫
sinnx dx and

∫
cosn dx,

where n is a positive integer.

(a) The Complex Number Method

A single method which will cover both of the above integrals requires us to use the methods
of Unit 6.5 in order to express cosnx and sinnx as a sum of whole multiples of sines or cosines
of whole multiples of x.

EXAMPLE

Determine the indefinite integral ∫
sin4x dx.

Solution

By the complex number method,

sin4x ≡ 1

8
[cos 4x− 4 cos 2x + 3].

The Working:

j424sin4x ≡
(
z − 1

z

)4

,

where z ≡ cos x + j sin x.

That is,

16sin4x ≡ z4 − 4z3.
1

z
+ 6z2.

(
1

z

)2

− 4z.
(

1

z

)3

+
(

1

z

)4

;

or, after cancelling common factors,

2



16sin4x ≡ z4 − 4z2 + 6− 4

z2
+

1

z4
≡ z4 +

1

z4
− 4

(
z2 +

1

z2

)
+ 6,

which gives

16sin4x ≡ 2 cos 4x− 8 cos 2x + 6,

or

sin4x ≡ 1

8
[cos 4x− 4 cos 2x + 3].

Hence,

∫
sin4x dx =

1

8

[
sin 4x

4
− 4

sin 2x

2
+ 3x

]
+ C

=
1

32
[sin 4x− 8 sin 2x + 12x] + C.

(b) Odd Powers of Sines and Cosines

The following method uses the facts that

d

dx
[sin x] = cos x and

d

dx
[cos x] = sin x.

We illustrate with examples in which use is made of the trigonometric identity

cos2A + sin2A ≡ 1.

EXAMPLES

1. Determine the indefinite integral ∫
sin3x dx.

3



Solution ∫
sin3x dx =

∫
sin2x. sin x dx.

That is, ∫
sin3xdx =

∫ (
1− cos2x

)
sin x dx

=
∫ (

sin x− cos2x. sin x
)

dx

= − cos x +
cos3x

3
+ C.

2. Determine the indefinite integral ∫
cos7x dx.

Solution ∫
cos7x dx =

∫
cos6x. cos x dx.

That is, ∫
cos7x dx =

∫ (
1− sin2x

)3
. cos x dx

=
∫ (

1− 3sin2x + 3sin4x− sin6x
)
. cos x dx

= sin x− sin3x + 3.
sin5x

5
− sin7x

7
+ C.

(c) Even Powers of Sines and Cosines

The method illustrated here becomes tedious if the even power is higher than 4. In such
cases, it is best to use the complex number method in paragraph (a) above.

In the examples which follow, we shall need the trigonometric identity

cos 2A ≡ 1− 2sin2A ≡ 2cos2A− 1.

4



EXAMPLES

1. Determine the indefinite integral ∫
sin2x dx.

Solution ∫
sin2x dx =

∫ 1

2
(1− cos 2x) dx =

x

2
− sin 2x

4
+ C.

2. Evaluate the definite integral ∫ π
2

0
cos2x dx.

Solution ∫ π
2

0
cos2x dx =

∫ π
2

0

1

2
(1 + cos 2x) dx

=
[
x

2
+

sin 2x

4

]π
2

0
=

π

4
.

3. Determine the indefinite integral ∫
cos4x dx.

Solution ∫
cos4x dx =

∫ [
cos2x

]2
dx =

∫ [
1

2
(1 + cos 2x)

]2

dx.

That is, ∫
cos4x dx =

∫ 1

4

(
1 + 2 cos 2x + cos22x

)
dx

=
∫ 1

4

(
1 + 2 cos 2x +

1

2
[1 + cos 4x]

)
dx

=
x

4
+

sin 2x

4
+

x

8
+

sin 4x

32
+ C

=
3x

8
+

sin 2x

4
+

sin 4x

32
+ C.

5



12.7.3 EXERCISES

1. Determine the indefinite integral ∫
cos x cos 3x dx.

2. Evaluate the definite integral

∫ π
3

0
cos 4x sin 2x dx.

3. Determine the following indefinite integrals:

(a) ∫
sin5x dx;

(b) ∫
cos3x dx.

4. Evaluate the following definite integrals:

(a) ∫ π
8

0
sin4x dx;

(b) ∫ π
2

0
cos6x dx.

12.7.4 ANSWERS TO EXERCISES

1.

sin 4x

8
+

sin 2x

4
+ C.

2.

−
√

3

4
' −0.433

6



3. (a)

−cos5x

5
+ 2

cos3x

3
− cos x + C,

or

1

16

[
−cos 5x

5
+

5 cos 3x

3
− 10 cos x

]
+ C by complex numbers;

(b)

sin x− sin3 x

3
+ C,

or

1

4

[
sin 3x

3
− 3 sin x

]
+ C by complex numbers.

4. (a)

1.735× 10−3 approx;

(b)

−1.

7
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UNIT 12.8 - INTEGRATION 8

THE TANGENT SUBSTITUTIONS

There are two types of integral, involving sines and cosines, which require a special substi-
tution using a tangent function. They are described as follows:

12.8.1 THE SUBSTITUTION t = tan x

This substitution is used for integrals of the form

∫ 1

a + bsin2x + ccos2x
dx,

where a, b and c are constants; though, in most exercises, at least one of these three constants
will be zero.

A simple right-angled triangle will show that, if t = tan x, then

sin x ≡ t√
1 + t2

and cos x ≡ 1√
1 + t2

.

��
���

���
����

x

√
1 + t2

1

t

Furthermore,

dt

dx
≡ sec2x ≡ 1 + t2 so that

dx

dt
≡ 1

1 + t2
.

EXAMPLES

1. Determine the indefinite integral

∫ 1

4− 3sin2x
dx.

1



Solution ∫ 1

4− 3sin2x
dx

=
∫ 1

4− 3t2

1+t2

.
1

1 + t2
dt

=
∫ 1

4 + t2
dt

=
1

2
tan−1 t

2
+ C =

1

2
tan−1

[
tan x

2

]
+ C.

2. Determine the indefinite integral∫ 1

sin2x + 9cos2x
dx.

Solution ∫ 1

sin2x + 9cos2x
dx

=
∫ 1

t2

1+t2
+ 9

1+t2

.
1

1 + t2
dt

=
∫ 1

t2 + 9
dt

=
1

3
tan−1 t

3
+ C =

1

3
tan−1

[
tan x

3

]
+ C.

12.8.2 THE SUBSTITUTION t = tan(x/2)

This substitution is used for integrals of the form

∫ 1

a + b sin x + c cos x
dx,

2



where a, b and c are constants; though, in most exercises, one or more of these constants
will be zero.

In order to make the substitution, we make the following observations:

(i)

sin x ≡ 2 sin(x/2). cos(x/2) ≡ 2 tan(x/2).cos2(x/2) ≡ 2 tan(x/2)

sec2(x/2)
≡ 2 tan(x/2)

1 + tan2(x/2)
.

Hence,

sin x ≡ 2t

1 + t2
.

(ii)

cos x ≡ cos2(x/2)−sin2(x/2) ≡ cos2(x/2)
[
1− tan2(x/2)

]
≡ 1− tan2(x/2)

sec2(x/2)
≡ 1− tan2(x/2)

1 + tan2(x/2)
.

Hence,

cos x ≡ 1− t2

1 + t2
.

(iii)
dt

dx
≡ 1

2
sec2(x/2) ≡ 1

2

[
1 + tan2(x/2)

]
≡ 1

2
[1 + t2].

Hence,

dx

dt
≡ 2

1 + t2
.

EXAMPLES

1. Determine the indefinite integral ∫ 1

1 + sin x
dx

3



Solution ∫ 1

1 + sin x
dx

=
∫ 1

1 + 2t
1+t2

.
2

1 + t2
dt

=
∫ 2

1 + t2 + 2t
dt

=
∫ 2

(1 + t)2
dt

= − 2

1 + t
+ C = − 2

1 + tan(x/2)
+ C.

2. Determine the indefinite integral∫ 1

4 cos x− 3 sin x
dx.

Solution ∫ 1

4 cos x− 3 sin x
dx

=
∫ 1

41−t2

1+t2
− 6t

1+t2

.
2

1 + t2
dt

=
∫ 2

4− 4t2 − 6t
dt =

∫
− 1

2t2 + 3t− 2
dt

=
∫
− 1

(2t− 1)(t + 2)
dt

=
∫ 1

5

[
1

t + 2
− 2

2t− 1

]
dt

=
1

5
[ln(t + 2)− ln(2t− 1)] + C =

1

5
ln

[
tan(x/2) + 2

2 tan(x/2)− 1

]
+ C.

4



12.8.3 EXERCISES

1. Determine the indefinite integral ∫ 1

4 + 12cos2x
dx.

2. Evaluate the definite integral

∫ π
4

0

1

5cos2x + 3sin2x
dx.

3. Determine the indefinite integral ∫ 1

5 + 3 cos x
dx.

4. Evaluate the definite integral

∫ 3.1

3

1

12 sin x + 5 cos x
dx.

12.8.4 ANSWERS TO EXERCISES

1.

1

4
tan−1

[
tan x

2

]
+ C.

2.  1√
15

tan−1

√
3

5
tan x

π
4

0

' 0.1702

3.

1

2
tan−1

[
tan(x/2)

2

]
+ C.

4. [
1

13
[5 ln(5 tan(x/2) + 1)− ln(tan(x/2)− 5)

]3.1

3
' 0.348

5
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UNIT 12.9 - INTEGRATION 9

REDUCTION FORMULAE

INTRODUCTION

For certain integrals, both definite and indefinite, the function being integrated (that is, the
“integrand”) consists of a product of two functions, one of which involves an unspecified inte-
ger, say n. Using the method of integration by parts, it is sometimes possible to express such
an integral in terms of a similar integral where n has been replaced by (n− 1), or sometimes
(n− 2). The relationship between the two integrals is called a “reduction formula” and,
by repeated application of this formula, the original integral may be determined in terms of
n.

12.9.1 INDEFINITE INTEGRALS

The method will be illustrated by examples.

EXAMPLES

1. Obtain a reduction formula for the indefinite integral

In =
∫

xnex dx

and, hence, determine I3.

Solution

Using integration by parts with u = xn and dv
dx

= ex, we obtain

In = xnex −
∫

ex.nxn−1 dx.

That is,

In = xnex − nIn−1.

Substituting n = 3,

I3 = x3ex − 3I2,

where

I2 = x2ex − 2I1

1



and

I1 = xex − I0.

But

I0 =
∫

ex dx = ex + constant,

which leads us to the conclusion that

I3 = x3ex − 3
[
x2ex − 2 (xex − ex)

]
+ constant.

In other words,

I3 = ex
[
x3 − 3x2 + 6x− 6

]
+ C,

where C is an arbitrary constant.

2. Obtain a reduction formula for the indefinite integral

In =
∫

xn cos x dx

and, hence, determine I2 and I3.

Solution

Using integration by parts with u = xn and dv
dx

= cos x, we obtain

In = xn sin x−
∫

sin x.nxn−1 dx = xn sin x− n
∫

xn−1 sin x dx.

Using integration by parts in this last integral, with u = xn−1 and dv
dx

= sin x, we obtain

In = xn sin x− n
{
−xn−1 cos x +

∫
cos x.(n− 1)xn−2 dx

}
.

That is,

In = xn sin x + nxn−1 cos x− n(n− 1)In−2.

Substituting n = 2,

I2 = x2 sin x + 2x cos x− 2I0,

2



where

I0 =
∫

cos x dx = sin x + constant.

Hence,

I2 = x2 sin x + 2x cos x− 2 sin x + C,

where C is an arbitrary constant.

Also, substituting n = 3,

I3 = x3 sin x− 3x2 cos x− 3.2.I1,

where

I1 =
∫

x cos x dx = x sin x + cos x + constant.

Therefore,

I3 = x3 sin x− 3x2 cos x− 6x sin x− 6 cos x + D,

where D is an arbitrary constant.

12.9.2 DEFINITE INTEGRALS

Integrals of the type encountered in the previous section may also include upper and lower
limits of integration. The process of finding a reduction formula is virtually the same, except
that the limits of integration are inserted where appropriate. Again, the method is illustrated
by examples.

EXAMPLES

1. Obtain a reduction formula for the definite integral

In =
∫ 1

0
xnex dx

and, hence, determine I3.

3



Solution

From the first example in section 12.9.1,

In = [xnex]10 − nIn−1 = e− nIn−1.

Substituting n = 3,

I3 = e− 3I2,

where

I2 = e− 2I1

and

I1 = e− I0.

But

I0 =
∫ 1

0
ex dx = e− 1,

which leads us to the conclusion that

I3 = e− 3e + 6e− 6e + 6 = 6− 2e.

2. Obtain a reduction formula for the definite integral

In =
∫ π

0
xn cos x dx

and, hence, determine I2 and I3.

Solution

From the second example in section 12.9.1,

In =
[
xn sin x + nxn−1 cos x

]π

0
− n(n− 1)In−2 = −nπn−1 − n(n− 1)In−2.

Substituting n = 2,

I2 = −2π − 2I0,

where

I0 =
∫ π

0
cos x dx = [sin x]π0 = 0.

4



Hence,

I2 = −2π.

Also, substituting n = 3,

I3 = −3π2 − 3.2.I1,

where

I1 =
∫ π

0
x cos x dx = [x sin x + cos x]π0 = −2.

Therefore,

I3 = −3π2 + 12.

12.9.3 EXERCISES

1. Obtain a reduction formula for

In =
∫

xne2x dx

when n ≥ 1 and, hence, determine I3.

2. Obtain a reduction formula for

In =
∫ 1

0
xne2xdx

when n ≥ 1 and, hence, evaluate I4.

3. Obtain a reduction formula for

In =
∫

xn sin x dx

when n ≥ 1 and, hence, determine I4.

4. Obtain a reduction formula for

In =
∫ π

0
xn sin x dx

when n ≥ 1 and, hence, evaluate I3.

5



5. If

In =
∫

(ln x)n dx,

where n ≥ 1, show that

In = x(ln x)n − nIn−1

and, hence, determine I3.

6. If

In =
∫ (

x2 + a2
)n

dx,

show that

In =
1

2n + 1

[
x

(
x2 + a2

)n
+ 2na2In−1

]
.

Hint: Write (x2 + a2)
n

as 1.(x2 + a2)
n
.

12.9.4 ANSWERS TO EXERCISES

1.

In =
1

2

[
xne2x − nIn−1

]
,

giving

I3 =
e2x

8

[
4x3 − 6x2 + 6x− 3

]
+ C.

2.

In =
1

2

[
e2 − nIn−1

]
,

giving

I4 =
1

4

[
e2 − 3

]
.

6



3.

In = −xn cos x + nxn−1 sin x− n(n− 1)In−2,

giving

I4 = −x4 cos x + 4x3 sin x + 12x2 cos x− 24x sin x− 24 cos x + C.

4.

In = πn − n(n− 1)In−2,

giving

I3 = π3 − 6π.

5.

I3 = x
[
ln x)3 − 3(ln x)2 + 6 ln x− 6

]
+ C.

7
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UNIT 12.10 - INTEGRATION 10

FURTHER REDUCTION FORMULAE

INTRODUCTION

As an extension to the idea of reduction formulae, there are two particular definite integrals
which are worthy of special consideration. They are

∫ π
2

0
sinnx dx and

∫ π
2

0
cosnx dx.

But, first, we shall establish the reduction formulae for the equivalent indefinite integrals.

12.10.1 INTEGER POWERS OF A SINE

Suppose that

In =
∫

sinnx dx;

then, by writing the integrand as the product of two functions, we have

In =
∫

sinn−1x sin x dx.

Using integration by parts, with u = sinn−1x and dv
dx

= sin x, we obtain

In = sinn−1x(− cos x) +
∫

(n− 1)sinn−2xcos2x dx.

But, since cos2x ≡ 1− sin2x, this becomes

In = −sinn−1x cos x + (n− 1)[In−2 − In].

Thus,

In =
1

n

[
−sinn−1x cos x + (n− 1)In−2

]
.

1



EXAMPLE

Determine the indefinite integral

∫
sin6x dx.

Solution

I6 =
1

6

[
−sin5x cos x + 5I4

]
,

where

I4 =
1

4

[
−sin3x cos x + 3I2

]
, I2 =

1

2
[− sin x cos x + I0]

and

I0 =
∫

dx = x + constant.

Hence,

I2 =
1

2
[− sin x cos x + x + constant] ;

I4 =
1

4

[
−sin3x cos x− 3

2
sin x cos x +

3

2
x + constant

]
;

I6 =
1

6

[
−sin5x cos x− 5

4
sin3x cos x− 15

8
sin x cos x +

15

8
x + constant

]
.

Thus,
∫

sin6x dx = −1

6
sin5x cos x− 5

24
sin3x cos x− 5

16
sin x cos x +

5x

16
+ C,

where C is an arbitrary constant.

2



12.10.2 INTEGER POWERS OF A COSINE

Suppose that

In =
∫

cosnx dx;

then, by writing the integrand as the product of two functions, we have

In =
∫

cosn−1x cos x dx.

Using integration by parts, with u = cosn−1x and dv
dx

= cos x, we obtain

In = cosn−1x sin x +
∫

(n− 1)cosn−2xsin2x dx.

But, since sin2x ≡ 1− cos2x, this becomes

In = cosn−1x sin x + (n− 1)[In−2 − In].

Thus,

In =
1

n

[
cosn−1x sin x + (n− 1)In−2

]
.

EXAMPLE

Determine the indefinite integral

∫
cos5x dx.

Solution

I5 =
1

5

[
cos4x sin x + 4I3

]
,

3



where

I3 =
1

3

[
cos2x sin x + 2I1

]

and

I1 =
∫

cos x dx = sin x + constant.

Hence,

I3 =
1

3

[
cos2x sin x + 2 sin x + constant

]
;

I5 =
1

5

[
cos4x sin x +

4

3
cos2x sin x +

8

3
sin x + constant

]
;

We conclude that

∫
cos5x dx =

1

5
cos4x sin x +

4

15
cos2x sin x +

8

15
sin x + C,

where C is an arbitrary constant.

12.10.3 WALLIS’S FORMULAE

Here, we consider the definite integrals

∫ π
2

0
sinnx dx and

∫ π
2

0
cosnx dx.

Denoting either of these integrals by In, the reduction formula reduces to

In =
n− 1

n
In−2

in both cases, from the previous two sections.

4



Convenient results may be obtained from this formula according as n is an odd number or
an even number, as follows:

(a) n is an odd number

Repeated application of the reduction formula gives

In =
n− 1

n
.
n− 3

n− 2
.
n− 5

n− 4
. . . .

6

7
.
4

5
.
2

3
.I1.

But

I1 =
∫ π

2

0
sin x dx or I1 =

∫ π
2

0
cos x dx,

both of which have a value of 1.

Therefore,

In =
(n− 1)(n− 3)(n− 5). . . . 6.4.2

n(n− 2)(n− 4). . . . 7.5.3
,

which is the first of “Wallis’s formulae”.

(b) n is an even number

This time, repeated application of the reduction formula gives

In =
n− 1

n
.
n− 3

n− 2
.
n− 5

n− 4
. . . .

5

6
.
3

4
.
1

2
.I0.

But

I0 =
∫ π

2

0
dx =

π

2
.

Therefore,

In =
(n− 1)(n− 3)(n− 5). . . . 5.3.1

n(n− 2)(n− 4). . . . 6.4.2

π

2
,

5



which is the second of “Wallis’s formulae”.

EXAMPLES

1. Evaluate the definite integral ∫ π
2

0
sin5x dx.

Solution ∫ π
2

0
sin5x dx =

4.2

5.3
=

8

15
.

2. Evaluate the definite integral ∫ π
2

0
cos4x dx.

Solution ∫ π
2

0
cos4x dx =

3.1

4.2

π

2
=

3π

16
.

12.10.4 COMBINATIONS OF SINES AND COSINES

Another type of problem to which Wallis’s formulae may be applied is of the form

∫ π
2

0
sinmxcosnx dx,

where either m or n (or both) is an even number. We simply use sin2x ≡ 1 − cos2x or
cos2x ≡ 1 − sin2x in order to convert the problem to several integrals of the types already
discussed.

EXAMPLE

Evaluate the definite integral ∫ π
2

0
cos5xsin2x dx.

Solution

∫ π
2

0
cos5xsin2x dx =

∫ π
2

0
cos5x

(
1− cos2x

)
dx =

∫ π
2

0

(
cos5x− cos7x

)
dx,

6



which may be interpreted as

I5 − I7 =
4.2

5.3
− 5.4.3

6.4.2
=

8

15
− 16

35
=

8

105
.

12.10.5 EXERCISES

1. Determine the indefinite integral ∫
cos4x dx.

2. Determine the indefinite integral ∫
sin7x dx.

3. Evaluate the definite integral

∫ π
2

0
sin6x dx.

4. Evaluate the definite integral

∫ π
2

0
cos9x dx.

5. Evaluate the definite integral

∫ π
2

0
cos2xsin6x dx.

6. Evaluate the definite integral

∫ π
2

0
sin3xcos4x dx.

7



12.10.6 ANSWERS TO EXERCISES

1.

1

4
cos3x sin x +

3

8
cos x sin x +

3x

8
+ C.

2.

−1

7
sin6x cos x− 6

35
sin4x cos x− 24

105
sin2x cos x− 16

35
cos x + C.

3.

5π

32
.

4.

128

315
.

5.

5π

32
.

6.

− 4

105
.

8
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UNIT 13.1 - INTEGRATION APPLICATIONS 1

THE AREA UNDER A CURVE

13.1.1 THE ELEMENTARY FORMULA

We shall consider, here, a method of calculating the area contained between the x-axis of a
cartesian co-ordinate system and the arc, from x = a to x = b, of the curve whose equation
is

y = f(x).

Suppose that A(x) represents the area contained between the curve, the x-axis, the y-axis
and the ordinate at some arbitrary value of x.

-

6

A(x)

δxa b
x

y

O

A small increase of δx in x will lead to a corresponding increase of δA in A approximating
in area to that of a narrow rectangle whose width is δx and whose height is f(x).

Thus,

δA ' f(x)δx,

which may be written

δA

δx
' f(x).

By allowing δx to tend to zero, the approximation disappears to give

1



dA

dx
= f(x).

Hence, on integrating both sides with respect to x,

A(x) =
∫

f(x) dx.

The constant of integration would need to be such that A = 0 when x = 0; but, in fact, we
do not need to know the value of this constant because the required area, from x = a to
x = b, is given by

A(b)− A(a) =
∫ b

a
f(x) dx.

EXAMPLES

1. Determine the area contained between the x-axis and the curve whose equation is
y = sin 2x, from x = 0 to x = π

4
.

Solution

∫ π
4

0
sin 2x dx =

[
−cos 2x

2

]π
4

0
=

1

2
.

-

6

x

y

O π
4

Area

2



2. Determine the area contained between the x-axis and the curve whose equation is
y = 3x− x2, from x = 1 to x = 2.

Solution

∫ 2

1
(3x− x2) dx =

[
3x2

2
− x3

3

]2

1

=
(
6− 8

3

)
−
(

3

2
− 1

3

)
=

13

6
.

-

6

x

y

O 1 2 3

Area

13.1.2 DEFINITE INTEGRATION AS A SUMMATION

Consider, now, the same area as in the previous section, but regarded (approximately) as
the sum of a large number of narrow rectangles with typical width δx and typical height
f(x). The narrower the strips, the better will be the approximation.

-

6

a b
x

y

O

Hence, we may state an alternative expression for the area from x = a to x = b in the form

3



lim
δx→0

x=b∑
x=a

f(x)δx.

Since this new expression represents the same area as before, we may conclude that

lim
δx→0

x=b∑
x=a

f(x)δx =
∫ b

a
f(x)δx.

Notes:

(i) The above result shows that an area which lies wholly below the x-axis will be negative
and so care must be taken with curves which cross the x-axis between x = a and x = b.

(ii) If c is any value of x between x = a and x = b, the above result shows that

∫ b

a
f(x) dx =

∫ c

a
f(x) dx +

∫ b

c
f(x) dx.

(iii) To calculate the TOTAL area contained between the x-axis and a curve which crosses
the x-axis between x = a and x = b, account must be taken of any parts of the area which
are negative.

(iv) It is usually a good idea to sketch the area under consideration before evaluating the
appropriate definite integrals.

(v) It will be seen shortly that the formula obtained for definite integration as a summation
has a wider field of application than simply the calculation of areas.

EXAMPLES

1. Determine the total area between the x-axis and the curve whose equation is y = sin 2x,
from x = 3π

8
and x = 3π

4
.

Solution ∫ π
2

3π
8

sin 2x dx−
∫ 3π

4

π
2

sin 2x dx.

That is, [
−cos 2x

2

]π
2

3π
8

−
[
−cos 2x

2

] 3π
4

π
2

=

(
1

2
− 1

2
√

2

)
−
(
0− 1

2

)
= 1− 1

2
√

2
.

4



-

6

x

y

O
3π
8

3π
4

2. Evaluate the definite integral, ∫ 3π
4

3π
8

sin 2x dx.

Solution ∫ 3π
4

3π
8

sin 2x dx =
[
−cos 2x

2

] 3π
4

3π
8

= − 1

2
√

2
.

13.1.3 EXERCISES

1. Determine the areas bounded by the following curves and the x-axis between the ordi-
nates x = 1 and x = 3:

(a)

y = 2x2 + x + 1;

(b)

y = (1− x)2;

(c)

y = 2
√

x.

2. Sketch the curve whose equation is

y = (1− x)(2 + x)

and determine the area contained between the x-axis and the portion of the curve above
the x-axis.

5



3. To the nearest whole number, determine the area bounded between x = 1 and x = 2
by the curves whose equations are

y = 3e2x and y = 3e−x.

4. Determine the area bounded between x = 0 and x = π
3

by the curves whose equations
are

y = sin x and y = sin 2x.

5. Determine the total area, from x = 0 to x = 3π
10

, contained between the x-axis and the
curve whose equation is

y = cos 5x.

13.1.4 ANSWERS TO EXERCISES

1. (a)

70

3
;

(b)

8

3
;

(c)

4
√

3− 4

3
.

2.

9

2
.

3.

70.

4.

0.25

5.

2
√

2− 1

5
√

2
− ' 0.259

6
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UNIT 13.2 - INTEGRATION APPLICATIONS 2

MEAN AND ROOT MEAN SQUARE VALUES

13.2.1 MEAN VALUES

-

6

y1

yn

a b
x

y

O

On the curve whose equation is

y = f(x),

suppose that y1, y2, y3, ......, yn are the y-coordinates which correspond to n different
x-coordinates, a = x1, x2, x3, ......, xn = b.

The average (that is, the arithmetic mean) of these n y-coordinates is

y1 + y2 + y3 + ...... + yn

n
.

But now suppose that we wished to determine the average (arithmetic mean) of all the
y-coordinates, from x = a to x = b on the curve whose equation is y = f(x).

We could make a reasonable approximation by taking a very large number, n, of y-coordinates
separated in the x-direction by very small distances. If these distances are typically repre-
sented by δx, then the required mean value could be written

y1δx + y2δx + y3δx + ...... + ynδx

nδx
,

1



in which the denominator is equivalent to (b − a + δx), since there are only n − 1 spaces
between the n y-coordinates.

Allowing the number of y-coordinates to increase indefinitely, δx will to tend to zero and we
obtain the formula for the “Mean Value” in the form

M.V. =
1

b− a
lim
δx→0

x=b∑
x=a

yδx.

That is,

M.V. =
1

b− a

∫ b

a
f(x) dx.

Note:
In cases where the definite integral in this formula represents the area between the curve
and the x-axis, the Mean Value provides the height of a rectangle, with base b − a, having
the same area as that represented by the definite integral.

EXAMPLE

Determine the Mean Value of the function

f(x) ≡ x2 − 5x

from x = 1 to x = 4.

Solution

The Mean Value is given by

M.V. =
1

4− 1

∫ 4

1
(x2 − 5x) dx =

1

3

[
x3

3
− 5x2

2

]4

1

=

1

3

[(
64

3
− 40

)
−

(
1

3
− 5

2

)]
= −33

2
.

2



13.2.2 ROOT MEAN SQUARE VALUES

It is sometimes convenient to use an alternative kind of average for the values of a function,
f(x), between x = a and x = b.

The “Root Mean Square Value” provides a measure of “central tendency” for the nu-
merical values of f(x) and is defined to be the square root of the Mean Value of f(x) from
x = a to x = b.

Hence,

R.M.S.V. =

√
1

b− a

∫ b

a
[f(x)]2 dx.

EXAMPLE

Determine the Root Mean Square Value of the function, f(x) ≡ x2−5, from x = 1 to x = 3.

Solution

The Root Mean Square Value is given by

R.M.S.V. =

√
1

3− 1

∫ 3

1
(x2 − 5)2 dx.

Temporarily ignoring the square root, we obtain the “Mean Square Value”,

M.S.V. =
1

2

∫ 3

1
(x4 − 10x2 + 25) dx

=
1

2

[
x5

5
− 10x3

3
+ 25x

]3

1

=
1

2

[(
243

5
− 270

3
+ 75

)
−

(
1

5
− 10

3
+ 25

)]
=

176

30
.

Thus,

R.M.S.V. =

√
176

30
' 2.422

3



13.2.3 EXERCISES

1. (a) Determine the Mean Value of the function, (x− 1)(x− 2), from x = 1 to x = 2;

(b) Determine, correct to three significant figures, the Mean Value of the function,
1

2x+5 , from x = 3 to x = 5;

(c) Determine the Mean Value of the function, sin 2t, from t = 0 to t = π
2
;

(d) Determine, correct to three places of decimals, the Mean Value of the function,
e−x, from x = 1 to x = 5;

(e) Determine, correct to three significant figures, the mean value of the function,
xe−2x, from x = 0 to x = 2.

2. (a) Determine the Root Mean Square Value of the function, 3x + 1, from x = −2 to
x = 2;

(b) Determine the Root Mean Square Value, of the function, ex, from x = 0 to x = 1,
correct to three decimal places;

(c) Determine the Root Mean Square Value of the function, cos x, from x = π
2

to x = π;

(d) Determine the Root Mean Square Value of the function, (4x− 5)
3
2 , from x = 1.25

to x = 1.5.

13.2.4 ANSWERS TO EXERCISES

1. (a) −1
6
;

(b) 0.0775;

(c) 2
π
;

(d) −0.076;

(e) 0.114

2. (a)
√

13 '= 3.606;

(b) 1.787;

(c) 1√
2
;

(d) 1
2
.

4
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UNIT 13.3 - INTEGRATION APLICATIONS 3

VOLUMES OF REVOLUTION

13.3.1 VOLUMES OF REVOLUTION ABOUT THE X-AXIS

Suppose that the area between a curve whose equation is

y = f(x)

and the x-axis, from x = a to x = b, lies wholly above the x-axis; suppose, also, that this
area is rotated through 2π radians about the x-axis. Then a solid figure is obtained whose
volume may be determined as an application of definite integration.

-

6

δxa b
x

y

O

When a narrow strip of width, δx, and height, y, is rotated through 2π radians about the
x-axis, we obtain a disc whose volume, δV , is given approximately by

δV ' πy2δx.

Thus, the total volume, V , obtained is given by

V = lim
δx→0

x=b∑
x=a

πy2δx.

That is,

V =
∫ b

a
πy2 dx.

1



EXAMPLE

Determine the volume obtained when the area, bounded in the first quadrant by the x-axis,
the y-axis, the straight line, x = 2, and the parabola, y2 = 8x, is rotated through 2π radians
about the x-axis.

Solution

-

6

x

y

O 2

V =
∫ 2

0
π × 8x dx = [4πx2]20 = 16π.

13.3.2 VOLUMES OF REVOLUTION ABOUT THE Y-AXIS

First we consider the same diagram as in the previous section:

-

6

δxa b
x

y

O

This time, if the narrow strip of width, δx, is rotated through 2π radians about the y-axis,

2



we obtain, approximately, a cylindrical shell of internal radius, x, external radius, x + δx
and height, y.

The volume, δV , of the shell is thus given by

δV ' 2πxyδx.

The total volume is given by

V = lim
δx→0

x=b∑
x=a

2πxyδx.

That is,

V =
∫ b

a
2πxy dx.

EXAMPLE

Determine the volume obtained when the area, bounded in the first quadrant by the x-axis,
the y-axis, the straight line x = 2 and the parabola y2 = 8x is rotated through 2π radians
about the y-axis.

3



Solution

-

6

x

y

O 2

V =
∫ 2

0
2πx×

√
8x dx.

In other words,

V = π4
√

2
∫ 2

0
x

3
2 dx = π4

√
2

2x
5
2

5

2

0

=
64π

5
.

Note:

It may be required to find the volume of revolution about the y-axis of an area which is
contained between a curve and the y-axis from y = c to y = d.

4



-

6

δy

c

d

x

y

O

But here we simply interchange the roles of x and y in the original formula for rotation about
the x-axis; that is

V =
∫ d

c
πx2 dy.

Similarly, the volume of rotation of the above area about the x-axis is given by

V =
∫ d

c
2πyx dy.

13.3.3 EXERCISES

1. By using a straight line through the origin, obtain a formula for the volume, V , of a
solid right-circular cone with height, h, and base radius, r.

2. Determine the volume obtained when the segment straight line

y = 5− 4x,

lying between x = 0 and x = 1, is rotated through 2π radians about (a) the x-axis and
(b) the y-axis.

3. Determine the volume obtained when the part of the curve

y = cos 3x,

lying between x = π
6

and x = π
3
, is rotated through 2π radians about the x-axis.

5



4. Determine the volume obtained when the part of the curve

y =
1

x
√

2 + x
,

lying between x = 2 and x = 7, is rotated through 2π radians about the x-axis.

5. Determine the volume obtained when the part of the curve

y =
1

(x− 1)(x− 5)
,

lying between x = 6 and x = 8, is rotated through 2π radians about the y-axis.

6. Determine the volume obtained when the part of the curve

x = ye−y,

lying between y = 0 and y = 1, is rotated through 2π radians about the y-axis.

7. Determine the volume obtained when the part of the curve

y = sin 2x,

lying between x = π
4

and x = π
2
, is rotated through 2π radians about the y-axis.

8. Determine the volume obtained when the part of the curve

y = x(1− x3)
1
4 ,

lying between x = 0 and x = 1, is rotated through 2π radians about the x-axis.

9. Determine the volume obtained when the part of the curve

x = (4− y2)2,

lying between y = 1 and y = 2, is rotated through 2π radians about the x-axis.

10. Determine the volume obtained when the part of the curve

y = x sec(x3),

lying between x = 0 and x = 0.5, is rotated through 2π radians about the x-axis.

11. Determine the volume obtained when the part of the curve

y =
1

x2 − 1
,

lying between x = 2 and x = 3 is rotated through 2π radians about the y-axis.

6



13.3.4 ANSWERS TO EXERCISES

1.

V =
1

3
πr2h.

2.

(a)
π

3
' 1.047 (b)

7π

3
' 7.330

3.

π2

12
' 0.822

4.

0.214 approximately.

5.

8.010 approximately.

6.

0.254 approximately.

7.

3.364 approximately.

8.

2π

9
' 0.698

9.

9π ' 28.274

10.

0.132 approximately.

11.

3.081 approximately.

7
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UNIT 13.4 - INTEGRATION APPLICATIONS 4 - LENGTHS OF CURVES

13.4.1 THE STANDARD FORMULAE

The problem, in this unit, is to calculate the length of the arc of the curve with equation

y = f(x),

joining the two points, P and Q, on the curve, at which x = a and x = b.
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For two neighbouring points along the arc, the part of the curve joining them may be
considered, approximately, as a straight line segment.

Hence, if these neighbouring points are separated by distances of δx and δy, parallel to
the x-axis and the y-axis respectively, then the length, δs, of arc between them is given,
approximately, by

δs '
√

(δx)2 + (δy)2 =

√√√√1 +

(
δy

δx

)2

δx,

using Pythagoras’s Theorem.

The total length, s, of arc is thus given by

s = lim
δx→0

x=b∑
x=a

√√√√1 +

(
δy

δx

)2

δx.

1



That is,

s =
∫ b

a

√√√√1 +

(
dy

dx

)2

dx.

Notes:
(i) If the curve is given parametrically by

x = x(t), y = y(t),

then

dy

dx
=

dy
dt
dx
dt

.

Hence,

√√√√1 +

(
dy

dx

)2

=

√(
dx
dt

)2
+
(

dy
dt

)2

dx
dt

,

provided dx
dt

is positive on the arc being considered. If not, then the above line needs to be
prefixed by a negative sign.

From the technique of integration by substitution,

∫ b

a

√√√√1 +

(
dy

dx

)2

dx =
∫ t2

t1

√√√√1 +

(
dy

dx

)2

.
dx

dt
dt,

where t = t1 when x = a and t = t2 when x = b.

We may conclude that

s = ±
∫ t2

t1

√√√√(dx

dt

)2

+

(
dy

dt

)2

dt,

2



acccording as dx
dt

is positive or negative.

(ii) For an arc whose equation is

x = g(y),

contained between y = c and y = d, we may reverse the roles of x and y, so that the length
of the arc is given by

s =
∫ d

c

√√√√1 +

(
dx

dy

)2

dy.

EXAMPLES

1. A curve has equation

9y2 = 16x3.

Determine the length of the arc of the curve between the point
(
1, 4

3

)
and the point(

4, 32
3

)
.

Solution

We may write the equation of the curve in the form

y =
4x

3
2

3
;

and so,

dy

dx
= 2x

1
2 .

Hence,

s =
∫ 4

1

√
1 + 4x dx =

(1 + 4x)
3
2

6

4

1

=
17

3
2

6
− 5

3
2

6
' 13.55

3



2. A curve is given parametrically by

x = t2 − 1, y = t3 + 1.

Determine the length of the arc of the curve between the point where t = 0 and the
point where t = 1.

Solution

Since

dx

dt
= 2t and

dy

dt
= 3t2,

we have

s =
∫ 1

0

√
4t2 + 6t4 dt =

∫ 1

0
t
√

4 + 6t2 dt =
[

1

18

(
4 + 6t2

) 3
2

]1
0

=
1

18

(
10

3
2 − 8

)
' 1.31

13.4.2 EXERCISES

1. A straight line has equation

y = 3x + 2.

Use (a) elementary trigonometry and (b) definite integration to determine the length
of the line segment joining the point where x = 3 and the point where x = 7.

2. A curve has equation

y =
1

2
x2 − 1

4
ln x.

Determine the length of the arc of the curve between x = 1 and x = e.

3. A curve has equation

x = 2(y + 3)
3
2 .

Determine the length of the arc of the curve between y = −2 and y = 1, stating your
answer in decimals correct to four significant figures.

4



4. A curve is given parametrically by

x = t− sin t, y = 1− cos t.

Determine the length of the arc of the curve between the point where t = 0 and the
point where t = 2π.

5. A curve is given parametrically by

x = 4(cos θ + θ sin θ), y = 4(sin θ − θ cos θ).

Determine the length of the arc of the curve between the point where θ = 0 and the
point where θ = π

4
.

6. A curve is given parametrically by

x = eu sin u, y = eu cos u.

Determine the length of the arc of the curve between the point where u = 0 and the
point where u = 1.

13.4.3 ANSWERS TO EXERCISES

1.

4
√

10 ' 12.65

2.

2e2 − 1

4
' 3.44

3.

14.33

4.

8.

5.

π2

8
.

6.
√

2(e− 1) ' 2.43

5
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UNIT 13.5 - INTEGRATION APPLICATIONS 5

SURFACES OF REVOLUTION

13.5.1 SURFACES OF REVOLUTION ABOUT THE X-AXIS

The problem, in this unit, is to calculate the surface area obtained when the arc of the curve,
with equation

y = f(x),

joining the two points, P and Q, on the curve, at which x = a and x = b, is rotated through
2π radians about the x-axis or the y-axis.

-
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For two neighbouring points along the arc, the part of the curve joining them may be
considered, approximately, as a straight line segment.

Hence, if these neighbouring points are separated by distances of δx and δy, parallel to
the x-axis and the y-axis, respectively, then the length, δs, of arc between them is given,
approximately, by

δs '
√

(δx)2 + (δy)2 =

√√√√1 +

(
δy

δx

)2

δx,

using Pythagoras’s Theorem.

When the arc, of length δs, is rotated through 2π radians about the x-axis, it generates a
thin band whose area is, approximately,

1



2πyδs = 2πy

√√√√1 +

(
δy

δx

)2

δx.

The total surface area, S, is thus given by

S = lim
δx→0

x=b∑
x=a

2πy

√√√√1 +

(
δy

δx

)2

δx.

That is,

S =
∫ b

a
2πy

√√√√1 +

(
dy

dx

)2

dx.

Note:
If the curve is given parametrically by

x = x(t), y = y(t),

then,

dy

dx
=

dy
dt
dx
dt

.

Hence,

√√√√1 +

(
dy

dx

)2

=

√(
dx
dt

)2
+
(

dy
dt

)2

dx
dt

,

provided dx
dt

is positive on the arc being considered. If not, then the above line needs to be
prefixed by a negative sign.

2



From the technique of integration by substitution,

∫ b

a
2πy

√√√√1 +

(
dy

dx

)2

dx =
∫ t2

t1
2πy

√√√√1 +

(
dy

dx

)2

.
dx

dt
dt,

where t = t1 when x = a and t = t2 when x = b.

We may conclude that

S = ±
∫ t2

t1
2πy

√√√√(dx

dt

)2

+

(
dy

dt

)2

dt,

acccording as dx
dt

is positive or negative.

EXAMPLES

1. A curve has equation

y2 = 2x.

Determine the surface area obtained when the arc of the curve between the point (2, 2))
and the point (8, 4) is rotated through 2π radians about the x-axis.

Solution

We may write the equation of the arc of the curve in the form

y =
√

2x =
√

2x
1
2 ;

and so,

dy

dx
=

1

2

√
2x−

1
2 =

1√
2x

.

Hence,

S =
∫ 8

2
2π
√

2x

√
1 +

1

2x
dx =

∫ 8

2

√
2x + 1 dx =

(2x + 1)
3
2

3

8

2

.

Thus,

S =
17

3
2

3
− 5

3
2

3
' 19.64
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2. A curve is given parametrically by

x =
√

2 cos θ, y =
√

2 sin θ.

Determine the surface area obtained when the arc of the curve between the point (0,
√

2)
and the point (1, 1) is rotated through 2π radians about the x-axis.

Solution

The parameters of the two points are π
2

and π
4
, respectively; and, since

dx

dθ
= −

√
2 sin θ and

dy

dθ
=
√

2 cos θ,

we have

S = −
∫ π

4

π
2

2
√

2π sin θ
√

2sin2θ + 2cos2θ dθ = −
∫ π

4

π
2

4π sin θ dθ.

Thus,

S = − [−4π cos θ]
π
4
π
2

=
4π√

2
' 8.89

13.5.2 SURFACES OF REVOLUTION ABOUT THE Y-AXIS

For a curve whose equation is of the form x = g(y), the surface of revolution about the y-axis
of an arc joining the two points at which y = c and y = d is given by

S =
∫ b

a
2πx

√√√√1 +

(
dx

dy

)2

dy.

We simply reverse the roles of x and y in the previous section.

4
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Alternatively, if the curve is given parametrically,

S = ±
∫ t2

t1
2πx

√√√√(dx

dt

)2

+

(
dy

dt

)2

dt,

acccording as dy
dt

is positive or negative.

EXAMPLE

If the arc of the parabola, with equation

x2 = 2y,

joining the two points (2, 2) and (4, 8), is rotated through 2π radians about the y-axis,
determine the surface area obtained.

Solution

Using the result from the previous section, the surface area obtained is given by

S =
∫ 8

2
2π
√

2y

√
1 +

1

2y
dy ' 19.64

5



13.5.3 EXERCISES

1. Use a straight line through the origin to determine the surface area of a right-circular
cone with height, h, and base radius, r.

2. Determine the surface area obtained when the arc of the curve x = y3, between y = 0
and y = 1, is rotated through 2π radians about the y-axis.

3. A curve is given parametrically by

x = t− sin t, y = 1− cos t.

Determine the surface area obtained when the arc of the curve between the point where
t = 0 and the point where t = π

2
is rotated through 2π radians about the x-axis.

State your answer correct to three places of decimals.

4. A curve is given parametrically by

x = 4(cos θ + θ sin θ), y = 4(sin θ − θ cos θ).

Determine the surface area obtained when the arc of the curve between the point where
θ = 0 and the point where θ = π

2
is rotated through 2π radians about the x-axis.

5. A curve is given parametrically by

x = eu cos u, y = eu sin u.

Determine the surface area obtained when the arc of the curve between the point where
u = 0 and the point where u = π

4
is rotated through 2π radians about the y-axis.

State your answer correct to three places of decimals.

6



13.5.4 ANSWERS TO EXERCISES

1.

πr
√

r2 + h2.

2.

π(10
√

10− 1)

27
' 3.56

3.

3.891

4.

32π

(
3−

(
π

2

)2
)
' 53.54

5.

1.037

7
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UNIT 13.6 - INTEGRATION APPLICATIONS 6

FIRST MOMENTS OF AN ARC

13.6.1 INTRODUCTION

Suppose that C denotes an arc (with length s) in the xy-plane of cartesian co-ordinates; and
suppose that δs is the length of a small element of this arc.

Then the “first moment” of C about a fixed line, l, in the plane of C is given by

lim
δs→0

∑
C

hδs,

where h is the perpendicular distance, from l, of the element with length δs.
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13.6.2 FIRST MOMENT OF AN ARC ABOUT THE Y-AXIS

Let us consider an arc of the curve, whose equation is

y = f(x),

joining two points, P and Q, at x = a and x = b, respectively.

1
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The arc may divided up into small elements of typical length, δs, by using neighbouring
points along the arc, separated by typical distances of δx (parallel to the x-axis) and δy
(parallel to the y-axis).

The first moment of each element about the y-axis is x times the length of the element; that
is xδs, implying that the total first moment of the arc about the y-axis is given by

lim
δs→0

∑
C

xδs.

But, from Pythagoras’ Theorem,

δs '
√

(δx)2 + (δy)2 =

√√√√1 +

(
δy

δx

)2

δx,

so that the first moment of the arc becomes

lim
δx→0

x=b∑
x=a

x

√√√√1 +

(
δy

δx

)2

δx =
∫ b

a
x

√√√√1 +

(
dy

dx

)2

dx.

Note:
If the curve is given parametrically by

x = x(t), y = y(t),

2



then, using the same principles as in Unit 13.4, we may conclude that the first moment of
the arc about the y-axis is given by

±
∫ t2

t1
x

√√√√(dx

dt

)2

+

(
dy

dt

)2

dt,

according as dx
dt

is positive or negative.

13.6.3 FIRST MOMENT OF AN ARC ABOUT THE X-AXIS

(a) For an arc whose equation is

y = f(x),

contained between x = a and x = b, the first moment about the x-axis will be

∫ b

a
y

√√√√1 +

(
dy

dx

)2

dx.

Note:
If the curve is given parametrically by

x = x(t), y = y(t),

then, using the same principles as in Unit 13.4, the first moment of the arc about the x-axis
is given by

±
∫ t2

t1
y

√√√√(dx

dt

)2

+

(
dy

dt

)2

dt,

according as dx
dt

is positive or negative.

3



(b) For an arc whose equation is

x = g(y),

contained between y = c and y = d, we may reverse the roles of x and y in section 13.6.2 so
that the first moment of the arc about the x-axis is given by

∫ d

c
y

√√√√1 +

(
dx

dy

)2

dy.
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Note:
If the curve is given parametrically by

x = x(t), y = y(t),

then, using the same principles as in Unit 13.4, we may conclude that the first moment of
the arc about the x-axis is given by

±
∫ t2

t1
y

√√√√(dx

dt

)2

+

(
dy

dt

)2

dt,

according as dy
dt

is positive or negative and where t = t1 when y = c and t = t2 when y = d.
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EXAMPLES

1. Determine the first moments about the x-axis and the y-axis of the arc of the circle,
with equation

x2 + y2 = a2,

lying in the first quadrant.

Solution

- x

6

y

O











a

Using implicit differentiation, we have

2x + 2y
dy

dx
= 0,

and hence, dy
dx

= −x
y
.

The first moment of the arc about the y-axis is therefore given by

∫ a

0
x

√
1 +

x2

y2
dx =

∫ a

0

x

y

√
x2 + y2 dx.

But x2 + y2 = a2 and y =
√

a2 − x2.

Hence,

first moment =
∫ a

0

ax√
a2 − x2

dx =
[
−a
√

(a2 − x2)
]a
0

= a2.

By symmetry, the first moment of the arc about the x-axis will also be a2.

5



2. Determine the first moments about the x-axis and the y-axis of the first quadrant arc
of the curve with parametric equations

x = acos3θ, y = asin3θ.

Solution

-

6

x

y

O

Firstly, we have

dx

dθ
= −3acos2θ sin θ and

dy

dθ
= 3asin2θ cos θ.

Hence, the first moment about the x-axis is given by

−
∫ 0

π
2

y
√

9a2cos4θsin2θ + 9a2sin4θcos2θ dθ,

which, on using cos2θ + sin2θ ≡ 1, becomes

∫ π
2

0
asin3θ.3a cos θ sin θ dθ

= 3a2
∫ π

2

0
sin4θ cos θ dθ

= 3a2

[
sin5θ

5

]π
2

0

=
3a2

5
.

6



Similarly, the first moment of the arc about the y-axis is given by

∫ π
2

0
x

√√√√(dx

dθ

)2

+

(
dy

dθ

)2

dθ =
∫ π

2

0
acos3θ.(3a cos θ sin θ) dθ

= 3a2
∫ π

2

0
cos4θ sin θ dθ = 3a2

[
−cos5θ

5

]π
2

0

=
3a2

5
,

though, again, this second result could be deduced, by symmetry, from the first.

13.6.4 THE CENTROID OF AN ARC

Having calculated the first moments of an arc about both the x-axis and the y-axis it is
possible to determine a point, (x, y), in the xy-plane with the property that

(a) The first moment about the y-axis is given by sx, where s is the total length of the arc;

and

(b) The first moment about the x-axis is given by sy, where s is the total length of the arc.

The point is called the “centroid” or the “geometric centre” of the arc and, for an arc
of the curve with equation y = f(x), between x = a and x = b, its co-ordinates are given by

x =

∫ b
a x

√
1 +

(
dy
dx

)2
dx∫ b

a

√
1 +

(
dy
dx

)2
dx

and y =

∫ b
a y

√
1 +

(
dy
dx

)2
dx∫ b

a

√
1 +

(
dy
dx

)2
dx

.

Notes:

(i) The first moment of an arc about an axis through its centroid will, by definition, be zero.
In particular, if we take the y-axis to be parallel to the given axis, with x as the perpendicular
distance from an element, δs, to the y-axis, the first moment about the given axis will be

∑
C

(x− x)δs =
∑
C

xδs− x
∑
C

δs = sx− sx = 0.

(ii) The centroid effectively tries to concentrate the whole arc at a single point for the
purposes of considering first moments. In practice, it corresponds, for example, to the
position of the centre of mass of a thin wire with uniform density.

7



EXAMPLES

1. Determine the cartesian co-ordinates of the centroid of the arc of the circle, with equa-
tion

x2 + y2 = a2,

lying in the first quadrant.

Solution

- x

6

y

O











a

From an earlier example in this unit, we know that the first moments of the arc about
the x-axis and the y-axis are both equal to a2.

Also, the length of the arc is πa
2

, which implies that

x =
2a

π
and y =

2a

π
.

2. Determine the cartesian co-ordinates of the centroid of the first quadrant arc of the
curve with parametric equations

x = acos3θ, y = asin3θ.

8



Solution

-

6

x

y

O

From an earlier example in this unit, we know that

dx

dθ
= −3acos2θ sin θ and

dy

dθ
= 3asin2θ cos θ

and that the first moments of the arc about the x-axis and the y-axis are both equal to
3a2

5
.

Also, the length of the arc is given by

−
∫ a

π
2

√√√√(dx

dθ

)2

+

(
dy

dθ

)2

dθ =
∫ π

2

0

√
9a2cos4θsin2θ + 9a2sin4θcos2θ dθ.

This simplifies to

3a
∫ π

2

0
cos θ sin θ dθ = 3a

[
sin2θ

2

]π
2

0

=
3a

2
.

Thus,

x =
2a

5
and y =

2a

5
.

9



13.6.5 EXERCISES

1. Determine the first moment about the y-axis of the arc of the curve with equation

y = x2,

lying between x = 0 and x = 1.

2. Determine the first moment about the x-axis of the arc of the curve with equation

x = 5y2,

lying between y = 0.1 and y = 0.5.

3. Determine the first moment about the x-axis of the arc of the curve with equation

y = 2
√

x,

lying between x = 3 and x = 24.

4. Verify, using integration, that the centroid of the straight line segment, defined by the
equation

y = 3x + 2,

from x = 0 to x = 1, lies at its centre point.

5. Determine the cartesian co-ordinates of the centroid of the arc of the circle given para-
metrically by

x = 5 cos θ, y = 5 sin θ,

from θ = −π
6

to θ = π
6
.

6. For the curve whose equation is

9y2 = x(3− x)2,

show that

dy

dx
=

1− x

2
√

x
.

Hence show that the centroid of the first quadrant arch of this curve lies at the point(
7
5
,
√

3
4

)
.

10



13.6.6 ANSWERS TO EXERCISES

1.

5
√

5− 1

12
' 0.85

2.

13
√

26−
√

2

150
' 0.43

3.

156.

4.

x =
1

2
and y =

7

2
.

5.

x =
15

π
' 4.77, y = 0.

11
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UNIT 13.7 - INTEGRATION APPLICATIONS 7

FIRST MOMENTS OF AN AREA

13.7.1 INTRODUCTION

Suppose that R denotes a region (with area A) of the xy-plane of cartesian co-ordinates, and
suppose that δA is the area of a small element of this region.

Then the “first moment” of R about a fixed line, l, in the plane of R is given by

lim
δA→0

∑
R

hδA,

where h is the perpendicular distance, from l, of the element with area, δA.

































Q
Q

Q
Q

Q
Q

Q
QQ

δAel
h

R

13.7.2 FIRST MOMENT OF AN AREA ABOUT THE Y-AXIS

Let us consider a region in the first quadrant of the xy-plane, bounded by the x-axis, the
lines x = a, x = b and the curve whose equation is

y = f(x).

1



-

6

δxa b
x

y

O

The region may divided up into small elements by using a network, consisting of neighbouring
lines parallel to the y-axis and neighbouring lines parallel to the x-axis.

But all of the elements in a narrow ‘strip’ of width δx and height y (parallel to the y-axis)
have the same perpendicular distance, x, from the y-axis.

Hence the first moment of this strip about the y-axis is x times the area of the strip; that
is, x(yδx), implying that the total first moment of the region about the y-axis is given by

lim
δx→0

x=b∑
x=a

xyδx =
∫ b

a
xy dx.

Note:
First moments about the x-axis will be discussed mainly in the next section of this Unit;
but we note that, for a region of the first quadrant, bounded by the y-axis, the lines y = c,
y = d and the curve whose equation is

x = g(y),

we may reverse the roles of x and y so that the first moment about the x-axis is given by

∫ d

c
yx dy.

2



-

6

δy

c

d

x

y

O

EXAMPLES

1. Determine the first moment of a rectangular region, with sides of lengths a and b about
the side of length b.

Solution

- x

6

y

b

a
O

The first moment about the y-axis is given by

∫ a

0
xb dx =

[
x2b

2

]a

0

=
1

2
a2b.

3



2. Determine the first moment about the y-axis of the semi-circular region, bounded in
the first and fourth quadrants by the y-axis and the circle whose equation is

x2 + y2 = a2.

Solution

- x

6

y

O











a

Since there will be equal contributions from the upper and lower halves of the region,
the first moment about the y-axis is given by

2
∫ a

0
x
√

a2 − x2 dx =
[
−2

3
(a2 − x2)

3
2

]a
0

=
2

3
a3.

Note:
Although first moments about the x-axis will be discussed mainly in the next section
of this Unit, we note that the symmetry of the above region shows that its first mo-
ment about the x-axis would be zero; this is because, for each y(xδy), there will be
a corresponding −y(xδy) in calculating the first moments of the strips parallel to the
x-axis.

13.7.3 FIRST MOMENT OF AN AREA ABOUT THE X-AXIS

In the first example of the previous section, a formula was established for the first moment
of a rectangular region about one of its sides. This result may now be used to determine the
first moment about the x-axis of a region enclosed in the first quadrant by the x-axis, the
lines x = a, x = b and the curve whose equation is

y = f(x).

4
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6

δxa b
x

y

O

If a narrow strip, of width δx and height y, is regarded as approximately a rectangle, its first
moment about the x-axis is 1

2
y2δx. Hence, the first moment of the whole region about the

x-axis is given by

lim
δx→0

x=b∑
x=a

1

2
y2δx =

∫ b

a

1

2
y2 dx.

EXAMPLES

1. Determine the first moment about the x-axis of the region, bounded in the first quad-
rant, by the x-axis, the y-axis, the line x = 1 and the curve whose equation is

y = x2 + 1.

5



Solution

-

6

x

y

O 1

First moment =
∫ 1

0

1

2
(x2 + 1)2 dx =

1

2

∫ 1

0
(x4+2x2+1) dx =

1

2

[
x5

5
+

2x3

3
+ x

]1

0

=
28

15
.

2. Determine the first moment about the x-axis of the region, bounded in the first quad-
rant, by the x-axis, the lines x = 1, x = 2 and the curve

y = xex.

Solution

-

6

x

y

O 1 2

First moment =
∫ 2

1

1

2
x2e2x dx

6



=
1

2

[x2 e2x

2

]2

1

−
∫ 2

1
xe2x dx



=
1

2

[x2 e2x

2

]2

1

−
[
x
e2x

2

]2

1

+
∫ 2

1

e2x

2
dx

 .

That is,

1

2

[
x2 e2x

2
− x

e2x

2
+

e2x

4

]2

1

=
5e4 − e2

8
' 33.20

13.7.4 THE CENTROID OF AN AREA

Having calculated the first moments of a two dimensional region about both the x-axis and
the y-axis, it is possible to determine a point, (x, y), in the xy-plane with the property that

(a) The first moment about the y-axis is given by Ax, where A is the total area of the region;

and

(b) The first moment about the x-axis is given by Ay, where A is the toal area of the region.

The point is called the “centroid” or the “geometric centre” of the region and, in the
case of a region bounded, in the first quadrant, by the x-axis, the lines x = a, x = b and the
curve y = f(x), its co-ordinates are given by

x =

∫ b
a xy dx∫ b
a ydx

and y =

∫ b
a

1
2
y2 dx∫ b

a y dx
.

Notes:

(i) The first moment of an area, about an axis through its centroid will, by definition, be
zero. In particular, if we take the y-axis to be parallel to the given axis, with x as the
perpendicular distance from an element, δA, to the y-axis, the first moment about the given
axis will be

∑
R

(x− x)δA =
∑
R

xδA− x
∑
R

δA = Ax− Ax = 0.

7



(ii) The centroid effectively tries to concentrate the whole area at a single point for the
purposes of considering first moments. In practice, it corresponds to the position of the
centre of mass for a thin plate with uniform density, whose shape is that of the region which
we have been considering.

EXAMPLES

1. Determine the position of the centroid of a rectangular region with sides of lengths, a
and b.

Solution

- x

6

y

b

a
O

The area of the rectangle is ab and, from Example 1 in section 13.7.2, the first moments
about the y-axis and the x-axis are 1

2
a2b and 1

2
b2a, respectively.

Hence,

x =
1
2
a2b

ab
=

1

2
a

and

y =
1
2
b2a

ab
=

1

2
b,

as we would expect for a rectangle.

8



2. Determine the position of the centroid of the semi-circular region bounded, in the first
and fourth quadrants, by the y-axis and the circle whose equation is

x2 + y2 = a2.

Solution

- x

6

y

O











a

The area of the semi-circular region is 1
2
πa2 and so, from Example 2, in section 13.7.2,

x =
2
3
a3

1
2
πa2

=
4a

3π
and y = 0.

3. Determine the position of the centroid of the region, bounded in the first quadrant, by
the x-axis, the y-axis, the line x = 1 and the curve whose equation is

y = x2 + 1.

9



Solution

-

6

x

y

O 1

The first moment about the y-axis is given by

∫ 1

0
x(x2 + 1) dx =

[
x4

4
+

x2

2

]1

0

=
3

4
.

The area is given by

∫ 1

0
(x2 + 1) dx =

[
x3

3
+ x

]1

0

=
4

3
.

Hence,

x =
3

4
÷ 4

3
= 1.

The first moment about the x-axis is 28
15

, from Example 1 in section 13.7.3; and, therefore,

y =
28

15
÷ 4

3
=

7

5
.

4. Determine the position of the centroid of the region bounded in the first quadrant by
the x-axis, the lines x = 1, x = 2 and the curve whose equation is

y = xex.

10



Solution

-

6

x

y

O 1 2

The first moment about the y-axis is given by∫ 2

1
x2ex dx =

[
x2ex − 2xex + 2ex

]2
1
' 12.06,

using integration by parts (twice).

The area is given by ∫ 2

1
xex dx = [xex − ex]21 ' 7.39

using integration by parts (once).

Hence,

x ' 12.06÷ 7.39 ' 1.63

The first moment about the x-axis is approximately 33.20, from Example 2 in section
13.7.3; and so,

y ' 33.20÷ 7.39 ' 4.47

13.7.5 EXERCISES

Determine the position of the centroid of each of the following regions of the xy-plane:

1. Bounded in the first quadrant by the x-axis, the y-axis and the curve whose equation is

x2 + y2 = a2.

11



2. Bounded by the line x = 1 and the semi-circle whose equation is

(x− 1)2 + y2 = 4, x > 1.

3. Bounded in the fourth quadrant by the x-axis, the y-axis and the curve whose equation
is

y = 2x2 − 1.

4. Bounded in the first quadrant by the x-axis and the curve whose equation is

y = sin x.

5. Bounded in the first quadrant by the x-axis, the y-axis, the line x = 1 and the curve
whose equation is

y = xe−2x.

13.7.6 ANSWERS TO EXERCISES

1. (
4a

3π
,
4a

3π

)
.

2. (
11

3π
, 0
)

.

3. (
3
√

2

16
,−13

20

)
.

4. (
π

2
,
π

8

)
.

5.

(0.28, 0.04).
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UNIT 13.8 - INTEGRATION APPLICATIONS 8

FIRST MOMENTS OF A VOLUME

13.8.1 INTRODUCTION

Suppose that R denotes a region of space (with volume V ) and suppose that δV is the volume
of a small element of this region.

Then the “first moment” of R about a fixed plane, p, is given by

lim
δV→0

∑
R

hδV,

where h is the perpendicular distance, from p, of the element with volume, δV .
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13.8.2 FIRST MOMENT OF A VOLUME OF REVOLUTION ABOUT A PLANE
THROUGH THE ORIGIN, PERPENDICULAR TO THE X-AXIS.

Let us consider the volume of revolution about the x-axis of a region, in the first quadrant
of the xy-plane, bounded by the x-axis, the lines x = a, x = b and the curve whose equation
is

y = f(x).

1



-

6

δxa b
x

y

O

For a narrow ‘strip’ of width, δx, and height, y, parallel to the y-axis, the volume of revolution
will be a thin disc with volume πy2δx and all the elements of volume within it have the same
perpendicular distance, x, from the plane about which moments are being taken.

Hence the first moment of this disc about the given plane is x times the volume of the disc;
that is, x(πy2δx), implying that the total first moment is given by

lim
δx→0

x=b∑
x=a

πxy2δx =
∫ b

a
πxy2 dx.

Note:
For the volume of revolution about the y-axis of a region in the first quadrant, bounded by
the y-axis, the lines y = c, y = d and the curve whose equation is

x = g(y),

we may reverse the roles of x and y so that the first moment of the volume about a plane
through the origin, perpendicular to the y-axis, is given by

∫ d

c
πyx2 dy.

2



-

6

δy

c

d

x

y

O

EXAMPLES

1. Determine the first moment of a solid right-circular cylinder with height, a and radius
b, about one end.

Solution

- x

6

y

b

a
O

Let us consider the volume of revolution about the x-axis of the region, bounded in the
first quadrant of the xy-plane, by the x-axis, the y-axis and the lines x = a, y = b.

The first moment of the volume about a plane through the origin, perpendicular to the
x-axis, is given by

3



∫ a

0
πxb2 dx =

[
πx2b2

2

]a

0

=
πa2b2

2
.

2. Determine the first moment of volume, about its plane base, of a solid hemisphere with
radius a.

Solution

Let us consider the volume of revolution about the x-axis of the region, bounded in the
first quadrant, by the x-axis, y-axis and the circle whose equation is

x2 + y2 = a2.

- x

6

y

O











a

The first moment of the volume about a plane through the origin, perpendicular to the
x-axis is given by

∫ a

0
πx(a2 − x2) dx =

[
π(

(
a2x2

2
− x4

4

)]a

0

= π

(
a4

2
− a4

4

)
=

πa4

4
.

Note:
The symmetry of the solid figures in the above two examples shows that their first
moments about a plane through the origin, perpendicular to the y-axis would be zero.
This is because, for each yδV in the calculation of the total first moment, there will be
a corresponding −yδV .

In much the same way, the first moments of volume about the xy-plane (or indeed any
plane of symmetry) would also be zero.

4



13.8.3 THE CENTROID OF A VOLUME

Suppose R denotes a volume of revolution about the x-axis of a region of the xy-plane,
bounded by the x-axis, the lines x = a, x = b and the curve whose equation is

y = f(x).

Having calculated the first moment of R about a plane through the origin, perpendicular
to the x-axis (assuming that this is not a plane of symmetry), it is possible to determine a
point, (x, 0), on the x-axis with the property that the first moment is given by V x, where V
is the total volume of revolution about the x-axis.

The point is called the “centroid” or the “geometric centre” of the volume, and x is
given by

x =

∫ b
a πxy2 dx∫ b
a πy2dx

=

∫ b
a xy2 dx∫ b
a y2dx

.

Notes:

(i) The centroid effectively tries to concentrate the whole volume at a single point for the
purposes of considering first moments. It will always lie on the line of intersection of any
two planes of symmetry.

(ii) In practice, the centroid corresponds to the position of the centre of mass for a solid
with uniform density, whose shape is that of the volume of revolution which we have been
considering.

(iii) For a volume of revolution about the y-axis, from y = c to y = d, the centroid will lie
on the y-axis, and its distance, y, from the origin will be given by

y =

∫ d
c πyx2 dy∫ d
c πx2dy

=

∫ d
c yx2 dy∫ d
c x2dy

.

(iv) The first moment of a volume about a plane through its centroid will, by definition, be
zero. In particular, if we take the plane through the y-axis, perpendicular to the x-axis to
be parallel to the plane through the centroid, with x as the perpendicular distance from an
element, δV , to the plane through the y-axis, the first moment about the plane through the
centroid will be

5



∑
R

(x− x)δV =
∑
R

xδV − x
∑
R

δV = V x− V x = 0.

EXAMPLES

1. Determine the position of the centroid of a solid right-circular cylinder with height, a,
and radius, b.

Solution

- x

6

y

b

a
O

Using Example 1 in Section 13.8.2, the centroid will lie on the x-axis and the first
moment about a plane through the origin, perpendicular to the x-axis is πa2b2

2
.

Also, the volume is πb2a.

Hence,

x =
πa2b2

2

πb2a
=

a

2
,

as we would expect for a cylinder.

6



2. Determine the position of the centroid of a solid hemisphere with base-radius, a.

Solution

- x

6

y

O











a

Let us consider the volume of revolution about the x-axis of the region bounded in the
first quadrant by the x-axis, the y-axis and the circle whose equation is

x2 + y2 = a2

From Example 2 in Section 13.8.2, the centroid will lie on the x-axis and the first
moment of volume about a plane through the origin, perpendicular to the x-axis is πa4

4
.

Also, the volume of the hemisphere is 2
3
πa3 and so,

x =
2
3
πa3

πa4

4

=
3a

8
.

3. Determine the position of the centroid of the volume of revolution about the y-axis
of region bounded in the first quadrant by the x-axis, the y-axis and the curve whose
equation is

y = 1− x2.

7



Solution

-

6

x

y

O 1

1

Firstly, by symmetry, the centroid will lie on the y-axis.

Secondly, the first moment about a plane through the origin, perpendicular to the y-axis
is given by

∫ 1

0
πy(1− y) dy = π

[
y2

2
− y3

3

]1

0

=
π

6
.

Thirdly, the volume is given by

∫ 1

0
π(1− y) dy =

[
y − y2

2

]1

0

=
π

2
.

Hence,

y =
π

6
÷ π

2
=

1

3
.

4. Determine the position of the centroid of the volume of revolution about the x-axis of
the region, bounded in the first quadrant by the x-axis, the lines x = 1, x = 2 and the
curve whose equation is

y = ex.

8



Solution

-

6

x

y

O 1 2

Firstly, by symmetry, the centroid will lie on the x axis.

Secondly, the First Moment about a plane through the origin, perpendicular to the
x-axis is given by

∫ 2

1
πxe2x dx = π

[
xe2x

2
− e2x

4

]2

1

' 122.84,

using integration by parts.

The volume is given by

∫ 2

1
πe2x dx = π

[
e2x

2

]2

1

' 74.15

Hence,

x ' 122.84÷ 74.15 ' 1.66

13.8.4 EXERCISES

1. Determine the position of the centroid of the volume obtained when each of the following
regions of the xy-plane is rotated through 2π radians about the x-axis:

(a) Bounded in the first quadrant by the x-axis, the line x = 1 and the quarter-circle
represented by

(x− 1)2 + y2 = 4, x > 1, y > 0;

9



(b) Bounded in the first quadrant by the x-axis, the y-axis and the curve whose equation
is

y = 1− 2x2;

(c) Bounded in the first quadrant by the x-axis, the y-axis, the line x = π
2

and the
curve whose equation is

y = sin x;

(d) Bounded in the first quadrant by the x-axis, the y-axis, the line x = 1 and the
curve whose equation is

y =
√

xe−x.

2. A solid right-circular cone, whose vertex is at the origin, has, for its central axis, the
part of the y-axis between y = 0 and y = h. Determine the position of the centroid of
the cone.

13.8.5 ANSWERS TO EXERCISES

1. (a)

x = 1.75;

(b)

x ' 0.22;

(c)

x ' 1.10;

(d)

x ' 0.36

2.

y =
3h

4
.

10
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UNIT 13.9 - INTEGRATION APPLICATIONS 9

FIRST MOMENTS OF A SURFACE OF REVOLUTION

13.9.1 INTRODUCTION

Suppose that C denotes an arc (with length s) in the xy-plane of cartesian co-ordinates, and
suppose that δs is the length of a small element of this arc.

Then, for the surface obtained when the arc is rotated through 2π radians about the x-axis,
the “first moment” about a plane through the origin, perpendicular to the x-axis, is given
by

lim
δs→0

∑
C

2πxyδs,

where x is the perpendicular distance, from the plane of moments, of the thin band, with
surface area 2πyδs, so generated.

13.9.2 INTEGRATION FORMULAE FOR FIRST MOMENTS

(a) Let us consider an arc of the curve whose equation is

y = f(x),

joining two points, P and Q, at x = a and x = b, respectively.

-

6

δxa b
x

y

O

P

Q

δs
δy rr

The arc may be divided up into small elements of typical length, δs, by using neighbouring

1



points along the arc, separated by typical distances of δx (parallel to the x-axis) and δy
(parallel to the y-axis).

From Pythagoras’ Theorem,

δs '
√

(δx)2 + (δy)2 =

√√√√1 +

(
δy

δx

)2

δx;

so that, for the surface of revolution of the arc about the x-axis, the first moment becomes

lim
δx→0

x=b∑
x=a

2πxy

√√√√1 +

(
δy

δx

)2

δx =
∫ b

a
2πxy

√√√√1 +

(
dy

dx

)2

dx.

Note:
If the curve is given parametrically by

x = x(t), y = y(t),

then

dy

dx
=

dy
dt
dx
dt

.

Hence,

√√√√1 +

(
dy

dx

)2

=

√(
dx
dt

)2
+
(

dy
dt

)2

dx
dt

,

provided that dx
dt

is positive on the arc being considered. If not, then the above line needs
to be prefixed by a negative sign.

2



From the technique of integration by substitution,

∫ b

a
2πxy

√√√√1 +

(
dy

dx

)2

dx =
∫ t2

t1
2πxy

√√√√1 +

(
dy

dx

)2

.
dx

dt
dt,

where t = t1 when x = a and t = t2 when x = b.

We may conclude that the first moment about the plane through the origin, perpendicular
to the x-axis is given by

First Moment = ±
∫ t2

t1
2πxy

√√√√(dx

dt

)2

+

(
dy

dt

)2

dt,

according as dx
dt

is positive or negative.

(b) For an arc whose equation is

x = g(y),

contained between y = c and y = d, we may reverse the roles of x and y in the previous
section so that the first moment about a plane through the origin, perpendicular to the
y-axis is given by

∫ d

c
2πyx

√√√√1 +

(
dx

dy

)2

dy.

3
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δy

c

d

x

y

O

δs

δx
r r

R

S

Note:
If the curve is given parametrically by

x = x(t), y = y(t),

where t = t1 when y = c and t = t2 when y = d, then the first moment about a plane
through the origin, perpendicular to the y-axis, is given by

First moment = ±
∫ t2

t1
2πyx

√√√√(dx

dt

)2

+

(
dy

dt

)2

dt,

according as dy
dt

is positive or negative.

EXAMPLES

1. Determine the first moment about a plane through the origin, perpendicular to the
x-axis, for the hemispherical surface of revolution (about the x-axis) of the arc of the
circle whose equation is

x2 + y2 = a2,

lying in the first quadrant.

4



Solution

- x

6

y

O











a

Using implicit differentiation, we have

2x + 2y
dy

dx
= 0

and hence, dy
dx

= −x
y
.

The first moment about the specified plane is therefore given by

∫ a

0
2πxy

√
1 +

x2

y2
dx =

∫ a

0
2πxy

√
x2 + y2

y2
dx.

But x2 + y2 = a2, and so the first moment becomes∫ a

0
2πax dx = [πax2]a0 = πa3.

2. Determine the first moments about planes through the origin, (a) perpendicular to the
x-axis and (b) perpendicular to the y-axis, of the first quadrant arc of the curve with
parametric equations

x = acos3θ, y = asin3θ.

5



Solution

-

6

x

y

O

Firstly, we have

dx

dθ
= −3acos2θ sin θ and

dy

dθ
= 3asin2θ cos θ.

Hence, the first moment about the x-axis is given by

−
∫ 0

π
2

2πxy
√

9a2cos4θsin2θ + 9a2sin4θcos2θ dθ,

which, on using cos2θ + sin2θ ≡ 1, becomes

∫ π
2

0
2πa2cos3θsin3θ.3a cos θ sin θ dθ =

∫ π
2

0
6πa3cos4θsin4θ dθ.

Using 2 sin θ cos θ ≡ sin 2θ, the integral reduces to

3πa3

8

∫ π
2

0
sin42θ dθ,

which, by the methods of Unit 12.7, gives

3πa3

32

∫ π
2

0

(
1− 2 cos 4θ +

1 + cos 8θ

2

)
dθ =

3πa3

32

[
3θ

2
− sin 4θ

2
+

sin 8θ

16

]π
2

0

=
9πa3

128
.

By symmetry, or by direct integration, the first moment about a plane through the
origin, perpendicular to the y-axis is also 9πa3

128
.

6



13.9.3 THE CENTROID OF A SURFACE OF REVOLUTION

Having calculated the first moment of a surface of revolution about a plane through the
origin, perpendicular to the x-axis, it is possible to determine a point, (x, 0), on the x-axis
with the property that the first moment is given by Sx, where S is the total surface area.

The point is called the “centroid” or the “geometric centre” of the surface of revolution
and, for the surface of revolution of the arc of the curve whose equation is y = f(x), between
x = a and x = b, the value of x is given by

x =

∫ b
a 2πxy

√
1 +

(
dy
dx

)2
dx∫ b

a 2πy

√
1 +

(
dy
dx

)2
dx

=

∫ b
a xy

√
1 +

(
dy
dx

)2
dx∫ b

a y

√
1 +

(
dy
dx

)2
dx

.

Note:
The centroid effectively tries to concentrate the whole surface at a single point for the
purposes of considering first moments. In practice, it corresponds to the position of the
centre of mass of a thin sheet, for example, with uniform density.

EXAMPLES

1. Determine the position of the centroid of the surface of revolution (about the x-axis) of
the arc of the circle whose equation is

x2 + y2 = a2,

lying in the first quadrant.

7



Solution

- x

6

y

O











a

From Example 1 of Section 13.9.2, we know that the first moment of the surface about
a plane through the origin, perpendicular to the the x-axis is equal to πa3.

Also, the total surface area is

∫ a

0
2πy

√
1 +

x2

y2
dx =

∫ a

0
2πa dx = 2πa2,

which implies that

x =
πa3

2πa2
=

a

2
.

2. Determine the position of the centroid of the surface of revolution (about the x-axis) of
the first quadrant arc of the curve with parametric equations

x = acos3θ, y = asin3θ.

8



Solution

-

6

x

y

O

We know from Example 2 of Section 13.9.2 that that the first moment of the surface
about a plane through the origin, perpendicular to the x-axis is equal to 9πa3

128
.

Also, the total surface area is given by

−
∫ 0

π
2

2πasin3θ.3a cos θ sin θ dθ =
∫ π

2

0
3a2sin4θ cos θ dθ = 3πa2

[
sin5θ

5

]π
2

0

=
3πa2

5
.

Thus,

x =
15a

128
.

9



13.9.4 EXERCISES

1. Determine the first moment, about a plane through the origin, perpendicular to the x-
axis, of the surface of revolution (about the x-axis) of the straight-line segment joining
the origin to the point (3, 4).

2. Determine the first moment about a plane through the origin, perpendicular to the
x-axis, of the surface of revolution (about the x-axis) of the arc of the curve whose
equation is

y2 = 4x,

lying between x = 0 and x = 1.

3. Determine the first moment about a plane through the origin, perpendicular to the
y-axis, of the surface of revolution (about the y-axis) of the arc of the curve whose
equation is

y2 = 4(x− 1),

lying between y = 2 and y = 4.

4. Determine the first moment, about a plane through the origin, perpendicular to the
y-axis, of the surface of revolution (about the y-axis) of the arc of the curve whose
parametricc equations are

x = 2 cos t, y = 3 sin t,

joining the point (2, 0) to the point (0, 3).

5. Determine the position of the centroid of a hollow right-circular cone with height h.

6. For the curve whose equation is

9y2 = x(3− x)2,

show that

dy

dx
=

1− x

2
√

x
.

Hence, show that the centroid of the surface obtained when the first quadrant arch of

this curve is rotated through 2π radians about the x-axis lies at the point
(

5
4
, 0
)
.

10



13.9.5 ANSWERS TO EXERCISES

1.

40π.

2.

4π

[
12
√

2

5
− 4

15

]
' 39.3

3. 8π

5

(
1 +

y2

4

) 5
2

4

2

' 41.98

4. [
−4π

5

(
4 + 5cos2t

) 3
2

]π
2

0
' 47.75

5. Along the central axis, at a distance of 2h
3

from the vertex.

6.

First moment =
15π

4
Surface Area = 3π.

11
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UNIT 13.10 - INTEGRATION APPLICATIONS 10

SECOND MOMENTS OF AN ARC

13.10.1 INTRODUCTION

Suppose that C denotes an arc (with length s) in the xy-plane of cartesian co-ordinates, and
suppose that δs is the length of a small element of this arc.

Then the “second moment” of C about a fixed line, l, in the plane of C is given by

lim
δs→0

∑
C

h2δs,

where h is the perpendicular distance, from l, of the element with length δs.

































Q
Q

Q
Q

Q
Q

Q
QQ

δs
l

h

C

rr

13.10.2 THE SECOND MOMENT OF AN ARC ABOUT THE Y-AXIS

Let us consider an arc of the curve whose equation is

y = f(x),

joining two points, P and Q, at x = a and x = b, respectively.

1



-

6

δxa b
x

y

O

P

Q

δs
δy rr

The arc may be divided up into small elements of typical length, δs, by using neighbouring
points along the arc, separated by typical distances of δx (parallel to the x-axis) and δy
(parallel to the y-axis).

The second moment of each element about the y-axis is x2 times the length of the element;
that is, x2δs, implying that the total second moment of the arc about the y-axis is given by

lim
δs→0

∑
C

x2δs.

But, by Pythagoras’ Theorem,

δs '
√

(δx)2 + (δy)2 =

√√√√1 +

(
δy

δx

)2

δx,

so that the second moment of arc becomes

lim
δx→0

x=b∑
x=a

x2

√√√√1 +

(
δy

δx

)2

δx =
∫ b

a
x2

√√√√1 +

(
dy

dx

)2

dx.

Note:
If the curve is given parametrically by

x = x(t), y = y(t),

2



then, using the same principles as in Unit 13.4, we may conclude that the second moment
of the arc about the y-axis is given by

±
∫ t2

t1
x2

√√√√(dx

dt

)2

+

(
dy

dt

)2

dt,

according as dx
dt

is positive or negative.

13.10.3 THE SECOND MOMENT OF AN ARC ABOUT THE X-AXIS

(a) For an arc whose equation is

y = f(x),

contained between x = a and x = b, the second moment about the x-axis will be

∫ b

a
y2

√√√√1 +

(
dy

dx

)2

dx.

Note:
If the curve is given parametrically by

x = x(t), y = y(t),

then, using the same principles as in Unit 13.4, the second moment of the arc about the
x-axis is given by

±
∫ t2

t1
y2

√√√√(dx

dt

)2

+

(
dy

dt

)2

dt,

according as dx
dt

is positive or negative.

3



(b) For an arc whose equation is

x = g(y),

contained between y = c and y = d, we may reverse the roles of x and y in section 13.10.2
so that the second moment about the x-axis is given by

∫ d

c
y2

√√√√1 +

(
dx

dy

)2

dy.

-

6

δy

c

d

x

y

O

δs

δx
r r

R

S

Note:
If the curve is given parametrically by

x = x(t), y = y(t),

then, using the same principles as in Unit 13.4, we may conclude that the second moment
of the arc about the x-axis is given by

±
∫ t2

t1
y2

√√√√(dx

dt

)2

+

(
dy

dt

)2

dt,

according as dy
dt

is positive or negative and where t = t1 when y = c and t = t2 when y = d.

4



EXAMPLES

1. Determine the second moments about the x-axis and the y-axis of the arc of the circle
whose equation is

x2 + y2 = a2,

lying in the first quadrant.

Solution

- x

6

y

O











a

Using implicit differentiation, we have

2x + 2y
dy

dx
= 0

and hence, dy
dx

= −x
y
.

The second moment about the y-axis is therefore given by

∫ a

0
x2

√
1 +

x2

y2
dx =

∫ a

0

x2

y

√
x2 + y2 dx.

But x2 + y2 = a2 and, hence,

second moment =
∫ a

0

ax2

y
dx.

5



Making the substitution x = a sin u gives

second moment =
∫ π

2

0
a3sin2u du = a3

∫ π
2

0

1− cos 2u

2
du = a3

[
u

2
− sin 2u

4

]π
2

0
=

πa3

4
.

By symmetry, the second moment about the x-axis will also be πa3

4
.

2. Determine the second moments about the x-axis and the y-axis of the first quadrant
arc of the curve with parametric equations

x = acos3θ, y = asin3θ.

Solution

-

6

x

y

O

Firstly, we have

dx

dθ
= −3acos2θ sin θ and

dy

dθ
= 3asin2θ cos θ.

Hence, the second moment about the y-axis is given by

−
∫ 0

π
2

x2
√

9a2cos4θsin2θ + 9a2sin4θcos2θ dθ,

which, on using cos2θ + sin2θ ≡ 1, becomes

∫ π
2

0
a2cos6θ.3a cos θ sin θ dθ

6



= 3a3
∫ π

2

0
cos7θ sin θ dθ

= 3a2

[
−cos8θ

8

]π
2

0

=
3a3

8
.

Similarly, the second moment about the x-axis is given by

∫ π
2

0
y2

√√√√(dx

dθ

)2

+

(
dy

dθ

)2

dθ =
∫ π

2

0
a2sin6θ.(3a cos θ sin θ) dθ

= 3a3
∫ π

2

0
sin7θ cos θ dθ = 3a3

[
sin8θ

8

]π
2

0

=
3a3

8
,

though, again, this second result could be deduced, by symmetry, from the first.

13.10.4 THE RADIUS OF GYRATION OF AN ARC

Having calculated the second moment of an arc about a certain axis it is possible to determine
a positive value, k, with the property that the second moment about the axis is given by
sk2, where s is the total length of the arc.

We simply divide the value of the second moment by s in order to obtain the value of k2

and, hence, the value of k.

The value of k is called the “radius of gyration” of the given arc about the given axis.

Note:
The radius of gyration effectively tries to concentrate the whole arc at a single point for the
purposes of considering second moments; but, unlike a centroid, this point has no specific
location.

7



EXAMPLES

1. Determine the radius of gyration, about the y-axis, of the arc of the circle whose equation
is

x2 + y2 = a2,

lying in the first quadrant.

Solution

- x

6

y

O











a

From Example 1 in Section 13.10.3, we know that the Second Moment of the arc about
the y-axis is equal to πa3

4
.

Also, the length of the arc is πa
2

, which implies that the radius of gyration is

√
πa3

4
× 2

πa
=

a√
2
.

2. Determine the radius of gyration, about the y-axis, of the first quadrant arc of the curve
with parametric equations

x = acos3θ, y = asin3θ.

8



Solution

-

6

x

y

O

From Example 2 in Section 13.10.3, we know that

dx

dθ
= −3acos2θ sin θ and

dy

dθ
= 3asin2θ cos θ

and that the second moment of the arc about the y-axis is equal to 3a3

8
.

Also, the length of the arc is given by

−
∫ a

π
2

√√√√(dx

dθ

)2

+

(
dy

dθ

)2

dθ =
∫ π

2

0

√
9a2cos4θsin2θ + 9a2sin4θcos2θ dθ.

This simplifies to

3a
∫ π

2

0
cos θ sin θ dθ = 3a

[
sin2θ

2

]π
2

0

=
3a

2
.

Thus, the radius of gyration is √
3a3

8
× 2

3a
=

a

2
.

9



13.10.5 EXERCISES

1. Determine the second moments about (a) the x-axis and (b) the y-axis of the straight
line segment with equation

y = 2x + 1,

lying between x = 0 and x = 3.

2. Determine the second moment about the y-axis of the first-quadrant arc of the curve
whose equation is

25y2 = 4x5,

lying between x = 0 and x = 2.

3. Determine, correct to two places of decimals, the second moment, about the x-axis, of
the arc of the curve whose equation is

y = ex,

lying between x = 0.1 and x = 0.5.

4. Given that ∫ √
x2 − 1 dx =

1

2

(
x
√

x2 − 1− ln(x +
√

x2 − 1)
)

+ C,

determine, correct to two places of decimals, the second moment, about the x-axis, of
the arc of the curve whose equation is

y2 = 8x,

lying between x = 0 and x = 1.

5. Verify, using integration, that the radius of gyration, about the y-axis, of the straight
line segment defined by the equation

y = 3x + 2,

from x = 0 to x = 1 is 1√
3
.

10



6. Determine the radius of gyration about the x-axis of the arc of the circle given para-
metrically by

x = 5 cos θ, y = 5 sin θ,

from θ = 0 to θ = π
4
.

7. For the curve whose equation is

9y2 = x(3− x)2,

show that

dy

dx
=

1− x

2
√

x
.

Hence, determine, correct to three significant figures, the radius of gyration, about the
y-axis, of the first quadrant arch of this curve.

13.10.6 ANSWERS TO EXERCISES

1.

(a)
9
√

5

2
(b) 12

√
5.

2.
52

9
' 5.78

3.

1.29

4.

8.59

5.

Second moment =

√
10

3
Length =

√
10.

6.

k =

√
125(π − 2)

10π
' 2.13

7.

k ' 1.68

11
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UNIT 13.11 - INTEGRATION APPLICATIONS 11

SECOND MOMENTS OF AN AREA (A)

13.11.1 INTRODUCTION

Suppose that R denotes a region (with area A) of the xy-plane in cartesian co-ordinates, and
suppose that δA is the area of a small element of this region.

Then the “second moment” of R about a fixed line, l, not necessarily in the plane of
R, is given by

lim
δA→0

∑
R

h2δA,

where h is the perpendicular distance from l of the element with area, δA.
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13.11.2 THE SECOND MOMENT OF AN AREA ABOUT THE Y-AXIS

Let us consider a region in the first quadrant of the xy-plane bounded by the x-axis, the
lines x = a, x = b and the curve whose equation is

y = f(x).

1



-

6

δxa b
x

y

O

The region may be divided up into small elements by using a network consisting of neigh-
bouring lines parallel to the y-axis and neighbouring lines parallel to the x-axis.

But all of the elements in a narrow ‘strip’, of width δx and height y (parallel to the y-axis),
have the same perpendicular distance, x, from the y-axis.

Hence the second moment of this strip about the y-axis is x2 times the area of the strip; that
is, x2(yδx), implying that the total second moment of the region about the y-axis is given
by

lim
δx→0

x=b∑
x=a

x2yδx =
∫ b

a
x2y dx.

Note:
Second moments about the x-axis will be discussed mainly in the next section of this Unit;
but we note that, for a region of the first quadrant, bounded by the y-axis, the lines y = c,
y = d and the curve whose equation is

x = g(y),

we may reverse the roles of x and y so that the second moment about the x-axis is given by

∫ d

c
y2x dy.

2



-

6

δy

c

d

x

y

O

EXAMPLES

1. Determine the second moment of a rectangular region with sides of lengths, a and b,
about the side of length b.

Solution

- x

6

y

b

a
O

The second moment about the y-axis is given by

∫ a

0
x2b dx =

[
x3b

3

]a

0

=
1

3
a3b.

3



2. Determine the second moment about the y-axis of the semi-circular region, bounded in
the first and fourth quadrants, by the y-axis and the circle whose equation is

x2 + y2 = a2.

Solution

- x

6

y

O











a

Since there will be equal contributions from the upper and lower halves of the region,
the second moment about the y-axis is given by

2
∫ a

0
x2
√

a2 − x2 dx = 2
∫ π

2

0
a2sin2θ.a cos θ.a cos θdθ,

if we substitute x = a sin θ.

This simplifies to

2a4
∫ π

2

0

sin22θ

4
dθ =

a4

2

∫ π
2

0

1− cos 4θ

2
dθ

=
a4

4

[
θ − sin 4θ

4

]π
2

0

=
πa4

8
.

13.11.3 THE SECOND MOMENT OF AN AREA ABOUT THE X-AXIS

In the first example of the previous section, a formula was established for the second moment
of a rectangular region about one of its sides. This result may now be used to determine the
second moment about the x-axis, of a region enclosed, in the first quadrant, by the x-axis,
the lines x = a, x = b and the curve whose equation is y = f(x).

4



-

6

δxa b
x

y

O

If a narrow strip of width δx and height y is regarded, approximately, as a rectangle, its
second moment about the x-axis is 1

3
y3δx. Hence the second moment of the whole region

about the x-axis is given by

lim
δx→0

x=b∑
x=a

1

3
y3δx =

∫ b

a

1

3
y3 dx.

EXAMPLES

1. Determine the second moment about the x-axis of the region bounded, in the first
quadrant, by the x-axis, the y-axis, the line x = 1 and the line whose equation is

y = x + 1.

5



Solution

-

6

x

y

�
�

�

1
O

Second moment =
∫ 1

0

1

3
(x + 1)3 dx

=
1

3

∫ 1

0
(x3 + 3x2 + 3x + 1) dx =

1

3

[
x4

4
+ x3 + +

3x2

2
+ x

]1

0

=
1

3

(
1

4
+ 1 +

3

2
+ 1

)
=

5

4
.

2. Determine the second moment about the x-axis of the region, bounded in the first
quadrant, by the x-axis, the y-axis, the line x = 1 and the curve

y = xex.

6



Solution

-

6

x

y

O 1

Second moment =
∫ 1

0

1

3
x3e3x dx

=
1

3

[
x3 e3x

3

]1

0

−
∫ 1

0
x2e3x dx



=
1

3

[
x3 e3x

3

]1

0

−
[
x2 e3x

3

]1

0

+
∫ 1

0
2x

e3x

3
dx



=
1

3

[
x3 e3x

3

]1

0

−
[
x2 e3x

3

]1

0

+
2xe3x

9
− 2

3

∫ 1

0

e3x

3
dx

 .

That is,

1

3

[
x3 e3x

3
− x2 e3x

3
+

2xe3x

9
− 2e3x

27

]1

0

=
4e3 + 2

81
' 1.02

Note:
The Second Moment of an area about a certain axis is closely related to its “moment of
inertia” about that axis. In fact, for a thin plate with uniform density, ρ, the moment of
inertia is ρ times the second moment of area, since multiplication by ρ, of elements of area,
converts them into elements of mass.

7



13.11.7 EXERCISES

Determine the second moment of each of the following regions of the xy-plane about the axis
specified:

1. Bounded in the first quadrant by the x-axis, the y-axis and the curve whose equation is

y = 1− 2x2.

Axis: The y-axis.

2. Bounded in the first quadrant by the x-axis and the curve whose equation is

y = sin x.

Axis: The x-axis.

3. Bounded in the first quadrant by the x-axis, the y-axis, the line x = 1 and the curve
whose equation is

y = e−2x.

Axis: The x-axis

4. Bounded in the first quadrant by the x-axis, the y-axis, the line x = 1 and the curve
whose equation is

y = e−2x.

Axis: The y-axis.

13.11.8 ANSWERS TO EXERCISES

1. √
2

30
.

2.
4

9
.

3.

0.055, approximately.

4.

0.083, approximately.
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UNIT 13.12 - INTEGRATION APPLICATIONS 12

SECOND MOMENTS OF AN AREA (B)

13.12.1 THE PARALLEL AXIS THEOREM

Suppose that Mg denotes the second moment of a given region, R, about an axis, g, through
its centroid.

Suppose also that Ml denotes the second moment of R about an axis, l, which is parallel to
the first axis, in the same plane as R and having a perpendicular distance of d from the first
axis.
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We have

Ml =
∑
R

(h + d)2δA =
∑
R

(h2 + 2hd + d2).

That is,

Ml =
∑
R

h2δA + 2d
∑
R

hδA + d2
∑
R

δA = Mg + Ad2,

since the summation,
∑

R hδA, is the first moment about the an axis through the centroid
and therefore zero; (see Unit 13.7, section 13.7.4).

1



The Parallel Axis Theorem states that

Ml = Mg + Ad2.

EXAMPLES

1. Determine the second moment of a rectangular region about an axis through its centroid,
parallel to one side.

Solution

- x

6

y

b

a
O

For a rectangular region with sides of length a and b, the second moment about the side
of length b is a3b

3
from Example 1 in the previous Unit, section 13.11.2.

The perpendicular distance between the two axes is then a
2
, so that the required second

moment, Mg is given by

a3b

3
= Mg + ab

(
a

2

)2

= Mg +
a3b

4

Hence,

Mg =
a3b

12
.

2. Determine the second moment of a semi-circular region about an axis through its cen-
troid, parallel to its diameter.

2



Solution

- x

6

y

O











a

The second moment of the semi-circular region about its diameter is πa4

8
, from Example

2 in the previous Unit, section 13.11.2.

Also the position of the centroid, from Example 2 in Unit 13.7, section 13.7.4, is a
distance of 4a

3π
from the diameter, along the radius which perpendicular to it.

Hence,

πa4

8
= Mg +

πa2

2
.
(

4a

3π

)2

= Mg +
8a4

9π2
.

That is,

Mg =
πa4

8
− 8a4

9π2
.

13.12.2 THE PERPENDICULAR AXIS THEOREM

Suppose l1 and l2 are two straight lines, at right-angles to each other, in the plane of a region
R with area A and suppose h1 and h2 are the perpendicular distances from these two lines,
respectively, of an element δA in R.
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The second moment about l1 is given by

M1 =
∑
R

h2
1δA

and the second moment about l2 is given by

M2 =
∑
R

h2
2δA.

Adding these two together gives the second moment about an axis, perpendicular to the
plane of R and passing through the point of intersection of l1 and l2. This is because the
square of the perpendicular distance, h3, of δA from this new axis is given, from Pythagoras’s
Theorem, by

h2
3 = h2

1 + h2
2.

EXAMPLES

1. Determine the second moment of a rectangular region, R, with sides of length a and b,
about an axis through one corner, perpendicular to the plane of R.

4



Solution

- x

6

y

R
b

a
O

Using Example 1 in the previous Unit, section 13.11.2, the required

second moment is

1

3
a3b +

1

3
b3a =

1

3
ab(a2 + b2).

2. Determine the second moment of a circular region, R, with radius a, about an axis
through its centre, perpendicular to the plane of R.

Solution

- x

6

y













a

R

O

The second moment of R about a diameter is, from Example 2 in the previous Unit,
section 13.11.2, equal to πa4

4
; that is, twice the value of the second moment of a semi-

circular region about its diameter.

5



The required second moment is thus

πa4

4
+

πa4

4
=

πa4

2
.

13.12.3 THE RADIUS OF GYRATION OF AN AREA

Having calculated the second moment of a two dimensional region about a certain axis it is
possible to determine a positive value, k, with the property that the second moment about
the axis is given by Ak2, where A is the total area of the region.

We simply divide the value of the second moment by A in order to obtain the value of k2

and hence the value of k.

The value of k is called the “radius of gyration” of the given region about the given axis.

Note:
The radius of gyration effectively tries to concentrate the whole area at a single point for the
purposes of considering second moments; but, unlike a centroid, this point has no specific
location.

EXAMPLES

1. Determine the radius of gyration of a rectangular region, R, with sides of lengths a and
b about an axis through one corner, perpendicular to the plane of R.

Solution

- x

6

y

b

a
O

R

6



Using Example 1 from the previous section, the second moment is

1

3
ab(a2 + b2)

and, since the area itself is ab, we obtain

k =
√

a2 + b2.

2. Determine the radius of gyration of a circular region, R, about an axis through its
centre, perpendicular to the plane of R.

Solution

- x

6

y













a

R

O

From Example 2 in the previous section, the second moment about the given axis is πa4

2
and, since the area itself is πa2, we obtain

k =
a√
2
.

7



13.12.4 EXERCISES

Determine the radius of gyration of each of the following regions of the xy-plane about the
axis specified:

1. Bounded in the first quadrant by the x-axis, the y-axis and the lines x = a, y = b.

Axis: Through the point
(

a
2
, b

2

)
, perpendicular to the xy-plane.

2. Bounded in the first quadrant by the x-axis, the y-axis and the lines x = a, y = b.

Axis: The line x = 4a.

3. Bounded in the first quadrant by the x-axis, the y-axis and the curve whose equation is

x2 + y2 = a2.

Axis: Through the origin, perpendicular to the xy-plane.

4. Bounded in the first quadrant by the x-axis, the y-axis and the curve whose equation is

x2 + y2 = a2.

Axis: The line x = a.

13.12.5 ANSWERS TO EXERCISES

1.

1

12

(
a2 + b2

)
.

2.

7a√
3
.

3.

a√
2
.

4.

a
√

5

2
.
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UNIT 13.13 - INTEGRATION APPLICATIONS 13

SECOND MOMENTS OF A VOLUME (A)

13.13.1 INTRODUCTION

Suppose that R denotes a region (with volume V ) in space and suppose that δV is the
volume of a small element of this region.

Then the “second moment” of R about a fixed line, l, is given by

lim
δV→0

∑
R

h2δV,

where h is the perpendicular distance from l of the element with volume δV .
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EXAMPLE

Determine the second moment, about its own axis, of a solid right-circular cylinder with
height, h, and radius, a.

1



Solution

h

r

In a thin cylindrical shell with internal radius, r, and thickness, δr, all of the elements of
volume have the same perpendicular distance, r, from the axis of moments.

Hence the second moment of this shell will be the product of its volume and r2; that is,
r2(2πrhδr).

The total second moment is therefore given by

lim
δr→0

r=a∑
r=0

r2(2πrhδr) =
∫ a

0
2πhr3 dr =

πa4h

2
.

13.13.2 THE SECOND MOMENT OF A VOLUME OF REVOLUTION ABOUT
THE Y-AXIS

Let us consider a region in the first quadrant of the xy-plane, bounded by the x-axis, the
lines x = a, x = b and the curve whose equation is

y = f(x).

2



-

6

δxa b
x

y

O

The volume of revolution of a narrow ‘strip’, of width, δx, and height, y, (parallel to the
y-axis), is a cylindrical ‘shell’, of internal radius x, height, y, and thickness, δx.

Hence, from the example in the previous section, its second moment about the y-axis is
2πx3yδx.

Thus, the total second moment about the y-axis is given by

lim
δx→0

x=b∑
x=a

2πx3yδx =
∫ b

a
2πx3y dx.

Note:
Second moments about the x-axis will be discussed mainly in the next section of this Unit;
but we note that, for the volume of revolution, about the x-axis, of a region in the first
quadrant bounded by the y-axis, the lines y = c, y = d and the curve whose equation is

x = g(y),

we may reverse the roles of x and y so that the second moment about the x-axis is given by

∫ d

c
2πy3x dy.

3



-

6

c

d

x

y

O

δy

EXAMPLE

Determine the second moment, about a diameter, of a solid sphere with radius a.

Solution

We may consider, first, the volume of revolution about the y-axis of the region, bounded in
the first quadrant, by the x-axis, the y-axis and the circle whose equation is

x2 + y2 = a2,

then double the result obtained.

- x

6

y

O











a

4



The total second moment is given by

2
∫ a

0
2πx3

√
a2 − x2 dx = 4π

∫ π
2

0
a3sin3θ.a cos θ.a cos θdθ,

if we substitute x = a sin θ.

This simplifies to

4πa5
∫ π

2

0
sin3θ cos2θdθ = 4π

∫ π
2

0

(
cos2θ − cos4θ

)
sin θdθ,

if we make use of the trigonometric identity

sin2θ ≡ 1− cos2θ.

The total second moment is now given by

4πa5

[
−cos3θ

3
+

cos5θ

5

]π
2

0

= 4πa5
(

1

3
− 1

5

)
=

8πa5

15
.

13.13.3 THE SECOND MOMENT OF A VOLUME OF REVOLUTION ABOUT
THE X-AXIS

In the introduction to this Unit, a formula was established for the second moment of a solid
right-circular cylinder about its own axis. This result may now be used to determine the
second moment about the x-axis for the volume of revolution about this axis of a region
enclosed in the first quadrant by the x-axis, the lines x = a, x = b and the curve whose
equation is

y = f(x).

5



-

6

δxa b
x

y

O

The volume of revolution about the x-axis of a narrow strip, of width δx and height y, is a

cylindrical ‘disc’ whose second moment about the x-axis is πy4δx
2

. Hence the second moment
of the whole region about the x-axis is given by

lim
δx→0

x=b∑
x=a

πy4

2
δx =

∫ b

a

πy4

2
dx.

EXAMPLE

Determine the second moment about the x-axis for the volume of revolution about this axis
of the region bounded in the first quadrant by the x-axis, the y-axis, the line x = 1 and the
line whose equation is

y = x + 1.

6



Solution

-

6

x

y

�
�

�

1
O

Second moment =
∫ 1

0

π(x + 1)4

2
dx =

[
π

(x + 1)4

10

]1

0

=
31π

10
.

Note:
The second moment of a volume about a certain axis is closely related to its “moment of
inertia” about that axis. In fact, for a solid, with uniform density, ρ, the Moment of Inertia
is ρ times the second moment of volume, since multiplication by ρ of elements of volume
converts them into elements of mass.

13.13.4 EXERCISES

1. Determine the second moment about a diameter of a circular disc with small thickness,
t, and radius, a.

2. Determine the second moment, about the axis specified, for the volume of revolution of
each of the following regions of the xy-plane about this axis:

(a) Bounded in the first quadrant by the x-axis, the y-axis and the curve whose equation
is

y = 1− 2x2.

Axis: The y-axis.

(b) Bounded in the first quadrant by the x-axis and the curve whose equation is

y2 = sin x.

Axis: The x-axis.

7



(c) Bounded in the first quadrant by the x-axis, the y-axis, the line x = 1 and the
curve whose equation is

y = e−2x.

Axis: The x-axis

(d) Bounded in the first quadrant by the x-axis, the y-axis, the line x = 1 and the
curve whose equation is

y = e−2x.

Axis: The y-axis.

13.13.5 ANSWERS TO EXERCISES

1.

πa4t

4
.

2. (a)

π

24
.

(b)

π2

4
.

(c)

0.196, approximately.

(d)

0.337, approximately.
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UNIT 13.14 - INTEGRATION APPLICATIONS 14

SECOND MOMENTS OF A VOLUME (B)

13.14.1 THE PARALLEL AXIS THEOREM

Suppose that Mg denotes the second moment of a given region, R, about an axis, g, through
its centroid.

Suppose also that Ml denotes the second moment of R about an axis, l, which is parallel to
the first axis and has a perpendicular distance of d from the first axis.
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In the above three-dimensional diagram, we have

Ml =
∑
R

r2
l δV and Mg =

∑
R

r2
gδV.

But, from the Cosine Rule,

r2
l = r2

g + d2 − 2rgd cos(180◦ − θ) = r2
g + d2 + 2rgd cos θ.

Hence,

r2
l = r2

g + d2 + 2dh

1



and so

∑
R

r2
l δV =

∑
R

r2
gδV +

∑
R

d2δV + 2d
∑
R

hδV.

Finally, the expression

∑
R

hδV

represents the first moment of R about a plane through the centroid, which is perpendicular
to the plane containing l and g. Such first moment will be zero and hence,

Ml = Mg + V d2.

EXAMPLE

Determine the second moment of a solid right-circular cylinder about one of its generators
(that is, a line in the surface, parallel to the central axis).

Solution

h

r

The second moment of the cylinder about the central axis was shown, in Unit 13.13, section
13.13.2, to be πa4h

2
; and, since this axis and the generator are a distance a apart, the required

second moment is given by

πa4h

2
+ (πa2h)a2 =

3πa4h

2
.

2



13.14.2 THE RADIUS OF GYRATION OF A VOLUME

Having calculated the second moment of a three-dimensional region about a certain axis, it
is possible to determine a positive value, k, with the property that the second moment about
the axis is given by V k2, where V is the total volume of the region.

We simply divide the value of the second moment by V in order to obtain the value of k2

and hence, the value of k.

The value of k is called the “radius of gyration” of the given region about the given axis.

Note:

The radius of gyration effectively tries to concentrate the whole volume at a single point
for the purposes of considering second moments; but, unlike a centroid, this point has no
specific location.

EXAMPLES

1. Determine the radius of gyration of a solid right-circular cylinder with height, h, and
radius, a, about (a) its own axis and (b) one of its generators.

Solution

h

r

Using earlier examples, together with the volume, V = πa2h, the required radii of

gyration are (a)
√

πa4h
2
÷ πa2h = a√

2
and (b)

√
3πa4h

2
÷ πa2h = a

√
3
2
.

2. Determine the radius of gyration of the volume of revolution about the x-axis of the
region, bounded in the first quadrant by the x-axis, the y-axis, the line x = 1 and the
line whose equation is

y = x + 1.

3



Solution

-

6

x

y

�
�

�

1
O

From Unit 13.13, section 13.13.3, the second moment about the given axis is 31π
10

.

The volume itself is given by

∫ 1

0
π(x + 1)2 dx =

[
π

(x + 1)3

3

]1

0

=
7π

3
.

Hence,

k2 =
31π

10
× 3

7π
=

93

70
.

That is,

k =

√
93

70
' 1.15

4



13.14.3 EXERCISES

1. Determine the radius of gyration of a hollow cylinder with internal radius, a, and
external radius, b, about

(a) its central axis;

(b) a generator lying in its outer surface.

2. Determine the radius of gyration of a solid hemisphere, with radius a, about

(a) its base-diameter;

(b) an axis through its centroid, parallel to its base-diameter.

3. For a solid right-circular cylinder with height, h, and radius, a, determine the radius of
gyration about

(a) a diameter of one end;

(b) an axis through the centroid, perpendicular to the axis of the cylinder.

4. For a solid right-circular cone with height, h, and base-radius, a, determine the radius
of gyration about

(a) the axis of the cone;

(b) a line through the vertex, perpendicular to the axis of the cone;

(c) a line through the centroid, perpendicular to the axis of the cone.

5



13.14.4 ANSWERS TO EXERCISES

1. (a) √
a2 + b2

2
;

(b) √
3b2 + a2

2
.

2. (a)

a

√
2

5
;

(b)

a

√
173

320
.

3. (a) √
3a2 + 4h2

12
;

(b) √
3a2 + 7h2

12
.

4. (a)

a

√
3

10
;

(b) √
3a2

20
+

3h2

5
;

(c) √
3a2

20
+

3h2

80
.
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UNIT 13.15 - INTEGRATION APPLICATIONS 15

SECOND MOMENTS OF A SURFACE OF REVOLUTION

13.15.1 INTRODUCTION

Suppose that C denotes an arc (with length s) in the xy-plane of cartesian co-ordinates, and
suppose that δs is the length of a small element of this arc.

Then, for the surface obtained when the arc is rotated through 2π radians about the x-axis,
the “second moment” about the x-axis, is given by

lim
δs→0

∑
C

y2.2πyδs.

13.15.2 INTEGRATION FORMULAE FOR SECOND MOMENTS

(a) Let us consider an arc of the curve whose equation is

y = f(x),

joining two points, P and Q, at x = a and x = b, respectively.

-

6

δxa b
x

y

O

P

Q

δs
δy rr

The arc may be divided up into small elements of typical length, δs, by using neighbouring
points along the arc, separated by typical distances of δx (parallel to the x-axis) and δy
(parallel to the y-axis).

1



From Pythagoras’ Theorem,

δs '
√

(δx)2 + (δy)2 =

√√√√1 +

(
δy

δx

)2

δx

so that, for the surface of revolution of the arc about the x-axis, the second moment becomes

lim
δx→0

x=b∑
x=a

2πy3

√√√√1 +

(
δy

δx

)2

δx =
∫ b

a
2πy3

√√√√1 +

(
dy

dx

)2

dx.

Note:
If the curve is given parametrically by

x = x(t), y = y(t),

then

dy

dx
=

dy
dt
dx
dt

.

Hence,

√√√√1 +

(
dy

dx

)2

=

√(
dx
dt

)2
+
(

dy
dt

)2

dx
dt

,

provided that dx
dt

is positive on the arc being considered. If not, then the above line needs
to be prefixed by a negative sign.

From the technique of integration by substitution,

∫ b

a
2πy3

√√√√1 +

(
dy

dx

)2

dx =
∫ t2

t1
2πy3

√√√√1 +

(
dy

dx

)2

.
dx

dt
dt,

where t = t1 when x = a and t = t2 when x = b.

2



We may conclude that the second moment about the plane through the origin, perpendicular
to the x-axis, is given by

second moment = ±
∫ t2

t1
2πy3

√√√√(dx

dt

)2

+

(
dy

dt

)2

dt

according as dx
dt

is positive or negative.

(b) For an arc whose equation is

x = g(y),

contained between y = c and y = d, we may reverse the roles of x and y in the previous
section so that the second moment about the y-axis is given by

∫ d

c
2πx3

√√√√1 +

(
dx

dy

)2

dy

-

6

δy

c

d

x

y

O

δs

δx
r r

R

S

Note:
If the curve is given parametrically by

x = x(t), y = y(t),

3



where t = t1 when y = c and t = t2 when y = d, then the second moment about the y-axis
is given by

second moment = ±
∫ t2

t1
2πx3

√√√√(dx

dt

)2

+

(
dy

dt

)2

dt,

according as dy
dt

is positive or negative.

EXAMPLES

1. Determine the second moment about the x-axis of the hemispherical surface of revolu-
tion (about the x-axis) of the arc of the circle whose equation is

x2 + y2 = a2,

lying in the first quadrant.

Solution

- x

6

y

O











a

Using implicit differentiation, we have

2x + 2y
dy

dx
= 0

and, hence, dy
dx

= −x
y
.

4



The second moment about the x-axis is therefore given by

∫ a

0
2πy3

√
1 +

x2

y2
dx =

∫ a

0
2πy3

√
x2 + y2

y2
dx.

But x2 + y2 = a2, and so the second moment becomes

∫ a

0
2πa(a2 − x2) dx = 2πa

[
a2x− x3

3

]a

0

=
4πa4

3
.

2. Determine the second moment about the axis of revolution, when the first quadrant arc
of the curve with parametric equations

x = acos3θ, y = asin3θ

is rotated through 2π radians about (a) the x-axis and (b) the y-axis.

Solution

-

6

x

y

O

(a) Firstly, we have

dx

dθ
= −3acos2θ sin θ and

dy

dθ
= 3asin2θ cos θ.

Hence, the second moment about the x-axis is given by

−
∫ 0

π
2

2πy3
√

9a2cos4θsin2θ + 9a2sin4θcos2θ dθ,

which, on using cos2θ + sin2θ ≡ 1, becomes

5



∫ π
2

0
2πa3sin27θ.3a cos θ sin θ dθ =

∫ π
2

0
6πa4sin28θ cos θ dθ

= 6πa4
∫ π

2

0
sin28θ cos θ dθ,

which, by the methods of Unit 12.7 gives

6πa4

[
sin29θ

29

]π
2

0

=
6πa4

29
.

(b) By symmetry, or by direct integration, the second moment about the y-axis is also
6πa4

29
.

13.15.3 THE RADIUS OF GYRATION OF A SURFACE OF REVOLUTION

Having calculated the second moment of a surface of revolution about a specified axis, it is
possible to determine a positive value, k, with the property that the second moment about
the axis is given by Sk2, where S is the total surface area of revolution.

We simply divide the value of the second moment by S in order to obtain the value of k2

and hence the value of k.

The value of k is called the “radius of gyration” of the given arc about the given axis.

Note:
The radius of gyration effectively tries to concentrate the whole surface at a single point
for the purposes of considering second moments; but, unlike a centroid, this point has no
specific location.

EXAMPLES

1. Determine the radius of gyration about the x-axis of the surface of revolution (about
the x-axis) of the arc of the circle whose equation is

x2 + y2 = a2,

lying in the first quadrant.

6



Solution

- x

6

y

O











a

From an Example 1 in section 13.15.2, we know that the second moment of the surface
about the x-axis is equal to 4πa4

3
.

Also, the total surface area is

∫ a

0
2πy

√
1 +

x2

y2
dx =

∫ a

0
2πa dx = 2πa2,

which implies that

k2 =
4πa4

3
× 1

2πa2
=

2a2

3
.

The radius of gyration is thus given by

k = a

√
2

3
.

2. Determine the radius of gyration about the x-axis of the surface of revolution (about
the x-axis) of the first quadrant arc of the curve with parametric equations

x = acos3θ, y = asin3θ.

7



Solution

-

6

x

y

O

We know from Example 2 in section 13.15.2, that that the second moment of the surface
about the x-axis is equal to 6πa4

29
.

Also, the total surface area is given by

−
∫ 0

π
2

2πasin3θ.3a cos θ sin θ dθ =
∫ π

2

0
3a2sin4θ cos θ dθ = 3πa2

[
sin5θ

5

]π
2

0

=
3πa2

5
.

Thus,

k2 =
6πa4

29
× 5

3πa2
=

10a2

29
.

13.15.4 EXERCISES

1. Determine the second moment, about the x-axis, of the surface of revolution (about the
x-axis) of the straight-line segment joining the origin to the point (2, 3).

2. Determine the second moment about the x-axis, of the surface of revolution (about the
x-axis) of the first quadrant arc of the curve whose equation is y2 = 4x, lying between
x = 0 and x = 1.

3. Determine, correct to two places of decimals, the second moment about the y-axis, of
the surface of revolution (about the y-axis) of the first quadrant arc of the curve whose
equation is 3y = x3, lying between x = 1 and x = 2.

8



4. Determine, correct to two places of decimals, the second moment, about the y-axis, of
the surface of revolution (about the y-axis) of the arc of the circle given parametrically
by

x = 2 cos t, y = 2 sin t,

joining the point (
√

2,
√

2) to the point (0, 2).

5. Determine the radius of gyration of a hollow right-circular cone with maximum radius,
a, about its central axis.

6. For the curve whose equation is 9y2 = x(3− x)2, show that

dy

dx
=

1− x

2
√

x
.

Hence, show that the radius of gyration about the y-axis of the surface obtained when
the first quadrant arch of this curve is rotated through 2π radians about the x-axis is
4, correct to the nearest whole number.

13.15.5 ANSWERS TO EXERCISES

1.

π27
√

13

2
.

2.

32π

5
[4−

√
2] ' 51.99

3.

70.44

4.

0.73

5.

k =
a√
2
.

6.

Second moment ' 139.92, surface area ' 9.42

9
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UNIT 13.16 - INTEGRATION APPLICATIONS 16

CENTRES OF PRESSURE

13.16.1 THE PRESSURE AT A POINT IN A LIQUID

In the following diagram, we consider the pressure in a liquid at a point, P, whose depth
below the surface of the liquid is z.

6

?

z

Surface

P

Ignoring atmospheric pressure, the pressure, p, at P is measured as the thrust acting upon
unit area and is due to the weight of the column of liquid with height z above it.

Hence,

p = wz

where w is the weight, per unit volume, of the liquid.

Note:
The pressure at P is directly proportional to the depth of P below the surface; and we shall
assume that the pressure acts equally in all directions at P.

1



13.16.2 THE PRESSURE ON AN IMMERSED PLATE

We now consider a rectangular plate, with dimensions a and (d2 − d1), immersed vertically
in a liquid as shown below.

a� -

P Q
δz

z

6

?

d1

6

?

d2

6

?

Surface

For a thin strip, PQ, of width, δz, at a depth, z, below the surface of the liquid, the thrust
on PQ will be the pressure at P multiplied by the area of the strip; that is, wz × aδz.

The total thrust on the whole plate will therefore be

z=d2∑
z=d1

wazδz.

Allowing δz to tend to zero, the total thrust becomes

∫ d2

d1

waz dz =

[
waz2

2

]d2

d1

=
wa

2
(d2

2 − d2
1).

This may be written

wa(d2 − d1)

(
d2 + d1

2

)
,

where, in this form, a(d2 − d1) is the area of the plate and d2+d1

2
is the depth of the centroid

of the plate.

2



We conclude that

Total Thrust = Area of Plate× Pressure at the Centroid.

Note:
It may be shown that this result holds whatever the shape of the plate is; and even when
the plate is not vertical.

EXAMPLES

1. A triangular plate is immersed vertically in a liquid for which the weight per unit volume
is w. The dimensions of the plate and its position in the liquid is shown in the following
diagram:

Surface

4cm� -

A
A
A
A
A
A�

�
�

�
�

�
�

��

1cm
6

?

3cm

6

?

Determine the total thrust on the plate as a multiple of w.

Solution

The area of the plate is given by

Area =
1

2
× 4× 2 = 4cm2

The centroid of the plate, which is at a distance from its horizontal side equal to one
third of its perpendicular height, will lie at a depth of(

1 +
1

3
× 2

)
cms. =

5

3
cms.

Hence, the pressure at the centroid is 5w
3

and we conclude that

Total thrust = 4× 5w

3
=

20w

3
.

3



2. The following diagram shows a rectangular plate immersed in a liquid for which the
weight per unit volume is w; and the plate is inclined at 30◦ to the horizontal:

Surface Surface

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQ

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQ

30◦

d1
6

?
d1
6

?z

6

?G ·G

b
Q

Q
Q

Q
QQs

Q
Q

Q
Q

QQk
d2 d2

6

?

6

?

a� -

Determine the total thrust on the plate as a multiple of w.

Solution

The depth, z, of the centroid, G, of the plate is given by

z = d1 +
b

2
sin 30◦ = d1 +

b

4
.

Hence, the pressure, p, at G is given by

p =

(
d1 +

b

4

)
w;

and, since the area of the plate is ab, we obtain

Total thrust = ab

(
d1 +

b

4

)
w.
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13.16.3 THE DEPTH OF THE CENTRE OF PRESSURE

In this section, we consider again an earlier diagram for a rectangular plate, immersed
vertically in a liquid whose weight per unit volume is w.

a� -

P Q
δz

z

6

?

d1

6

?

d2

6

?

Surface

We have already seen that the total thrust on the plate is

∫ d2

d1

waz dz = w
∫ d2

d1

az dz

and is the resultant of varying thrusts, acting according to depth, at each level of the plate.

But, by taking first moments of these thrusts about the line in which the plane of the plate
intersects the surface of the liquid, we may determine a particular depth at which the total
thrust may be considered to act.

This depth is called “the depth of the centre of pressure”.

The Calculation

In the diagram, the thrust on the strip PQ is wazδz and its first moment about the line in
the surface is waz2δz so that the sum of the first moments on all such strips is given by

z=d2∑
z=d1

waz2δz = w
∫ d2

d1

az2 dz

where the definite integral is, in fact, the second moment of the plate about the line in the
surface.
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Next, we define the depth, Cp, of the centre of pressure to be such that

Total thrust× Cp = sum of first moments of strips like PQ.

That is,

w
∫ d2

d1

az dz × Cp = w
∫ d2

d1

az2 dz

and, hence,

Cp =

∫ d2
d1

az2 dz∫ d2
d1

az dz
,

which may be interpreted as

Cp =
Ak2

Az
=

k2

z
,

where A is the area of the plate, k is the radius of gyration of the plate about the line in the
surface of the liquid and z is the depth of the centroid of the plate.

Notes:

(i) It may be shown that the formula

Cp =
k2

z

holds for any shape of plate immersed at any angle.

(ii) The phrase, “centre of pressure” suggests a particular point at which the total thrust is
considered to act; but this is simply for convenience. The calculation is only for the depth
of the centre of pressure.
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EXAMPLE

Determine the depth of the centre of pressure for the second example of the previous section.

Solution

Surface Surface

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQ

Q
Q

Q
Q

Q
Q

Q
Q

Q
Q

QQ

30◦

d1
6

?
d1
6

?z

6

?G ·G

b
Q

Q
Q

Q
QQs

Q
Q

Q
Q

QQk
d2 d2

6

?

6

?

a� -

The depth of the centroid is

d1 +
b

4

and the square of the radius of gyration of the plate about an axis through the centroid,
parallel to the side with length a is a2

12
.

Furthermore, the perpendicular distance between this axis and the line of intersection of the
plane of the plate with the surface of the liquid is

b

2
+

d1

sin 30◦
=

b

2
+ 2d1.

Hence, the square of the radius of gyration of the plate about the line in the surface is

a2

12
+

(
b

2
+ 2d1

)2

,

using the Theorem of Parallel Axes.
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Finally, the depth of the centre of pressure is given by

Cp =

a2

12
+
(

b
2

+ 2d1

)2

d1 + b
4

.

13.16.4 EXERCISES

1. A thin equilateral triangular plate is immersed vertically in a liquid for which the
weight per unit volume is w, with one edge on the surface. If the length of each side is
a, determine the total thrust on the plate.

2. A thin plate is bounded by the arc of a parabola and a straight line segment of length
1.2m perpendicular to the axis of symmetry of the parabola, this axis being of length
0.4m.

If the plate is immersed vertically in a liquid with the straight edge on the surface,
determine the total thrust on the plate in the form lw, where w is the weight per unit
volume of the liquid and l is in decimals, correct to two places.

3. A thin rectangular plate, with sides of length 10cm and 20cm is immersed in a liquid so
that the sides of length 10cm are horizontal and the sides of length 20cm are incline at
55◦ to the horizontal. If the uppermost side of the plate is at a depth of 13cm, determine
the total thrust on then plate in the form lw, where w is the mass per unit volume of
the liquid.

4. A thin circular plate, with diameter 0.5m is immersed vertically in a tank of liquid so
that the uppermost point on its circumference is 2m below the surface. Determine the
depth of the centre of pressure. correct to two places of decimals.

5. A thin plate is in the form of a trapezium with parallel sides of length 1m and 2.5m, a
distance of 0.75m apart, and the remaining two sides inclined equally to either one of
the parallel sides.

If the plate is immersed vertically in water with the side of length 2.5m on the surface,
calculate the depth of the centre of pressure, correct to two places of decimals.

8



13.16.5 ANSWERS TO EXERCISES

1.

Total thrust =
wa3

8
.

2.

Total Thrust = 5.12w.

3.

Cp ' 2.26m.

4.

Cp ' 0.46m.

9
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UNIT 14.1 - PARTIAL DIFFERENTIATION 1 - PARTIAL DERIVATIVES OF
THE FIRST ORDER

14.1.1 FUNCTIONS OF SEVERAL VARIABLES

In most scientific problems, it is likely that a variable quantity under investigation will
depend (for its values), not only on one other variable quantity, but on several other
variable quantities.

The type of notation used may be indicated by examples such as the following:

1.

z = f(x, y),

which means that the variable, z, depends (for its values) on two variables, x and y.

2.

w = F (x, y, z),

which means that the variable, w, depends (for its values) on three variables, x, y and
z.

Normally, the variables on the right-hand side of examples like those above may be
chosen independently of one another and, as such, are called the “independent vari-
ables”. By contrast, the variable on the left-hand side is called the “dependent
variable”.

Notes:

(i) Some relationships between several variables are not stated as an explicit formula for
one of the variables in terms of the others.

An illustration of this type would be x2 + y2 + z2 = 16.

In such cases, it may be necessary to specify separately which is the dependent variable.

(ii) The variables on the right-hand side of an explicit formula, giving a dependent variable
in terms of them, may not actually be independent of one another. This would occur if those
variables were already, themselves, dependent on a quantity not specifically mentioned in
the formula.

1



For example, in the formula

z = xy2 + sin(x− y),

suppose it is also known that x = t− 1 and y = 3t + 2.

Then the variables x and y are not independent of each other. In fact, by eliminating t, we
obtain

y = 3(x + 1) + 2 = 3x + 5.

14.1.2 THE DEFINITION OF A PARTIAL DERIVATIVE

ILLUSTRATION

Consider the formulae for the volume, V , and the surface area, S, of a solid right-circular
cylinder with radius, r, and height, h.

h

r

The relevant formulae are

V = πr2h and S = 2πr2 + 2πrh,

so that both V and S are functions of the two variables, r and h.

But suppose it were possible for r to be held constant while h is allowed to vary. Then the
corresponding rates of increase of V and S with respect to h are given by

[
dV

dh

]
r const.

= πr2

2



and

[
dS

dh

]
r const.

= 2πr.

These two expressions are called the “partial derivatives of V and S with respect to
h”.

Similarly, suppose it were possible for h to be held constant while r is allowed to vary. Then
the corresponding rates of increase of V and S with respect to r are given by

[
dV

dr

]
h const.

= 2πrh

and

[
dS

dr

]
h const.

= 4πr + 2πh.

These two expressions are called the “partial derivatives of V and S with respect to
r”.

THE NOTATION FOR PARTIAL DERIVATIVES

In the defining illustration above, the notation used for the partial derivatives of V and
S was an adaptation of the notation for what will, in future, be referred to as ordinary
derivatives.

It was, however, rather cumbersome; and the more standard notation which uses the symbol
∂ rather than d is indicated by restating the earlier results as

∂V

∂h
= πr2,

∂S

∂h
= 2πr

and

∂V

∂r
= 2πrh,

∂S

∂r
= 4πr + 2πh.

3



In this notation, it is understood that each independent variable (except the one with respect
to which we are differentiating) is held constant.

EXAMPLES

1. Determine the partial derivatives of the following functions with respect to each of the
independent variables:

(a)

z = (x2 + 3y)5;

Solution

∂z

∂x
= 5(x2 + 3y)4.2x = 10x(x2 + 3y)4

and

∂z

∂y
= 5(x2 + 3y)4.3 = 15(x2 + 3y)4.

(b)

w = ze3x−7y;

Solution

∂w

∂x
= 3ze3x−7y,

∂w

∂y
= −7ze3x−7y,

and

∂w

∂z
= e3x−7y.

(c)

z = x sin(2x2 + 5y).

Solution

∂z

∂x
= sin(2x2 + 5y) + 4x2 cos(2x2 + 5y)

and

∂z

∂y
= 5x cos(2x2 + 5y).

4



2. If
z = f(x2 + y2),

show that

x
∂z

∂y
− y

∂z

∂x
= 0.

Solution

∂z

∂x
= 2xf ′(x2 + y2)

and

∂z

∂y
= 2yf ′(x2 + y2).

Hence,

x
∂z

∂y
− y

∂z

∂x
= 0.

3. Given the formula

cos(x + 2z) + 3y2 + 2xyz = 0

as an implicit relationship between two independent variables x and y and a dependent
variable z, determine expressions for ∂z

∂x
and ∂z

∂y
in terms of x, y and z.

Solution

Differentiating the formula partially with respect to x and y in turn, we obtain

− sin(x + 2z).

(
1 + 2

∂z

∂x

)
+ 2y

(
x

∂z

∂x
+ y

)
= 0

and

− sin(x + 2z).2
∂z

∂y
+ 6y + 2x

(
y
∂z

∂y
+ z

)
= 0,

respectively.

Thus,

∂z

∂x
=

sin(x + 2z)− 2y2

2yx− 2 sin(x + 2z)

5



and

∂z

∂y
=

2xz + 6y

2 sin(x + 2z)− 2xy
=

xz + 3y

sin(x + 2z)− xy
.

14.1.3 EXERCISES

1. Determine ∂z
∂x

and ∂z
∂y

in the following cases:

(a)

z = 2x2 − 4xy + y3;

(b)

z = cos(5x− 3y);

(c)

z = ex2+2y2

;

(d)

z = x sin(y − x).

2. If

z = (x + y) ln

(
x

y

)
,

show that

x
∂z

∂x
+ y

∂z

∂y
= z.

3. Determine ∂w
∂x

, ∂w
∂y

and ∂w
∂z

in the following cases:

(a)

w = x5 + 3xyz + z2;

(b)

w = ze2x−3y;

(c)

w = sin(x2 − yz).

6



14.1.4 ANSWERS TO EXERCISES

1. (a)

∂z

∂x
= 4x− 4y and

∂z

∂y
= −4x + 3y2;

(b)

∂z

∂x
= −5 sin(5x− 3y) and

∂z

∂y
= 3 sin(5x− 3y);

(c)

∂z

∂x
= 2xex2+2y2

and
∂z

∂y
= 4yex2+2y2

;

(d)

∂z

∂x
= sin(y − x)− x cos(y − x) and

∂z

∂y
= x cos(y − x).

2.

∂z

∂x
= ln

(
x

y

)
+

x + y

x
and

∂z

∂y
= ln

(
x

y

)
− x + y

y
.

3. (a)

∂w

∂x
= 5x4 + 3yz,

∂w

∂y
= 3xz,

∂w

∂z
= 3xy + 2z;

(b)

∂w

∂x
= 2ze2x−3y,

∂w

∂y
= −3ze2x−3y,

∂w

∂z
= e2x−3y;

(c)

∂w

∂x
= 2x cos(x2 − yz),

∂w

∂y
= −z cos(x2 − yz),

∂w

∂z
= −y cos(x2 − yz).
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UNIT 14.2 - PARTIAL DIFFERENTIATION 2

PARTIAL DERIVATIVES OF THE SECOND AND HIGHER ORDERS

14.2.1 STANDARD NOTATIONS AND THEIR MEANINGS

In Unit 14.1, the partial derivatives encountered are known as partial derivatives of the first
order; that is, the dependent variable was differentiated only once with respect to each
independent variable.

But a partial derivative will, in general contain all of the independent variables, suggesting
that we may need to differentiate again with respect to any of those variables.

For example, in the case where a variable, z, is a function of two independent variables, x
and y, the possible partial derivatives of the second order are

(i)
∂2z

∂x2
, which means

∂

∂x

(
∂z

∂x

)
;

(ii)
∂2z

∂y2
, which means

∂

∂y

(
∂z

∂y

)
;

(iii)
∂2z

∂x∂y
, which means

∂

∂x

(
∂z

∂y

)
;

(iv)
∂2z

∂y∂x
, which means

∂

∂y

(
∂z

∂x

)
.

The last two can be shown to give the same result for all elementary functions likely to be
encountered in science and engineering.

Note:

Occasionally, it may be necessary to use partial derivatives of order higher than two, as
illustrated, for example, by

∂3z

∂x∂y2
, which means

∂

∂x

[
∂

∂y

(
∂z

∂y

)]

1



and

∂4z

∂x2∂y2
, which means

∂

∂x

(
∂

∂x

[
∂

∂y

(
∂z

∂y

)])
.

EXAMPLES

Determine all the first and second order partial derivatives of the following functions:

1.

z = 7x3 − 5x2y + 6y3.

Solution

∂z
∂x

= 21x2 − 10xy; ∂z
∂y

= −5x2 + 18y2;

∂2z
∂x2 = 42x− 10y; ∂2z

∂y2 = 36y;

∂2z
∂y∂x

= −10x; ∂2z
∂x∂y

= −10x.

2.

z = y sin x + x cos y.

Solution

∂z
∂x

= y cos x + cos y; ∂z
∂y

= sin x− x sin y;

∂2z
∂x2 = −y sin x; ∂2z

∂y2 = −x cos y;

∂2z
∂y∂x

= cos x− sin y; ∂2z
∂x∂y

= cos x− sin y.

2



3.

z = exy(2x− y).

Solution

∂z
∂x

= exy[y(2x− y) + 2] ∂z
∂y

= exy[x(2x− y)− 1]

= exy[2xy − y2 + 2]; = exy[2x2 − xy − 1];

∂2z
∂x2 = exy[y(2xy − y2 + 2) + 2y] ∂2z

∂y2 = exy[x(2x2 − xy − 1)− x]

= exy[2xy2 − y3 + 4y]; = exy[2x3 − x2y − 2x];

∂2z
∂y∂x

= exy[x(2xy − y2 + 2) + 2x− 2y] ∂2z
∂x∂y

= exy[y(2x2 − xy − 1) + 4x− y]

= exy[2x2y − xy2 + 4x− 2y]; = exy[2x2y − xy2 + 4x− 2y].

14.2.2 EXERCISES

1. Determine all the first and second order partial derivatives of the following functions:

(a)

z = 5x2y3 − 7x3y5;

(b)

z = x4 sin 3y.

2. Determine all the first and second order partial derivatives of the function

w ≡ z2exy + x cos(y2z).

3. If

z = (x + y) ln

(
x

y

)
,

show that

x2 ∂2z

∂x2
= y2 ∂2z

∂y2
.

3



4. If
z = f(x + ay) + F (x− ay),

show that

∂2z

∂x2
=

1

a2

∂2z

∂y2
.

14.2.3 ANSWERS TO EXERCISES

1. (a) The required partial derivatives are as follows:

∂z
∂x

= 10xy3 − 21x2y5; ∂z
∂y

= 15x2y2 − 35x3y4;

∂2z
∂x2 = 10y3 − 42xy5; ∂2z

∂y2 = 30x2y − 140x3y3;

∂2z
∂y∂x

= 30xy2 − 105x2y4; ∂2z
∂x∂y

= 30xy2 − 105x2y4.

(b) The required partial derivatives are as follows:

∂z
∂x

= 4x3 sin 3y; ∂z
∂y

= 3x4 cos 3y;

∂2z
∂x2 = 12x2 sin 3y; ∂2z

∂y2 = −9x4 sin 3y;

∂2z
∂y∂x

= 12x3 cos 3y; ∂2z
∂x∂y

= 12x3 cos 3y.

2. The required partial derivatives are as follows:

∂w

∂x
= yz2exy + cos(y2z);

∂w

∂y
= z2xexy − 2xyz sin(y2z);

∂w

∂z
= 2zexy − xy2 sin(y2z);

∂2w

∂x2
= y2z2exy;

∂2w

∂y2
= z2x2exy−2xz sin(y2z)+4xy2z2 cos(y2z);

∂2w

∂z2
= 2exy−xy4 cos(y2z);
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∂2w

∂x∂y
=

∂2w

∂y∂x
= z2exy + z2xyexy − 2yz sin(y2z);

∂2w

∂y∂z
=

∂2w

∂z∂y
= 2zxexy − 2xy sin(y2z)− 2xy3z cos(y2z);

∂2w

∂z∂x
=

∂2w

∂x∂z
= 2zyexy − y2 sin(y2z).

3.

∂2z

∂x2
=

1

x
− y

x2
and

∂2z

∂y2
= −1

y
+

x

y2
.

4.

∂2z

∂x2
= f ′′(x + ay) + F ′′(x− ay) and

∂2z

∂y2
= a2f ′′(x + ay) + a2F ′′(x− ay).
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UNIT 14.3 - PARTIAL DIFFERENTIATION 3

SMALL INCREMENTS AND SMALL ERRORS

14.3.1 FUNCTIONS OF ONE INDEPENDENT VARIABLE - A RECAP

For functions of one independent variable, a discussion of small increments and small errors
has already taken place in Unit 11.6.

It was established that, if a dependent variable, y, is related to an independent variable, x,
by means of the formula

y = f(x),

then

(a) The increment, δy, in y, due to an increment of δx, in x is given (to the first order of
approximation) by

δy ' dy

dx
δx;

and, in much the same way,

(b) The error, δy, in y, due to an error of δx in x, is given (to the first order of approximation)
by

δy ' dy

dx
δx.

14.3.2 FUNCTIONS OF MORE THAN ONE INDEPENDENT VARIABLE

Let us consider, first, a function, z, of two independent variables, x and y, given by the
formula

z = f(x, y).

If x is subject to a small increment (or a small error) of δx, while y remains constant, then
the corrresponding increment (or error) of δz in z will be given approximately by
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δz ' ∂z

∂x
δx.

Similarly, if y is subject to a small increment (or a small error) of δy, while x remains
constant, then the corresponding increment (or error) of δz in z will be given approximately
by

δz ' ∂z

∂y
δy.

It seems reasonable to assume, therefore, that, when x is subject to a small increment (or a
small error) of δx and y is subject to a small increment (or a small error) of δy, then the
corresponding increment (or error) of δz in z will be given approximately by

δz ' ∂z

∂x
δx +

∂z

∂y
δy.

It may be shown that, to the first order of approximation, this is indeed true.

Notes:

(i) To prove more rigorously that the above result is true, use would have to be made of the
result known as “Taylor’s Theorem” for a function of two independent variables.

In the present case, where z = f(x, y), it would give

f(x+δx, y+δy) = f(x, y)+

(
∂z

∂x
δx +

∂z

∂y
δy

)
+

(
∂2z

∂x2
(δx)2 + 2

∂2z

∂x∂y
δxδy +

∂2z

∂y2
(δy)2

)
+ . . .,

which shows that

δz = f(x + δx, y + δy)− f(x, y) ' ∂z

∂x
δx +

∂z

∂y
δy

to the first order of approximation.

(ii) The formula for a function of two independent variables may be extended to functions
of a greater number of independent variables by simply adding further appropriate terms to
the right hand side.
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For example, if

w = F (x, y, z),

then

δw ' ∂w

∂x
δx +

∂w

∂y
δy +

∂w

∂z
δz.

EXAMPLES

1. A rectangle has sides of length xcms. and ycms.

Determine, approximately, in terms of x and y, the increment in the area, A, of the
rectangle when x and y are subject to increments of δx and δy, respectively.

Solution

The area, A, is given by

A = xy,

so that

δA ' ∂A

∂x
δx +

∂A

∂y
δy = yδx + xδy.

Note:
The exact value of δA may be seen in the following diagram:
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x δx

y

δy

The difference between the approximate value and the exact value is represented by the
area of the small rectangle having sides δxcms. and δycms.

2. In measuring a rectangular block of wood, the dimensions were found to be 10cms.,
12cms and 20cms. with a possible error of ±0.05cms. in each.

Calculate, approximately, the greatest possible error in the surface area, S, of the block
and the percentage error so caused.

Solution

First, we may denote the lengths of the edges of the block by x, y and z.

�
�

�

�
�

�

�
�

�

x

z y

The surface area, S, is given by

S = 2(xy + yz + zx),

which has the value 1120cms2 when x = 10cms., y = 12cms. and z = 20cms.
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Also,

δS ' ∂S

∂x
δx +

∂S

∂y
δy +

∂S

∂z
δz,

which gives

δS ' 2(y + z)δx + 2(x + z)δy + 2(y + x)δz;

and, on substituting x = 10, y = 12, z = 20, δx = ±0.05, δy = ±0.05 and δz = ±0.05,
we obtain

δS ' ±2(12 + 20)(0.05)± 2(10 + 20)(0.05)± 2(12 + 10)(0.05).

The greatest error will occur when all the terms of the above expression have the same
sign. Hence, the greatest error is given by

δSmax ' ±8.4cms.2;

and, since the originally calculated value was 1120, this represents a percentage error
of approximately

± 8.4

1120
× 100 = ±0.75

3. If

w =
x3z

y4
,

calculate, approximately, the percentage error in w when x is too small by 3%, y is too
large by 1% and z is too large by 2%.

Solution

We have

δw ' ∂w

∂x
δx +

∂w

∂y
δy +

∂w

∂z
δz.

That is,

δw ' 3x2z

y4
δx− 4x3z

y5
δy +

x3

y4
δz,

where
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δx = − 3x

100
, δy =

y

100
and δz =

2z

100
.

Thus,

δw ' x3z

y4

[
− 9

100
− 4

100
+

2

100

]
= −11w

100
.

The percentage error in w is given approximately by

δw

w
× 100 = −11.

That is, w is too small by approximately 11%.

14.3.3 THE LOGARITHMIC METHOD

In this section we consider again examples where it is required to calculate either a percentage
increment or a percentage error.

We may conveniently use logarithms if the right hand side of the formula for the dependent
variable involves a product, a quotient, or a combination of these two in which the inde-
pendent variables are separated. This would be so, for instance, in the final example of the
previous section.

The method is to take the natural logarithms of both sides of the equation before considering
any partial derivatives; and we illustrate this, firstly, for a function of two independent
variables.

Suppose that

z = f(x, y)

where f(x, y) is the type of function described above.

Then,

ln z = ln f(x, y);

and, if we temporarily replace ln z by w, we have a new formula
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w = ln f(x, y).

The increment (or the error) in w, when x and y are subject to increments (or errors) of δx
and δy respectively, is given by

δw ' ∂w

∂x
δx +

∂w

∂y
δy.

That is,

δw ' 1

f(x, y)

∂f

∂x
δx +

1

f(x, y)

∂f

∂y
δy =

1

f(x, y)

[
∂f

∂x
δx +

∂f

∂y
δy

]
.

In other words,

δw ' 1

z

[
∂z

∂x
δx +

∂z

∂y
δy

]
.

We conclude that

δw ' δz

z
,

which means that the fractional increment (or error) in z approximates to the actual incre-
ment (or error) in ln z. Multiplication by 100 will, of course, convert the fractional increment
(or error) into a percentage.

Note:
The logarthmic method will apply equally well to a function of more than two independent
variables where it takes the form of a product, a quotient, or a combination of these two.
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EXAMPLES

1. If

w =
x3z

y4
,

calculate, approximately, the percentage error in w when x is too small by 3%, y is too
large by 1% and z is too large by 2%.

Solution

Taking the natural logarithm of both sides of the given formula,

ln w = 3 ln x + ln z − 4 ln y,

giving

δw

w
' 3

δx

x
+

δz

z
− 4

δy

y
,

where

δx

x
= − 3

100
,

δy

y
=

1

100
and

δz

z
=

2

100
.

Hence,

δw

w
× 100 = −9 + 2− 4 = −13.

Thus, w is too small by approximately 11%, as before.

2. In the formula,

w =

√
x3

y
,

x is subjected to an increase of 2%. Calculate, approximately, the percentage change
needed in y to ensure that w remains unchanged.

Solution

Taking the natural logarithm of both sides of the formula,

ln w =
1

2
[3 ln x− ln y].
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Hence,

δw

w
' 1

2

[
3
δx

x
− δy

y

]
,

where δx
x

= 0.02, and we require that δw = 0.

Thus,

0 =
1

2

[
0.06− δy

y

]
,

giving

δy

y
= 0.06,

which means that y must be approximately 6% too large.

14.3.4 EXERCISES

1. A triangle is such that two of its sides (of length 6cms. and 8cms.) are at right-angles
to each other.

Calculate, approximately, the change in the length of the hypotenuse of the triangle
when the shorter side is lengthened by 0.25cms. and the longer side is shortened by
0.125cms.

2. Two sides of a triangle are measured as x = 150cms. and y = 200cms. while the angle
included between them is measured as θ = 60◦. Calculate the area of the triangle.

If there are possible errors of ±0.2cms. in the measurement of the sides and ±1◦ in the
angle, determine, approximately, the maximum possible error in the calculated area of
the triangle.

State your answers correct to the nearest whole number.

(Hint use the formula, Area = 1
2
xy sin θ).

3. Given that the volume of a segment of a sphere is 1
6
x(x2 + 3y2) where x is the height

and y is the radius of the base, obtain, in terms of x and y, the percentage error in the
volume when x is too large by 1% and y is too small by 0.5%.

4. If
z = kx0.01y0.08,

where k is a constant, calculate, approximately, the percentage change in z when x is
increased by 2% and y is decreased by 1%.
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5. If

w =
5xy4

z3
,

calculate, approximately, the maximum percentage error in w if x, y and z are subject
to errors of ±3%, ±2.5% and ±4%, respectively.

6. If
w = 2xyz−

1
2 ,

where x and z are subject to errors of 0.2%, calculate, approximately, the percentage
error in y which results in w being without error.

14.3.5 ANSWERS TO EXERCISES

1. 0.05cms.

2. 12990cms.2 and 161cms.2

3. 3x2

x2+3y2 .

4. z decreases by 0.06%.

5. 25%.

6. −0.1%.
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UNIT 14.4 - PARTIAL DIFFERENTIATION 4

EXACT DIFFERENTIALS

14.4.1 TOTAL DIFFERENTIALS

In Unit 14.3, use was made of expressions of the form,

∂f

∂x
δx +

∂f

∂y
δy + . . .,

as an approximation for the increment (or error), δf , in the function, f(x, y, ...), when x, y
etc. are subject to increments (or errors) of δx, δy etc., respectively.

The expression may be called the “total differential” of f(x, y, ...) and may be denoted
by df , giving

df ' δf.

OBSERVATIONS

Consider the formula,

df =
∂f

∂x
δx +

∂f

∂y
δy + . . .

(a) In the special case when f(x, y, ...) ≡ x, we may conclude that df = δx or, in other
words,

dx = δx.

(b) In the special case when f(x, y, ...) ≡ y, we may conclude that df = δy or, in other
words,

dy = δy.

(c) Observations (a) and (b) imply that the total differential of each independent variable
is the same as the small increment (or error) in that variable; but the total differential of the
dependent variable is only approximately equal to the increment (or error) in that variable.

1



(d) All of the previous observations may be summarised by means of the formula

df =
∂f

∂x
dx +

∂f

∂y
dy + . . .

14.4.2 TESTING FOR EXACT DIFFERENTIALS

In general, an expression of the form

P (x, y, ...)dx + Q(x, y, ...)dy + . . .

will not be the total differential of a function, f(x, y, ...), unless the functions, P (x, y, ...),
Q(x, y, ...) etc. can be identified with ∂f

∂x
, ∂f

∂y
etc., respectively.

If this is possible, then the expression is known as an “exact differential”.

RESULTS

(i) The expression

P (x, y)dx + Q(x, y)dy

is an exact differential if and only if

∂P

∂y
≡ ∂Q

∂x
.

Proof:

(a) If the expression,

P (x, y)dx + Q(x, y)dy,

is an exact differential, df , then

∂f

∂x
≡ P (x, y) and

∂f

∂y
≡ Q(x, y).
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Hence, it must be true that

∂P

∂y
≡ ∂Q

∂x

(
≡ ∂2f

∂x∂y

)
.

(b) Conversely, suppose that

∂P

∂y
≡ ∂Q

∂x
.

We can certainly say that

P (x, y) ≡ ∂u

∂x

for some function u(x, y), since P (x, y) could be integrated partially with respect to x.

But then,

∂Q

∂x
≡ ∂P

∂y
≡ ∂2u

∂y∂x
;

and, on integrating partially with respect to x, we obtain

Q(x, y) =
∂u

∂y
+ A(y),

where A(y) is an arbitrary function of y.

Thus,

P (x, y)dx + Q(x, y)dy =
∂u

∂x
dx +

(
∂u

∂y
+ A(y)

)
dy;

and the right-hand side is the exact differential of the function,

u(x, y) +
∫

A(y) dy.
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(ii) By similar reasoning, it may be shown that the expression

P (x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz

is an exact differential, provided that

∂P

∂y
≡ ∂Q

∂x
,

∂Q

∂z
=

∂R

∂y
, and

∂R

∂x
=

∂P

∂z
.

ILLUSTRATIONS

1.

xdx + ydy = d
[
1

2

(
x2 + y2

)]
.

2.

ydx + xdy = d[xy].

3.

ydx− xdy

is not an exact differential since

∂y

∂y
= 1 and

∂(−x)

∂x
= −1.

4.

2 ln ydx + (x + z)dy + z2dz

is not an exact differential since

∂(2 ln y)

∂y
=

2

y
, and

∂(x + z)

∂x
= 1.
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14.4.3 INTEGRATION OF EXACT DIFFERENTIALS

In section 14.4.2, the second half of the proof of the condition for the expression,

P (x, y)dx + Q(x, y)dy,

to be an exact differential suggests, also, a method of determining which function, f(x, y),
it is the total differential of. The method may be illustrated by the following examples:

EXAMPLES

1. Verify that the expression,

(x + y cos x)dx + (1 + sin x)dy,

is an exact differential, and obtain the function of which it is the total differential.

Solution

Firstly,

∂

∂y
(x + y cos x) ≡ ∂

∂x
(1 + sin x) ≡ cos x;

and, hence, the expression is an exact differential.

Secondly, suppose that the expression is the total differential of the function, f(x, y).

Then,

∂f

∂x
≡ x + y cos x −−−−−−−−− (1)

and

∂f

∂y
≡ 1 + sin x. −−−−−−−−−−(2)

Integrating (1) partially with respect to x gives

f(x, y) ≡ x2

2
+ y sin x + A(y),

where A(y) is an arbitrary function of y only.
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Substituting this result into (2) gives

sin x +
dA

dy
≡ 1 + sin x.

That is,

dA

dy
≡ 1;

and, hence,

A(y) ≡ y + constant.

We conclude that

f(x, y) ≡ x2

2
+ y sin x + y + constant.

2. Verify that the expression,

(yz + 2)dx + (xz + 6y)dy + (xy + 3z2)dz,

is an exact differential and obtain the function of which it is the total differential.

Solution

Firstly,

∂

∂y
(yz + 2) ≡ ∂

∂x
(xz + 6y) ≡ z,

∂

∂z
(xz + 6y) ≡ ∂

∂y
(xy + 3z2) ≡ x,

and

∂

∂x
(xy + 3z2) ≡ ∂

∂z
(yz + 2) ≡ y,

so that the given expression is an exact differential.
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Suppose it is the total differential of the function, F (x, y, z).

Then,

∂F

∂x
≡ yz + 2, −−−−−−−−(1)

∂F

∂y
≡ xz + 6y, −−−−−−− (2)

∂F

∂z
≡ xy + 3z2. −−−−−−− (3)

Integrating (1) partially with respect to x gives

F (x, y, z) ≡ xyz + 2x + A(y, z),

where A(y, z) is an arbitrary function of y and z only.

Substituting this result into both (2) and (3) gives

xz +
∂A

∂y
≡ xz + 6y,

xy +
∂A

∂z
≡ xy + 3z2.

That is,

∂A

∂y
≡ 6y, −−−−−−(4)

∂A

∂z
≡ 3z2. −−−−−−(5)

Integrating (4) partially with respect to y gives

A(y, z) ≡ 3y2 + B(z),

where B(z) is an arbitrary function of z only.

Substituting this result into (5) gives

dB

dz
≡ 3z2,
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which implies that

B(z) ≡ z3 + constant.

We conclude that

F (x, y, z) ≡ xyz + 2x + 3y2 + z3 + constant.

14.4.4 EXERCISES

1. Verify which of the following are exact differentials and integrate those which are:

(a)

5x + 12y − 9)dx + (2x + 5y − 4)dy;

(b)

12x + 5y − 9)dx + (5x + 2y − 4)dy;

(c)

(3x2 + 2y + 1)dx + (2x + 6y2 + 2)dy;

(d)

(y − ex)dx + xdy;

(e)

1

x
dx−

(
y

x2
+ 2x

)
dy;

(f)

cos(x + y)dx + cos(y − x)dy;

(g)

(1− cos 2x)dy + 2y sin 2xdx.

2. Verify that the expression,

3x2dx + 2yzdy + y2dz,

is an exact differential and obtain the function of which it is the total differential.
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3. Verify that the expression,

exy[y sin zdx + x sin zdy + cos zdz],

is an exact differential and obtain the function of which it is the total differential.

14.4.5 ANSWERS TO EXERCISES

1. (a) Not exact;

(b)

6x2 + 5xy − 9x + y2 − 4y + constant;

(c)

x3 + 2xy + x + 2y3 + 2y + constant;

(d)

xy − ex + constant;

(e) Not exact;

(f) Not exact;

(g)

y(1− cos 2x) + constant.

2.

x3 + y2z;

3.

exy sin z.
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UNIT 14.5 - PARTIAL DIFFERENTIATION 5

PARTIAL DERIVATIVES OF COMPOSITE FUNCTIONS

14.5.1 SINGLE INDEPENDENT VARIABLES

In this Unit, we shall be concerned with functions, f(x, y...), of two or more variables in
which those variables are not independent, but are themselves dependent on some other
variable, t.

The problem is to calculate the rate of increase (positive or negative) of such functions with
respect to t.

Let us suppose that the variable, t, is subject to a small increment of δt, so that the variables
x, y... are subject to small increments of δx, δy, . . . , respectively. Then the corresponding
increment, δf , in f(x, y...) is given by

δf ' ∂f

∂x
δx +

∂f

∂y
δy + . . .,

where we note that no label other than f is being used, here, for the function of several
variables. That is, it is not essential to use a specific formula, such as w = f(x, y..).

Dividing throughout by δt gives

δf

δt
' ∂f

∂x
.
δx

δt
+

∂f

∂y
.
δy

δt
+ . . .

Allowing δt to tend to zero, we obtain the standard result for the “total derivative” of
f(x, y..) with respect to t, namely

df

dt
=

∂f

∂x
.
dx

dt
+

∂f

∂y
.
dy

dt
+ . . .

This rule may be referred to as the “chain rule”, but more advanced versions of it will
appear later.
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EXAMPLES

1. A point, P, is moving along the curve of intersection of the surface whose cartesian
equation is

x2

16
− y2

9
= z (a Paraboloid)

and the surface whose cartesian equation is

x2 + y2 = 5 (a Cylinder).

If x is increasing at 0.2 cms/sec, how fast is z changing when x = 2 ?

Solution

We may use the formula

dz

dt
=

∂z

∂x
.
dx

dt
+

∂z

∂y
.
dy

dt
,

where

dx

dt
= 0.2 and

dy

dt
=

dy

dx
.
dx

dt
= 0.2

dy

dx
.

But, from the equation of the paraboloid,

∂z

∂x
=

x

8
and

∂z

∂y
= −2y

9
;

and, from the equation of the cylinder,

dy

dx
= −x

y
.

Substituting x = 2 gives y = ±1 on the curve of intersection, so that

dz

dt
=

(
2

8

)
(0.2) +

(
−2

9

)
(±1)(0.2)

(−2

±1

)
= 0.2

(
1

4
+

4

9

)
=

5

36
cms/sec.
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2. Determine the total derivative of u with respect to t in the case when

u = xy + yz + zx, x = et, y = e−t and z = x + y.

Solution

We may use the formula

du

dt
=

∂u

∂x
.
dx

dt
+

∂u

∂y
.
dy

dt
+

∂u

∂z
.
dz

dt
,

where

∂u

∂x
= y + z,

∂u

∂y
= z + x,

∂u

∂z
= x + y

and

dx

dt
= et = x,

dy

dt
= −e−t = −y,

dz

dt
= et − e−t = x− y.

Hence,

du

dt
= (y + z)x− (z + x)y + (x + y)(x− y)

= −zy + zx + x2 − y2

= z(x− y) + (x− y)(x + y).

That is,

du

dt
= (x− y)(x + y + z).
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14.5.2 SEVERAL INDEPENDENT VARIABLES

We may now extend the work of the previous section to functions, f(x, y..), of two or more
variables in which x, y.. are each dependent on two or more variables, s, t..

Since the function, f(x, y..), is dependent on s, t.., we may wish to determine its partial
derivatives with respect to any one of these (independent) variables.

The result previously established for a single independent variable may easily be adapted
as follows:

∂f

∂s
=

∂f

∂x
.
∂x

∂s
+

∂f

∂y
.
∂y

∂s
+ . . .

∂f

∂t
=

∂f

∂x
.
∂x

∂t
+

∂f

∂y
.
∂y

∂t
+ . . .

Again, this is referred to as the “chain rule”.

EXAMPLES

1. Determine the first-order partial derivatives of z with respect to r and θ in the case
when

z = x2 + y2, where x = r cos θ and y = r sin 2θ.

Solution

We may use the formulae

∂z

∂r
=

∂z

∂x
.
∂x

∂r
+

∂z

∂y
.
∂y

∂r

and

∂z

∂θ
=

∂z

∂x
.
∂x

∂θ
+

∂z

∂y
.
∂y

∂θ
.

These give

(i)
∂z

∂r
= 2x cos θ + 2y sin 2θ
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= 2r
(
cos2θ + sin22θ

)
and

(ii)
∂z

∂θ
= 2x(−r sin θ) + 2y(2r cos 2θ)

= 2r2 (2 cos 2θ sin 2θ − cos θ sin θ) .

2. Determine the first-order partial derivatives of w with respect to u, θ and φ in the case
when

w = x2 + 2y2 + 2z2,

where

x = u sin φ cos θ, y = u sin φ sin θ and z = u cos φ.

Solution

We may use the formulae

∂w

∂u
=

∂w

∂x
.
∂x

∂u
+

∂w

∂y
.
∂y

∂u
+

∂w

∂z
.
∂z

∂u
,

∂w

∂θ
=

∂w

∂x
.
∂x

∂θ
+

∂w

∂y
.
∂y

∂θ
+

∂w

∂z
.
∂z

∂θ

and

∂w

∂φ
=

∂w

∂x
.
∂x

∂φ
+

∂w

∂y
.
∂y

∂φ
+

∂w

∂z
.
∂z

∂φ
.

These give

(i)
∂w

∂u
= 2x sin φ cos θ + 4y sin φ sin θ + 4z cos φ

= 2usin2φcos2θ + 4usin2φsin2θ + 4ucos2φ;
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(ii)
∂w

∂θ
= −2xu sin φ sin θ + 4yu sin φ cos θ

= −2u2sin2φ sin θ cos θ + 4u2sin2φ sin θ cos θ

= 2u2sin2φ sin θ cos θ;

(iii)
∂w

∂φ
= 2xu cos φ cos θ + 4yu cos φ sin θ − 4zu sin φ

= 2u2 sin φ cos φcos2θ + 4u2 sin φ cos φsin2θ − 4u2 sin φ cos φ

= 2u2 sin φ cos φ
(
cos2θ + 2sin2θ − 2

)
.

14.5.3 EXERCISES

1. Determine the total derivative of z with respect to t in the cases when

(a)

z = x2 + 3xy + 5y2, where x = sin t and y = cos t;

(b)

z = ln(x2 + y2), where x = e−t and y = et;

(c)

z = x2y2 where x = 2t3 and y = 3t2.

2. If z = f(x, y), show that, when y is a function of x,

dz

dx
=

∂f

∂x
+

∂f

∂y
.
dy

dx
.

Hence, determine dz
dx

in the case when z = xy + x2y and y = ln x.
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3. The base radius, r, of a cone is decreasing at a rate of 0.1cms/sec while the perpendicular
height, h, is increasing at a rate of 0.2cms/sec. Determine the rate at which the volume,
V , is changing when r = 2cm and h = 3cm. (Hint: V = (πr2h)/3).

4. A rectangular solid has sides of lengths 3cms, 4cms and 5cms. Determine the rate of
increase of the length of the diagonal of the solid if the sides are increasing at rates of
1
3
cms./sec, 1

4
cms./sec and 1

5
cms/sec, respectively.

5. If
z = (2x + 3y)2 where x = r2 − s2 and y = 2rs,

determine, in terms of r and s the first-order partial derivatives of z with respect to r
and s.

6. If
z = f(x, y) where x = eu cos v and y = eu sin v,

show that

∂z

∂u
= x

∂f

∂x
+ y

∂f

∂y
and

∂z

∂v
= −y

∂f

∂x
+ x

∂f

∂y
.

7. If
w = 5x− 3y2 + 7z3 where x = 2s + 3t, y = s− t and z = 4s + t,

determine, in terms of s and t, the first order partial derivatives of w with respect to s
and t.

14.5.4 ANSWERS TO EXERCISES

1. (a)

dz

dt
= 3 cos 2t− 4 sin 2t;

(b)

dz

dt
= 2

[
e4t − 1

e4t + 1

]
;

(c)

dz

dt
= 360t9.
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2.

dz

dx
= y2 + 2xy + 1 + x.

3. The volume is decreasing at a rate of approximately 0.42 cubic centimetres per second.

4. The diagonal is increasing at a rate of approximately 0.42 centimetres per second.

5.

∂z

∂r
= 8(r2 − s2 + 3rs)(2r + 3s) and

∂z

∂s
= 8(r2 − s2 + 3rs)(3r − 2s).

6. Results follow immediately from the formulae

∂z

∂u
=

∂f

∂x
.
∂x

∂u
+

∂f

∂y
.
∂y

∂u
and

∂z

∂v
=

∂f

∂x
.
∂x

∂v
+

∂f

∂y
.
∂y

∂v
.

7.

∂w

∂s
= 1344s2 + 672st + 84t2 − 6s + 6t + 10

and

∂w

∂t
= 336s2 + 168st + 21t2 + 6s− 6t + 15.
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UNIT 14.6 - PARTIAL DIFFERENTIATION 6

IMPLICIT FUNCTIONS

14.6.1 FUNCTIONS OF TWO VARIABLES

The chain rule, encountered earlier, has a convenient application to implicit relationships of
the form,

f(x, y) = constant,

between two independent variables, x and y.

It provides a means of determining the total derivative of y with respect to x.

Explanation

Taking x as the single independent variable, we may interpret f(x, y) as a function of x and
y in which both x and y are functions of x.

Differentiating both sides of the relationship, f(x, y) = constant, with respect to x gives

∂f

∂x
.
dx

dx
+

∂f

∂y
.
dy

dx
= 0.

In other words,

∂f

∂x
+

∂f

∂y
.
dy

dx
= 0.

Hence,

dy

dx
= −

∂f
∂x
∂f
∂y

.

1



EXAMPLES

1. If
f(x, y) ≡ x3 + 4x2y − 3xy + y2 = 0,

determine an expression for dy
dx

.

Solution

∂f

∂x
= 3x2 + 8xy − 3y and

∂f

∂y
= 4x2 − 3x + 2y.

Hence,

dy

dx
= −3x2 + 8xy − 3y

4x2 − 3x + 2y
.

2. If
f(x, y) ≡ x sin(2x− 3y) + y cos(2x− 3y),

determine and expression for dy
dx

.

Solution

∂f

∂x
= sin(2x− 3y) + 2x cos(2x− 3y)− 2y sin(2x− 3y)

and

∂f

∂y
= −3x cos(2x− 3y) + cos(2x− 3y) + 3y sin(2x− 3y).

Hence,

dy

dx
=

sin(2x− 3y) + 2x cos(2x− 3y)− 2y sin(2x− 3y)

3x cos(2x− 3y)− cos(2x− 3y)− 3y sin(2x− 3y)
.

14.6.2 FUNCTIONS OF THREE VARIABLES

For relationships of the form,

f(x, y, z) = constant,

let us suppose that x and y are independent of each other.
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Then, regarding f(x, y, z) as a function of x, y and z, where x, y and z are all functions of
x and y, the chain rule gives

∂f

∂x

∂x

∂x
+

∂f

∂y
.
∂y

∂x
+

∂f

∂z
.
∂z

∂x
= 0.

But,

∂x

∂x
= 1 and

∂y

∂x
= 0.

Hence,

∂f

∂x
+

∂f

∂z
.
∂z

∂x
= 0,

giving

∂z

∂x
= −

∂f
∂x
∂f
∂z

;

and, similarly,

∂z

∂y
= −

∂f
∂y
∂f
∂z

.

EXAMPLES

1. If
f(x, y, z) ≡ z2xy + zy2x + x2 + y2 = 5,

determine expressions for dz
dx

and dz
dy

.

Solution

∂f

∂x
= z2y + zy2 + 2x,
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∂f

∂y
= z2x + 2zyx + 2y

and

∂f

∂z
= 2zxy + y2x.

Hence,

∂z

∂x
= −z2y + zy2 + 2x

2zxy + y2x

and

∂z

∂y
= −z2x + 2zyx + 2y

2zxy + y2x
.

2. If
f(x, y, z) ≡ xey2+2z,

determine expressions for dz
dx

and dz
dy

.

Solution

∂f

∂x
= ey2+2z,

∂f

∂y
= 2yxey2+2z,

and

∂f

∂z
= 2xey2+2z.

Hence,

∂z

∂x
= − ey2+2z

2xey2+2z
= − 1

2x

and

∂z

∂y
= −2yxey2+2z

2xey2+2z
= −y.
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14.6.3 EXERCISES

1. Use partial differentiation to determine expressions for dy
dx

in the following cases:

(a)

x3 + y3 − 2x2y = 0;

(b)

ex cos y = ey sin x;

(c)

sin2x− 5 sin x cos y + tan y = 0.

2. If
x2y + y2z + z2x = 10,

where x and y are independent, determine expressions for

∂z

∂x
and

∂z

∂y
.

3. If
xyz − 2 sin(x2 + y + z) + cos(xy + z2) = 0,

where x and y are independent, determine expressions for

∂z

∂x
and

∂z

∂y
.

4. If
r2 sin θ = (r cos θ − 1)z,

where r and θ are independent, determine expressions for

∂z

∂r
and

∂z

∂θ
.
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14.6.4 ANSWERS TO EXERCISES

1. (a)

dy

dx
=

4xy − 3x2

3y2 − 2x2
;

(b)

dy

dx
=

ex cos y − ey cos x

xx sin y + ey sin x
;

(c)

dy

dx
=

5 cos x cos y − 2 sin x cos x

5 sin xsiny + sec2y
.

2.

∂z

∂x
= −2xy + z2

y2 + 2zx

and

∂z

∂y
= −x2 + 2yz

y2 + 2zx
.

3.

∂z

∂x
= −yz − 4x cos(x2 + y + z)− y sin(xy + z2)

xy − 2 cos(x2 + y + z)− 2z sin(xy + z2)

and

∂z

∂y
= − xz − 2 cos(x2 + y + z)− x sin(xy + z2)

xy − 2 cos(x2 + y + z)− 2z sin(xy + z2)
.

4.

∂z

∂r
=

2r sin θ − z cos θ

r cos θ − 1

and

∂z

∂θ
=

r2 cos θ + rz sin θ

r cos θ − 1
.
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UNIT 14.7 - PARTIAL DIFFERENTIATON 7

CHANGE OF INDEPENDENT VARIABLE

14.7.1 ILLUSTRATIONS OF THE METHOD

In the theory of “partial differential equations” (that is, equations which involve partial
derivatives) it is sometimes required to express a given equation in terms of a new set of
independent variables. This would be necessary, for example, in changing a discussion from
one geometrical reference system to another. The method is an application of the chain rule
for partial derivatives and we illustrate it with examples.

EXAMPLES

1. Express, in plane polar co-ordinates, r and θ, the following partial differential equations:

(a)

∂V

∂x
+ 5

∂V

∂y
= 1;

(b)

∂2V

∂x2
+

∂2V

∂y2
= 0.

Solution

Both differential equations involve a function, V (x, y), where

x = r cos θ and y = r sin θ.

Hence,

∂V

∂r
=

∂V

∂x
.
∂x

∂r
+

∂V

∂y
.
∂y

∂r
,

or

∂V

∂r
=

∂V

∂x
cos θ +

∂V

∂y
sin θ

and

∂V

∂θ
=

∂V

∂x
.
∂x

∂θ
+

∂V

∂y
.
∂y

∂θ
,

1



or

∂V

∂θ
= −∂V

∂x
r sin θ +

∂V

∂y
r cos θ.

Now, we may eliminate, first ∂V
∂y

, and then ∂V
∂x

to obtain

∂V

∂x
= cos θ

∂V

∂r
− sin θ

r

∂V

∂θ

and

∂V

∂y
= sin θ

∂V

∂r
+

cos θ

r

∂V

∂θ
.

Hence, differential equation, (a), becomes

(cos θ + 5 sin θ)
∂V

∂r
+

(
5 cos θ

r
− sin θ

)
∂V

∂θ
= 1.

In order to find the second-order derivatives of V with respect to x and y, it is necessary
to write the formulae for the first-order derivatives in the form

∂

∂x
[V ] =

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)
[V ]

and

∂

∂y
[V ] =

(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

)
[V ].

From these, we obtain

∂2V

∂x2
=

∂

∂x

(
∂V

∂x

)
=

(
cos θ

∂

∂r
− sin θ

r

∂

∂θ

)(
cos θ

∂V

∂r
− sin θ

r

∂V

∂θ

)
,

which gives

∂2V

∂x2
= cos2θ

∂2V

∂r2
+

2 sin θ cos θ

r2

∂V

∂θ
− 2 sin θ cos θ

r

∂2V

∂r∂θ
+

sin2θ

r

∂V

∂r
+

sin2θ

r2

∂2V

∂θ2
.
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Similarly,

∂2V

∂y2
= sin2θ

∂2V

∂r2
− 2 sin θ cos θ

r2

∂V

∂θ
+

2 sin θ cos θ

r

∂2V

∂r∂θ
+

cos2θ

r

∂V

∂r
+

cos2θ

r2

∂2V

∂θ2
.

Adding these together gives the differential equation, (b), in the form

∂2V

∂r2
+

1

r

∂V

∂r
+

1

r2

∂2V

∂θ2
= 0.

2. Express the differential equation,

∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
= 0,

(a) in cylindrical polar co-ordinates,

and

(b) in spherical polar co-ordinates.

Solution

(a) Using

x = r cos θ, y = r sin θ and z = z,

we may use the results of the previous example to give

∂2V

∂r2
+

1

r

∂V

∂r
+

1

r2

∂2V

∂θ2
+

∂2V

∂z2
= 0.

(b) Using

x = u sin φ cos θ, y = u sin φ sin θ, and z = u cos φ,

we could write out three formulae for ∂V
∂u

, ∂V
∂θ

and ∂V
∂φ

and then solve for ∂V
∂x

, ∂V
∂y

and ∂V
∂z

;

but this is complicated.

However, the result in part (a) provides a shorter method as follows:

Cylindrical polar co-ordinates are expressible in terms of spherical polar co-ordinates
by the formulae

z = u cos φ, r = u sin φ, θ = θ.
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Hence, by using the previous example with z, r, θ in place of x, y, z respectively and
u, φ in place of r, θ, respectively, we obtain

∂2V

∂z2
+

∂2V

∂r2
=

∂2V

∂u2
+

1

u

∂V

∂u
+

1

u2

∂2V

∂φ2
.

Therefore, to complete the conversion we need only to consider ∂V
∂r

; and, by using r, u,

φ in place of y, r, θ, respectively, the previous formula for ∂V
∂y

gives

∂V

∂r
= sin φ

∂V

∂u
+

cos φ

u

∂V

∂φ
.

The given differential equation thus becomes

∂2V

∂u2
+

1

u

∂V

∂u
+

1

u2

∂2V

∂φ2
+

1

u2sin2φ

∂2V

∂θ2
+

1

u sin φ

[
sin φ

∂V

∂u
+

cos φ

u

∂V

∂φ

]
= 0.

That is,

∂2V

∂u2
+

2

u

∂V

∂u
+

1

u2

∂2V

∂φ2
+

cot φ

u2

∂V

∂φ
+

1

u2sin2φ

∂2V

∂θ2
= 0.

14.7.2 EXERCISES

1. Express the partial differential equation,

x
∂V

∂x
+ y

∂V

∂x
= 0,

in plane polar co-ordinates, r and θ, where

x = r cos θ and y = r sin θ.

2. Express the differential equation,

x
∂V

∂x
+ y

∂V

∂y
=

∂V

∂z
,

in spherical polar co-ordinates u, θ and φ, where

x = u sin φ cos θ, y = u sin φ sin θ and z = u cos φ.
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3. A function φ(x, t) satisfies the partial differential equation,

∂2φ

∂x2
=

1

k2

∂2φ

∂t2
,

where k is a constant.

Express this equation in terms of new independent variables, u and v, where

x =
1

2
(u + v) and t =

1

2k
(u− v).

4. A function θ(x, y) satisfies the partial differential equation,

∂2θ

∂x2
+

∂2θ

∂y2
= 0.

Express this equation in terms of new independent variables, s and t, where

x = ln u and y = ln v.

Determine, also, an expression for ∂2θ
∂x∂y

in terms of θ, u and v.

14.7.3 ANSWERS TO EXERCISES

1.

∂V

∂r
= 0.

2.

(sin φ− cos φ)
∂V

∂u
− cos φ + sin φ

u

∂V

∂φ
= 0.

3.

∂2φ

∂u∂v
= 0.

4.

u2 ∂2θ

∂x2
+ v2 ∂2θ

∂v2
+ u

∂θ

∂u
+ v

∂θ

∂v
= 0,

and

∂2θ

∂x∂y
= uv

∂2θ

∂u∂v
.
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UNIT 14.8 - PARTIAL DIFFERENTIATION 8

DEPENDENT AND INDEPENDENT FUNCTIONS

14.8.1 THE JACOBIAN

Suppose that

u ≡ u(x, y) and v ≡ v(x, y)

are two functions of two independent variables, x and y; then, in general, it is not possible
to express u solely in terms of v, nor v solely in terms of u.

However, on occasions, it may be possible, as the following illustrations demonstrate:

ILLUSTRATIONS

1. If

u ≡ x + y

x
and v ≡ x− y

y
,

then

u ≡ 1 +
x

y
and v ≡ x

y
− 1,

which gives

(u− 1)(v + 1) ≡ x

y
.
y

x
≡ 1.

Hence,

u ≡ 1 +
1

v + 1
and v ≡ 1

u− 1
− 1.

2. If
u ≡ x + y and v ≡ x2 + 2xy + y2,

then

v ≡ u2 and u ≡ ±
√

v.

If u and v are not connected by an identical relationship, they are said to be “independent
functions”.

1



THEOREM

Two functions, u(x, y) and v(x, y), are independent if and only if

J ≡
∣∣∣∣∣

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣ 6≡ 0.

Proof:

We prove an equivalent statement, namely that u(x, y) and v(x, y) are dependent if and only
if

J ≡
∣∣∣∣∣

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣ ≡ 0.

(a) Suppose that v is dependent on u by virtue of the relationship

v ≡ v(u).

By expressing ∂v
∂x

and ∂v
∂y

in terms of ∂u
∂x

and ∂u
∂y

, we shall establish that the determinant, J ,

is identically equal to zero.

We have

∂v

∂x
≡ dv

du
.
∂u

∂x
and

∂v

∂y
≡ dv

du
.
∂u

∂y
.

Thus,

∂v
∂x
∂u
∂x

≡
∂v
∂y
∂u
∂y

≡ dv

du

or

∂u

∂x
.
∂v

∂y
− ∂v

∂x
.
∂u

∂y
≡ 0,

2



which means that the determinant, J , is identically equal to zero.

(b) Secondly, let us suppose that

J ≡
∣∣∣∣∣

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣ ≡ 0,

and attempt to prove that u(x, y) and v(x, y) are dependent.

In theory, we could express v in terms of u and x by eliminating y between u(x, y) and
v(x, y).

We shall assume that

v ≡ A(u, x).

By expressing ∂v
∂x

and ∂v
∂y

in terms of ∂u
∂x

and ∂u
∂y

, we may show that A(u, x) does not contain
x.

We have

(
∂v

∂x

)
y

≡
(

∂A

∂u

)
x

.

(
∂u

∂x

)
y

+

(
∂A

∂x

)
u

and

(
∂v

∂y

)
x

≡
(

∂A

∂u

)
x

.

(
∂u

∂y

)
x

.

Hence, if the determinant, J , is identically equal to zero, we may say that

∣∣∣∣∣∣
(

∂u
∂x

)
y

(
∂u
∂y

)
x(

∂A
∂u

)
x
.
(

∂u
∂y

)
y
+
(

∂A
∂x

)
u

(
∂A
∂u

)
x
.
(

∂u
∂y

)
x

∣∣∣∣∣∣ ≡ 0;

and, on expansion, this gives

(
∂u

∂y

)
x

.

(
∂A

∂x

)
u

≡ 0.

3



If the first of these two is equal to zero, then u contains only x and, hence, x could be
expressed in terms of u, giving v as a function of u only. If the second is equal to zero, then
A contains no x’s and, again, v is a function of u only.

Notes:

(i) The determinant

J ≡
∣∣∣∣∣

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣
may also be denoted by

∂(u, v)

∂(x, y)

and is called the “Jacobian determinant” or simply the “Jacobian” of u and v with
respect to x and y.

(ii) Similar Jacobian determinants may be used to test for the dependence or independence
of three functions of three variables, four functions of four variables, and so on.

For example, the three functions

u ≡ u(x, y, z), v ≡ v(x, y, z) and w ≡ w(x, y, z)

are independent if and only if

J ≡ ∂(u, v, w)

∂(x, y, z)
≡

∣∣∣∣∣∣∣∣
∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

∣∣∣∣∣∣∣∣ 6≡ 0.
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ILLUSTRATIONS

1.

u ≡ x + y

x
and v ≡ x− y

y

are not independent, since

J ≡
∣∣∣∣∣−

y
x2

1
x

1
y

− x
y2

∣∣∣∣∣ ≡ 1

xy
− 1

xy
≡ 0

2.

u ≡ x + y and v ≡ x2 + 2xy + y2

are not independent, since

J ≡
∣∣∣∣ 1 1
2x + 2y 2x + 2y

∣∣∣∣ ≡ 0.

3.

u ≡ x2 + 2y and v ≡ xy

are independent, since

J ≡
∣∣∣∣ 2x 2

y x

∣∣∣∣ ≡ 2x2 − 2y 6≡ 0.

4.

u ≡ x2 − 2y + z, v ≡ x + 3y2 − 2z, and w ≡ 5x + y + z2

are not independent, since

J ≡

∣∣∣∣∣∣∣
2x −2 1
1 6y −2
5 1 2z

∣∣∣∣∣∣∣ ≡ 24xyz + 4x− 30y + 4z + 25 6≡ 0.
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14.8.2 EXERCISES

1. Determine which of the following pairs of functions are independent:

(a)

u ≡ x cos y and v ≡ x sin y;

(b)

u ≡ x + y and v ≡ y

x + y
;

(c)

u ≡ x− 2y and v ≡ x2 + 4y2 − 4xy + 3x− 6y;

(d)

u ≡ x + 2y and v ≡ x2 − y2 + 2xy − x.

2. Show that

u ≡ x + y + z, v ≡ x2 + y2 + z2 − 2xy − 2yz − 2zx

and

w ≡ x3 + y3 + z3 − 3xyz

are dependent.

Show also that w may be expressed as a linear combination of u3 and uv.

3. Given that

x + y + z ≡ u, y + z ≡ uv and z ≡ uvw,

express x and y in terms of u, v and w.

Hence, show that

∂(x, y, z)

∂(u, v, w)
≡ u2v.

6



14.8.3 ANSWERS TO EXERCISES

1. (a) Independent, since J ≡ x;

(b) Independent, since J ≡ 1/(x + y);

(c) Dependent, since J ≡ 0;

(d) Independent, since J ≡ 2− 2x− 6y.

2.

w ≡ 1

4

[
u3 + 3uv

]
.

3.

x ≡ u− uv and y ≡ uv − uvw.

7
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UNIT 14.9 - PARTIAL DIFFERENTIATION 9

TAYLOR’S SERIES FOR FUNCTIONS OF SEVERAL VARIABLES

14.9.1 THE THEORY AND FORMULA

Initially, we shall consider a function, f(x, y), of two independent variables, x, y, and obtain
a formula for f(x + h, y + k) in terms of f(x, y) and its partial derivatives.

Suppose that P,Q and R denote the points with cartesian co-ordinates, (x, y), (x + h, y) and
(x + h, y + k), respectively.

-

6

P Q

R

x

y

O

(a) As we move in a straight line from P to Q, y remains constant so that f(x, y) behaves
as a function of x only.

Hence, by Taylor’s theorem for one independent variable,

f(x + h, y) = f(x, y) + fx(x, y) +
h2

2!
fxx(x, y) + . . .,

where fx(x, y) and fxx(x, y) mean ∂f
∂x

and ∂2f
∂x2 respectively, with similar notations encountered

in what follows.

In abbreviated notation,

f(Q) = f(P) + hfx(P) +
h2

2!
fxx(P) + . .

1



(b) As we move in a straight line from Q to R, x remains constant so that f(x, y) behaves
as a function of y only.

Hence,

f(x + h, y + k) = f(x + h, y) + kfx(x + h, y) +
k2

2!
fxx(x + h, y) + . . .;

or, in abbreviated notation,

f(R) = f(Q) + kfy(Q) +
k2

2!
fyy(Q) + . .

(c) From the result in (a)

fy(Q) = fy(P) + hfyx(P) +
h2

2!
fyxx(P) + . . .

and

fyy(Q) = fyy(P) + hfyyx(P) +
h2

2!
fyyxx(Q) + . . .

(d) Substituting the results into (b) gives

f(R) = f(P) + hfx(P) + kfy(P) +
1

2!

[
h2fxx(P) + 2hkfyx(P) + k2fyy(P)

]
+ . .

It may be shown that the complete result can be written as

f(x + h, y + k) = f(x, y) +

(
h

∂

∂x
+ k

∂

∂y

)
f(x, y)+

1

2!

(
h

∂

∂x
+ k

∂

∂y

)2

f(x, y) +
1

3!

(
h

∂

∂x
+ k

∂

∂y

)3

f(x, y) + . . .

2



Notes:

(i) The equivalent of this result for a function of three variables would be

f(x + h, y + k, z + l) = f(x, y, z) +

(
h

∂

∂x
+ k

∂

∂y
+ l

∂

∂z

)
f(x, y, z)+

1

2!

(
h

∂

∂x
+ k

∂

∂y
+ l

∂

∂z

)2

f(x, y, z) +
1

3!

(
h

∂

∂x
+ k

∂

∂y
+ l

∂

∂z

)3

f(x, y, z) + . . .

(ii) Alternative versions of Taylor’s theorem may be obtained by interchanging x, y, z... with
h, k, l....

For example,

f(x + h, y + k) = f(h, k) +

(
x

∂

∂x
+ y

∂

∂y

)
f(h, k)+

1

2!

(
x

∂

∂x
+ y

∂

∂y

)2

f(h, k) +
1

3!

(
x

∂

∂x
+ y

∂

∂y

)3

f(h, k) + . . .

(iii) Replacing x with x− h and y with y − k in (ii) gives the formula,

f(x, y) = f(h, k) +

(
(x− h)

∂

∂x
+ (y − k)

∂

∂y

)
f(h, k)+

1

2!

(
(x− h)

∂

∂x
+ (y − k)

∂

∂y

)2

f(h, k) +
1

3!

(
(x− h)

∂

∂x
+ (y − k)

∂

∂y

)3

f(h, k) + . . .

This is called the “Taylor expansion of f(x, y) about the point (a, b)”

3



(iv) A special case of Taylor’s series (for two independent variables) is obtained by putting
h = 0 and k = 0 in (ii) to give

f(x, y) = f(0, 0) +

(
x

∂

∂x
+ y

∂

∂y

)
f(0, 0) +

1

2!

(
x

∂

∂x
+ y

∂

∂y

)2

f(0, 0) + . . .

This is called a “MacLaurin’s series” but is also the Taylor expansion of f(x, y) about
the point (0, 0).

EXAMPLE

Determine the Taylor series expansion of the function f
(
x + 1, y + π

3

)
in ascending powers

of x and y when

f(x, y) ≡ sin xy,

neglecting terms of degree higher than two.

Solution

We use the result that

f
(
x + 1, y +

π

3

)
= f

(
1,

π

3

)
+

(
x

∂

∂x
+ y

∂

∂y

)
f
(
1,

π

3

)
+

1

2!

(
x

∂

∂x
+ y

∂

∂y

)2

f
(
1,

π

3

)
+ . . .,

in which the first term on the right has value
√

3/2.

The partial derivatives required are as follows:

∂f

∂x
≡ y cos xy giving − π

6
at x = 1, y =

π

3
;

∂f

∂y
≡ x cos xy giving

1

2
at x = 1, y =

π

3
;

∂2f

∂x2
≡ −y2 sin xy giving − π2

√
3

18
at x = 1, y =

π

3
;

4



∂2f

∂x∂y
≡ cos xy − xy sin xy giving

1

2
− π

√
3

6
at x = 1, y =

π

3
;

∂2f

∂y2
≡ −x2 sin xy giving −

√
3

2
at x = 1, y =

π

3
.

Neglecting terms of degree higher than two, we have

sin xy =

√
3

2
+

π

6
x +

1

2
y −

√
3π2

36
x2 +

(
1

2
− π

√
3

6

)
xy −

√
3

4
y2 + . . .

14.9.2 EXERCISES

1. If f(x, y) ≡ x3 − 3xy2, show that

f(2 + h, 1 + k) = 2 + 9h− 12k + 6
(
h2 − hk − k2

)
+ h3 − 3hk2.

2. If f(x, y) ≡ sin x cosh y, evaluate all the partial derivatives of f(x, y) up to order five at
the point, (x, y) = (0, 0), and, hence, show that

sin x cosh y = x− 1

6

(
x3 − 3xy2

)
+

1

120

(
x5 − 10x3y2 + 5xy4

)
+ . . .

3. If z is a function of two independent variables, x and y, where y ≡ z − x sin z, evaluate
all the partial derivatives of z(x, y) up to order three at the point, (x, y) = (0, 0), and,
hence, show that

z(x, y) = y + xy + x2y + . . .

5



“JUST THE MATHS”

UNIT NUMBER

14.10

PARTIAL DIFFERENTIATION 10
(Stationary values)

for
(Functions of two variables)

by

A.J.Hobson

14.10.1 Introduction
14.10.2 Sufficient conditions for maxima and minima
14.10.3 Exercises
14.10.4 Answers to exercises



UNIT 14.10 - PARTIAL DIFFERENTIATION 10

STATIONARY VALUES FOR FUNCTIONS OF TWO VARIABLES

14.10.1 INTRODUCTION

If f(x, y) is a function of the two independent variables, x and y, then the equation,

z = f(x, y),

will normally represent some surface in space, referred to cartesian axes, Ox, Oy and Oz.

-

6

�
���

��

z

x

yO

DEFINITION 1

The “stationary points”, on a surface whose equation is z = f(x, y), are defined to be the
points for which

∂z

∂x
= 0 and

∂z

∂y
= 0.

DEFINITION 2

The function, z = f(x, y), is said to have a “local maximum” at a point, P(x0, y0, z0), if z0

is larger than the z co-ordinates of all other points on the surface, with equation z = f(x, y),
in the neighbourhood of P.

DEFINITION 3

The function z = f(x, y) is said to have a “local minimum” at a point, P(x0, y0, z0), if z0 is
smaller than the z co-ordinates of all other points on the surface, with equation z = f(x, y),
in the neighbourhood of P.

1



Note:
At a stationary point, P(x0, y0, z0), on the surface with equation z = f(x, y), each of the
planes, x = x0 and y = y0, intersect the surface in a curve which has a stationary point at
P.

14.10.2 SUFFICIENT CONDITIONS FOR MAXIMA AND MINIMA

A complete explanation of the conditions for a function, z = f(x, y), to have a local maximum
or a local minimum at a particular point require the use of Taylor’s theorem for two variables.

At this stage, we state the standard set of sufficient conditions without proof.

(a) Sufficient conditions for a local maximum

A point, P(x0, y0, z0), on the surface with equation z = f(x, y), is a local maximum if

∂z

∂x
= 0,

∂z

∂y
= 0,

∂2z

∂x2
< 0 or

∂2z

∂y2
< 0

and

∂2z

∂x2
.
∂2z

∂y2
−
(

∂2z

∂x∂y

)2

> 0,

when x = x0 and y = y0.

(b) Sufficient conditions for a local minimum

A point, P(x0, y0, z0), on the surface with equation z = f(x, y), is a local minimum if

∂z

∂x
= 0,

∂z

∂y
= 0,

∂2z

∂x2
> 0 or

∂2z

∂y2
> 0

and

∂2z

∂x2
.
∂2z

∂y2
−
(

∂2z

∂x∂y

)2

> 0,

2



when x = x0 and y = y0.

Notes:

(i) If ∂2z
∂x2 is positive (or negative) and also ∂2z

∂x2 .
∂2z
∂y2 −

(
∂2z

∂x∂y

)2
> 0, then ∂2z

∂y2 is automatically

positive (or negative).

(ii) If it turns out that ∂2z
∂x2 .

∂2z
∂y2 −

(
∂2z

∂x∂y

)2
is negative at P, we have what is called a “saddle-

point”, irrespective of what ∂2z
∂x2 and ∂2z

∂y2 themselves are.

(iii) The values of z at the local maxima and local minima of the function, z = f(x, y), may
also be called the “extreme values” of the function, f(x, y).

EXAMPLES

1. Determine the extreme values and the co-ordinates of any saddle-points of the function,

z = x3 + x2 − xy + y2 + 4.

Solution

(i) First, we determine ∂z
∂x

and ∂z
∂y

.

∂z

∂x
= 3x2 + 2x− y and

∂z

∂y
= −x + 2y.

(ii) Secondly, we solve the equations ∂z
∂x

= 0 and ∂z
∂y

= 0 for x and y.

3x2 + 2x− y = 0,−−−−−−−−−(1)

−x + 2y = 0.−−−−−−−−− (2)

Substituting equation (2) into equation (1) gives

3x2 + 2x− 1

2
x = 0.

That is,

6x2 + 3x = 0 or 3x(2x + 1) = 0.

Hence, x = 0 or x = −1
2
, with corresponding values, y = 0, z = 4 and y = −1

4
, z =

−65
16

, respectively.

The stationary points are thus (0, 0, 4) and
(
−1

2
,−1

4
,−65

16

)
.

(iii) Thirdly, we evaluate ∂2z
∂x2 ,

∂2z
∂y2 and ∂2z

∂x∂y
at each stationary point.

∂2z

∂x2
= 6x + 2,

∂2z

∂y2
= 2, and

∂2z

∂x∂y
= −1.

3



(a) At the point (0, 0, 4),

∂2z

∂x2
= 2,

∂2z

∂y2
= 2, and

∂2z

∂x∂y
= −1.

Hence,

∂2z

∂x2
> 0,

∂2z

∂y2
> 0, and

∂2z

∂x2
.
∂2z

∂y2
−
(

∂2z

∂x∂y

)2

= 3 > 0

and, therefore, the point, (0, 0, 4), is a local minimum, with z having a corresponding
extreme value of 4.

(b) At the point
(
−1

2
,−1

4
, 65

16

)
,

∂2z

∂x2
= −1,

∂2z

∂y2
= 2, and

∂2z

∂x∂y
= −1.

Hence,

∂2z

∂x2
< 0,

∂2z

∂y2
> 0, and

∂2z

∂x2
.
∂2z

∂y2
−
(

∂2z

∂x∂y

)2

= −3 < 0

and, therefore, the point,
(
−1

2
,−1

4
,−65

16

)
, is a saddle-point.

4



2. Determine the stationary points of the function,

z = 2x3 + 6xy2 − 3y3 − 150x,

and determine their nature.

Solution

Following the same steps as in the previous example, we have

∂z

∂x
= 6x2 + 6y2 − 150 and

∂z

∂y
= 12xy − 9y2.

Hence, the stationary points occur where x and y are the solutions of the simultaneous
equations,

x2 + y2 = 25,−−−−−−−− (1)

y(4x− 3y) = 0.−−−−−−−−− (2)

From the second equation, y = 0 or 4x = 3y.

Putting y = 0 in the first equation gives x = ±5 and, with these values of x and y, we
obtain stationary points at (5, 0,−500) and (−5, 0, 500).

Putting x = 3
4
y into the first equation gives y = ±4, x = ±3 and, with these values of

x and y, we obtain stationary points at (3, 4,−300) and (−3,−4, 300).

To classify the stationary points we require

∂2z

∂x2
= 12x,

∂2z

∂y2
= 12x− 18y, and

∂2z

∂x∂y
= 12y,

and the conclusions are given in the following table:

Point ∂2z
∂x2

∂2z
∂y2

∂2z
∂x∂y

∂2z
∂x2 .

∂2z
∂y2 −

(
∂2z

∂x∂y

)2
Nature

(5, 0,−500) 60 60 0 positive minimum
(−5, 0, 500) −60 −60 0 positive maximum
(3, 4,−300) 36 −36 48 negative saddle-point
(−3,−4, 300) −36 36 −48 negative saddle-point

Note:
The conditions used in the examples above are only sufficient conditions; that is, if the
conditions are satisfied, we may make a conclusion. But it may be shown that there are
stationary points which do not satisfy the conditions.

5



Outline proof of the sufficient conditions

From Taylor’s theorem for two variables,

f(a+h, b+k)−f(a, b) = hfx(a, b)+kfy(a, b)+
1

2

(
h2fxx(a, b) + 2hkfxy(a, b) + k2fyy(a, b)

)
+ . . ,

where h and k are small compared with a and b, fx means ∂f
∂x

, fy means ∂f
∂y

, fxx means ∂2f
∂x2 ,

fyy means ∂2f
∂y2 and fxy means ∂2f

∂x∂y
.

If fx(a, b) = 0 and fy(a, b) = 0, the conditions for a local minimum at the point (a, b, f(a, b))
will be satisfied when the second term on the right-hand side is positive; and the conditions
for a local maximum at this point are satisfied when the second term on the right is negative.

We assume, here, that later terms of the Taylor series expansion are negligible.

Also, it may be shown that a quadratic expression of the form

Lh2 + 2Mhk + Nk2

is positive when L > 0 or N > 0 and LN −M2 > 0; but negative when L < 0 or N < 0 and
LN −M2 > 0.

If it happens that LN −M2 < 0, then it may be shown that the quadratic expression may
take both positive and negative values.

Finally, replacing L, M and N by fxx(a, b), fyy(a, b) and fxy(a, b) respectively, the sufficient
conditions for local maxima, local minima and saddle-points follow.

6



14.10.3 EXERCISES

1. Show that the function,

z = 3x3 − y3 − 4x + 3y,

has a local minimum value when x = 2
3
, y = −1 and calculate this minimum value.

What other stationary points are there, and what is their nature ?

2. Determine the smallest value of the function,

z = 2x2 + y2 − 4x + 8y.

3. Show that the function,

z = 2x2y2 + x2 + 4y2 − 12xy,

has three stationary points and determine their nature.

4. Investigate the local extreme values of the function,

z = x3 + y3 + 9(x2 + y2) + 12xy.

5. Discuss the stationary points of the following functions and, where possible, determine
their nature:

(a)

z = x2 − 2xy + y2;

(b)

z = xy.

Note:
It will not be possible to use all of the standard conditions; and a geometrical argument
will be necessary.

7



14.10.4 ANSWERS TO EXERCISES

1.
(

2
3
,−1,−34

9

)
is a local minimum;(

−2
3
, 1, 34

9

)
is a local maximum;(

2
3
, 1, 2

9

)
is a saddle-point;(

−2
3
,−1,−2

9

)
is a saddle-point.

2. The smallest value is−18, since there is a single local minimum at the point (1,−4,−18).

3. (0, 0, 0) is a saddle-point;
(2, 1,−8) is a local minimum; (Hint: try x ∂z

∂x
− y ∂z

∂y
)

(−2,−1,−8) is a local minimum.

4. (0, 0, 0) is a local minimum;
(−10,−10, 1000) is a local maximum; (Hint: try ∂z

∂x
− ∂z

∂y
)

(−4, 2, 28) is a saddle-point;
(2,−4, 28) is a saddle-point.

5. (a) Points (α, α, 0) are such that ∂z
∂x

= 0 and ∂z
∂y

= 0; but ∂2z
∂x2 .

∂2z
∂y2 −

(
∂2z

∂x∂y

)2
= 0. In fact

the surface is a “parabolic cylinder” which contains the straight line x = y, z = 0
and is symmetrical about the plane x = y.

(b) (0, 0, 0) is a saddle-point since z may have both positive and negative values in the
neighbourhood of this point.
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UNIT 14.11 - PARTIAL DIFFERENTIATION 11

CONSTRAINED MAXIMA AND MINIMA

Having discussed the determination of local maxima and local minima for a function, f(x, y, ...),
of several independent variables, we shall now consider that an additional constraint is im-
posed in the form of a relationship, g(x, y, ...) = 0.

This would occur, for example, if we wished to construct a container with the largest possible
volume for a fixed value of the surface area.

14.11.1 THE SUBSTITUTION METHOD

The following examples illustrate a technique which may be used in elementary cases:

EXAMPLES

1. Determine any local maxima or local minima of the function,

f(x, y) ≡ 3x2 + 2y2,

subject to the constraint that x + 2y − 1 = 0.

Solution

In this kind of example, it is possible to eliminate either x or y by using the constraint.
If we eliminate x, for instance, we may write f(x, y) as a function, F (y), of y only.

In fact,

f(x, y) ≡ F (y) ≡ 3(1− 2y)2 + 2y2 ≡ 3− 12y + 14y2.

Using the principles of maxima and minima for functions of a single independent vari-
able, we have

F ′(y) ≡ 28y − 12 and F ′′ ≡ 28

and, hence, a local minimum occurs when y = 3/7 and hence, x = 1/7.

The corresponding local minimum value of f(x, y) is

3
(

1

7

)2

+ 2
(

3

7

)2

=
21

49
=

3

7
.

1



2. Determine any local maxima or local minima of the function,

f(x, y, z) ≡ x2 + y2 + z2,

subject to the constraint that x + 2y + 3z = 1.

Solution

Eliminating x, we may write f(x, y, z) as a function, F (y, z), of y and z only.

In fact,

f(x, y, z) ≡ F (y, z) ≡ (1− 2y − 3z)2 + y2 + z2.

That is,

F (y, z) ≡ 1− 4y − 6z + 12yz + 5y2 + 10z2.

Using the principles of maxima and minima for functions of two independent variables
we have,

∂F

∂y
≡ −4 + 12z + 10y and

∂F

∂z
≡ −6 + 12y + 20z,

and a stationary value will occur when these are both equal to zero.

Thus,

5y + 6z = 2,

6y + 10z = 3,

which give y = 1/7 and z = 3/14, on solving simultaneously.

The corresponding value of x is 1/14, which gives a stationary value, for f(x, y, z), of
14/(14)2 = 1

14
.

Also, we have

∂2F

∂y2
≡ 10 > 0,

∂2F

∂z2
≡ 20 > 0, and

∂2F

∂y∂z
≡ 12,

which means that

∂2F

∂y2
.
∂2F

∂z2
−
(

∂2F

∂y∂z

)2

= 200− 144 > 0.

2



Hence there is a local minimum value, 1
14

, of x2 + y2 + z2, subject to the constraint that
x + 2y + 3z = 1, at the point where

x =
1

14
, y =

1

7
, and z =

3

14
.

Note:
Geometrically, this example is calculating the square of the shortest distance from the
origin onto the plane whose equation is x + 2y + 3z = 1.

14.11.2 THE METHOD OF LAGRANGE MULTIPLIERS

In determining the local maxima and local minima of a function, f(x, y, ...), subject to the
constraint that g(x, y, ...) = 0, it may be inconvenient (or even impossible) to eliminate one
of the variables, x, y, ....

An alternative method may be illustrated by means of the following steps for a function of
two independent variables:

(a) Suppose that the function, z ≡ f(x, y), is subject to the constraint that g(x, y) = 0.

Then, since z is effectively a function of x only, its stationary values will be determined by
the equation

dz

dx
= 0.

(b) From Unit 14.5 (Exercise 2), the total derivative of z ≡ f(x, y) with respect to x, when
x and y are not independent of each other, is given by the formula,

dz

dx
=

∂f

∂x
+

∂f

∂y

dy

dx
.

(c) From the constraint that g(x, y) = 0, the process used in (b) gives

∂g

∂x
+

∂g

∂y

dy

dx
= 0

and, hence, for all points on the surface with equation, g(x, y) = 0,

3



dy

dx
= −

∂g
∂x
∂g
∂y

.

Thus, throughout the surface with equation, g(x, y) = 0,

dz

dx
=

∂f

∂x
−
(

∂f

∂y

) ( ∂g
∂x

)
(

∂g
∂y

) .

(d) Stationary values of z, subject to the constraint that g(x, y) = 0, will, therefore, occur
when

∂f

∂x
.
∂g

∂y
− ∂f

∂y
.
∂g

∂x
= 0.

But this may be interpreted as the condition that the two equations,

∂f

∂x
+ λ

∂g

∂x
= 0 and

∂f

∂y
+ λ

∂g

∂y
= 0,

should have a common solution for λ.

(e) Suppose that

φ(x, y, λ) ≡ f(x, y) + λg(x, y).

Then φ(x, y, λ) would have stationary values whenever its first order partial derivatives with
respect to x, y and λ were equal to zero.

In other words,

∂f

∂x
+ λ

∂g

∂x
= 0,

∂f

∂y
+ λ

∂g

∂y
= 0, and g(x, y) = 0.

4



Conclusion

The stationary values of the function, z ≡ f(x, y), subject to the constraint that g(x, y) = 0,
occur at the points for which the function

φ(x, y, λ) ≡ f(x, y) + λg(x, y)

has stationary values.

The number, λ, is called a “Lagrange multiplier”.

Notes:

(i) In order to determine the nature of the stationary values of z, it will usually be necessary
to examine the geometrical conditions in the neighbourhood of the stationary points.

(ii) The Lagrange multiplier method may also be applied to functions of three or more
independent variables.

EXAMPLES

1. Determine any local maxima or local minima of the function,

z ≡ 3x2 + 2y2,

subject to the constraint that x + 2y − 1 = 0.

Solution

Firstly, we write

φ(x, y, λ) ≡ 3x2 + 2y2 + λ(x + 2y − 1).

Then,

∂φ

∂x
≡ 6x + λ,

∂φ

∂y
≡ 4y + 2λ and

∂φ

∂λ
≡ x + 2y − 1.

The third of these is already equal to zero; but we equate the first two to zero, giving

6x + λ = 0,

2y + λ = 0.

5



Eliminating λ shows that 6x − 2y = 0, or y = 3x; and, if we substitute this into the
constraint, we obtain 7x− 1 = 0.

Hence,

x =
1

7
, y =

3

7
and λ = −6

7
.

A single stationary point therefore occurs at the point where

x =
1

7
, y =

3

7
and z = 3

(
1

7

)2

+ 2
(

3

7

)2

=
3

7
.

Finally, the geometrical conditions imply that the stationary value of z occurs at a point
on the straight line whose equation is x + 2y − 1 = 0.

-

6
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The stationary point is, in fact, a minimum value of z, since the function, 3x2 + 2y2,
has values larger than 3/7 ' 0.429 at any point either side of the point, (1/7, 3/7) =
(0.14, 0.43), on the line whose equation is x + 2y − 1 = 0.

For example, at the points, 0.12, 0.44) and (0.16, 0.42), on the line, the values of z are
0.4304 and 0.4296, respectively.

2. Determine the maximum and minimum values of the function, z ≡ 3x + 4y, subject to
the constraint that x2 + y2 = 1.

Solution

Firstly, we write

φ(x, y, λ) ≡ 3x + 4y + λ(x2 + y2 − 1).

6



Then,

∂φ

∂x
≡ 3 + 2λx,

∂φ

∂y
≡ 4 + 2λy and

∂φ

∂λ
≡ x2 + y2 − 1.

The third of these is already equal to zero; but we equate the first two to zero, giving

3 + 2λx = 0,

2 + λy = 0.

Thus,

x = − 3

2λ
and y =

2

λ
,

which we may substitute into the constraint to give

9

4λ2
+

4

λ2
= 1.

That is,

9 + 16 = 4λ2 and hence λ = ±5

2
.

We may deduce that x = ±3
5

and y = ±4
5
, giving stationary values, ±5, of z.

Finally, the geometrical conditions suggest that we consider a straight line with equation
3x + 4y = c (a constant) moving across the circle with equation x2 + y2 = 1.

7
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The further the straight line is from the origin, the greater is the value of the constant,
c.

The maximum and minimum values of 3x+4y, subject to the constraint that x2+y2 = 1
will occur where the straight line touches the circle; and we have shown that these are
the points, (3/5, 4/5) and (−3/5,−4/5).

3. Determine any local maxima or local minima of the function,

w ≡ x2 + y2 + z2,

subject to the constraint that x + 2y + 3z = 1.

Solution

Firstly, we write

φ(x, y, z, λ) ≡ x2 + y2 + z2 + λ(x + 2y + 3z − 1).

Then,

∂φ

∂x
≡ 2x + λ,

∂φ

∂y
≡ 2y + 2λ,

∂φ

∂z
≡ 2z + 3λ and

∂φ

∂λ
≡ x + 2y + 3z − 1.

The fourth of these is already equal to zero; but we equate the first three to zero, giving

2x + λ = 0,

y + λ = 0,

2z + 3λ = 0.

8



Eliminating λ shows that 2x− y = 0, or y = 2x, and 6x− 2z = 0, or z = 3x.

Substituting these into the constraint gives 14x = 1.

Hence,

x =
1

14
, y =

1

7
, z =

3

14
and λ = −1

7
.

A single stationary point therefore occurs at the point where

x =
1

14
, y =

1

7
, z =

3

14
and w =

(
1

14

)2

+
(

1

7

)2

+
(

3

14

)2

=
1

14
.

Finally, the geometrical conditions imply that the stationary value of w occurs at a
point on the plane whose equation is x + 2y + 3z = 1.

-
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The stationary point must give a minimum value of w since the function, x2 + y2 + z2,
represents the square of the distance of a point, (x, y, z), from the origin; and, if the
point is constrained to lie on a plane, this distance is bound to have a minimum value.

14.11.3 EXERCISES

1. In the following exercises, use both the substitution method and the Lagrange multiplier
method:

(a) Determine the minimum value of the function,

z ≡ x2 + y2,

subject to the constraint that x + y = 1.

(b) Determine the maximum value of the function,

z ≡ xy,

subject to the constraint that x + y = 15.

9



(c) Determine the maximum value of the function,

z ≡ x2 + 3xy − 5y2,

subject to the constraint that 2x + 3y = 6.

2. In the following exercises, use the Lagrange multiplier method:

(a) Determine the maximum and minimum values of the function,

w ≡ x− 2y + 5z,

subject to the constraint that x2 + y2 + z2 = 30.

(b) If x > 0, y > 0 and z > 0, determine the maximum value of the function,

w ≡ xyz,

subject to the constraint that x + y + z2 = 16.

(c) Determine the maximum value of the function,

w ≡ 8x2 + 4yz − 16z + 600,

subject to the constraint that 4x2 + y2 + 4z2 = 16.

14.11.4 ANSWERS TO EXERCISES

1. (a) The minimum value is z = 1/2, and occurs when x = y = 1/2;

(b) The maximum value is z ' 56.25, and occurs when x = y = 15/2;

(c) The maximum value is z = 9, and occurs when x = 3 and y = 0.

2. (a) The maximum value is 30, and occurs when x = 1, y = −2 and z = 5;
The minimum value is −30, and occurs when x = −1, y = 2 and z = −5;

(b) The maximum value is
4096

25
√

5
' 73.27,

and occurs when x = 32/
√

5, y = 32/
√

5 and z = 4/
√

5;

(c) The maximum value is approximately 613.86, and occurs when x = 0, y = −2 and
z =

√
3.

10
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UNIT 14.12 - PARTIAL DIFFERENTIATION 12

THE PRINCIPLE OF LEAST SQUARES

14.12.1 THE NORMAL EQUATIONS

Suppose two variables, x and y, are known to obey a “straight line law”, of the form
y = a + bx, where a and b are constants to be found.

Suppose also that, in an experiment to test this law, we obtain n pairs of values, (xi, yi),
where i = 1,2,3,...,n.

If the values xi are assigned values, they are likely to be free from error, whereas the
observed values, yi, will be subject to experimental error.

The principle underlying the straight line of “best fit” is that, in its most likely position,
the sum of the squares of the y-deviations, from the line, of all observed points is a minimum.

The Calculation

The y-deviation, εi, of the point, (xi, yi), is given by

εi = yi − (a + bxi).

Hence,

n∑
i=1

ε2
i =

n∑
i=1

[yi − (a + bxi]
2 = P say.

Regarding P as a function of a and b, it will be a minimum when

∂P

∂a
= 0,

∂P

∂b
= 0,

∂2P

∂a2
> 0 or

∂2P

∂b2
> 0, and

∂2P

∂a2
.
∂2P

∂b2
−
(

∂2P

∂a∂b

)2

> 0.

For these conditions, we have

∂P

∂a
= −2

n∑
i=1

[yi − (a + bxi] and
∂P

∂b
= −2

n∑
i=1

xi[yi + bxi],

1



and these will be zero when

n∑
i=1

[yi − (a + bxi] = 0 −−− (1)

and

n∑
i=1

xi[yi + bxi] = 0 −−− (2).

From (1),

n∑
i=1

yi −
n∑

i=1

a−
n∑

i=1

bxi = 0.

That is,

n∑
i=1

yi = na + b
n∑

i=1

xi −−− (3).

From (2),

n∑
i=1

xiyi = a
n∑

i=1

xi + b
n∑

i=1

x2
i −−− (4).

The statements (3) and (4) are two simultaneous equations which may be solved for a and
b.

They are called the “normal equations”

A simpler notation for the normal equations is

Σ y = na + bΣ x;

Σxy = aΣx + bΣ x2.

2



By eliminating a and b in turn, we obtain the solutions

a =
Σ x2.Σ y − Σx.Σ xy

nΣ x2 − (Σ x)2 and b =
nΣ xy − Σ x.Σ y

nΣ x2 − (Σ x)2 .

With these values of a and b, the straight line with equation, y = a + bx, is called the
“regression line of y on x”.

Note:
To verify that the y-deviations from the regression line have indeed been minimised, we also
need the results that

∂2P

∂a2
=

n∑
i=1

2 = 2n,
∂2P

∂b2
=

n∑
i=1

2x2
i , and

∂2P

∂a∂b
=

n∑
i=1

2xi.

The first two of these are clearly positive; and it may be shown that

∂2P

∂a2
.
∂2P

∂b2
−
(

∂2P

∂a∂b

)2

> 0.

EXAMPLE

Determine the equation of the regression line of y on x for the following data, which shows
the Packed Cell Volume, xmm, and the Red Blood Cell Count, y millions, of 10 dogs:

x 45 42 56 48 42 35 58 40 39 50
y 6.53 6.30 9.52 7.50 6.99 5.90 9.49 6.20 6.55 8.72

3



Solution

x y xy x2

45 6.53 293.85 2025
42 6.30 264.60 1764
56 9.52 533.12 3136
48 7.50 360.00 2304
42 6.99 293.58 1764
35 5.90 206.50 1225
58 9.49 550.42 3364
40 6.20 248.00 1600
39 6.55 255.45 1521
50 8.72 436.00 2500

455 73.70 3441.52 21203

The regression line of y on x thus has equation y = a + bx where

a =
(21203)(73.70)− (455)(3441.52)

(10)(21203)− (455)2
' −0.645

and

b =
(10)(3441.52)− (455)(73.70)

(10)21203)− (455)2
' 0.176

Thus,

y = 0.176x− 0.645

4



14.12.2 SIMPLIFIED CALCULATION OF REGRESSION LINES

A simpler method of determining the regression line of y on x for a given set of data, is to
consider a temporary change of origin to the point (x, y), where x is the arithmetic mean of
the values xi and y is the arithmetic mean of the values yi.

RESULT

The regression line of y on x contains the point (x, y).

Proof:

From the first of the normal equations,

Σ y

n
= a + b

Σ x

n
.

That is,

y = a + bx.

A change of origin to the point (x, y), with new variables X and Y , is associated with the
formulae

X = x− x and Y = y − y

and, in this system of reference, the regression line will pass through the origin.

Its equation is therefore

Y = BX,

where

B =
nΣ XY − Σ X.Σ Y

nΣ X2 − (Σ X)2 .

5



However,

Σ X = Σ (x− x) = Σ x− Σ x = nx− nx = 0

and

Σ Y = Σ (y − y) = Σ y − Σ y = ny − ny = 0.

Thus,

B =
Σ XY

Σ X2
.

Note:
In a given problem, we make a table of values of xi, yi, Xi, Yi, XiYi and X2

i .

The regression line is then

y − y = B(x− x) or y = BX + (y −Bx);

though, there may be slight differences in the result obtained compared with that from the
earlier method.

EXAMPLE

Determine the equation of the regression line of y on x for the following data which shows
the Packed Cell Volume, xmm, and the Red Blood Cell Count, y millions, of 10 dogs:

x 45 42 56 48 42 35 58 40 39 50
y 6.53 6.30 9.52 7.50 6.99 5.90 9.49 6.20 6.55 8.72

Solution

The arithmetic mean of the x values is x = 45.5

The arithmetic mean of the y values is y = 7.37

This gives the following table:

6



x y X = x− x Y = y − y XY X2

45 6.53 −0.5 −0.84 0.42 0.25
42 6.30 −3.5 −1.07 3.745 12.25
56 9.52 10.5 2.15 22.575 110.25
48 7.50 2.5 0.13 0.325 6.25
42 6.99 −3.5 −0.38 1.33 12.25
35 5.90 −10.5 −1.47 15.435 110.25
58 9.49 12.5 2.12 26.5 156.25
40 6.20 −5.5 −1.17 6.435 30.25
39 6.55 −6.5 −0.82 5.33 42.25
50 8.72 4.5 1.35 6.075 20.25

455 73.70 88.17 500.5

Hence,

B =
88.17

500.5
' 0.176

and so the regression line has equation

y = 0.176x + (7.37− 0.176× 45.5).

That is,

y = 0.176x− 0.638

14.12.3 EXERCISES

1. For the following tables, determine the regression line of y on x, assuming that y = a+bx.

(a)
x 0 2 3 5 6
y 6 −1 −3 −10 −16

(b)
x 0 20 40 60 80
y 54 65 75 85 96

7



(c)
x 1 3 5 10 12
y 58 55 40 37 22

2. To determine the relation between the normal stress and the shear resistance of soil, a
shear-box experiment was performed, giving the following results:

Normal Stress, x p.s.i. 11 13 15 17 19 21
Shear Stress, y p.s.i. 15.2 17.7 19.3 21.5 23.9 25.4

If y = a + bx, determine the regression line of y on x.

3. Fuel consumption, y miles per gallon, at speeds of x miles per hour, is given by the
following table:

x 20 30 40 50 60 70 80 90
y 18.3 18.8 19.1 19.3 19.5 19.7 19.8 20.0

Assuming that

y = a +
b

x
,

determine the most probable values of a and b.

14.12.4 ANSWERS TO EXERCISES

1. (a)

y = 6.46− 3.52x;

(b)

y = 54.20 + 0.52x;

(c)

y = 60.78− 2.97x.

2.

y = 4.09 + 1.03x.

3.

a ' −42 and b ' 20.

8
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UNIT 15.1 - ORDINARY DIFFERENTIAL EQUATIONS 1

FIRST ORDER EQUATIONS (A)

15.1.1 INTRODUCTION AND DEFINITIONS

1. An ordinary differential equation is a relationship between an independent variable
(such as x), a dependent variable (such as y) and one or more ordinary derivatives of y
with respect to x.

There is no discussion, in Units 15, of partial differential equations, which involve
partial derivatives (see Units 14). Hence, in what follows, we shall refer simply to
“differential equations”.

For example,

dy

dx
= xe−2x, x

dy

dx
= y, x2 dy

dx
+ y sin x = 0 and

dy

dx
=

x + y

x− y

are differential equations.

2. The “order” of a differential equation is the order of the highest derivative which
appears in it.

3. The “general solution” of a differential equation is the most general algebraic relation-
ship between the dependent and independent variables which satisfies the differential
equation.

Such a solution will not contain any derivatives; but we shall see that it will contain one
or more arbitrary constants (the number of these constants being equal to the order of
the equation). The solution need not be an explicit formula for one of the variables in
terms of the other.

4. A “boundary condition” is a numerical condition which must be obeyed by the
solution. It usually amounts to the substitution of particular values of the dependent
and independent variables into the general solution.

5. An “initial condition” is a boundary condition in which the independent variable
takes the value zero.

6. A “particular solution” (or “particular integral”) is a solution which contains no
arbitrary constants.

Particular solutions are usually the result of appplying a boundary condition to a general
solution.
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15.1.2 EXACT EQUATIONS

The simplest kind of differential equation of the first order is one which has the form

dy

dx
= f(x).

It is an elementary example of an “exact differential equation” because, to find its
solution, all that it is necessary to do is integrate both sides with respect to x.

In other cases of exact differential equations, the terms which are not just functions of the
independent variable only, need to be recognised as the exact derivative with respect to x of
some known function (possibly involving both of the variables).

The method will be illustrated by examples.

EXAMPLES

1. Solve the differential equation

dy

dx
= 3x2 − 6x + 5,

subject to the boundary condition that y = 2 when x = 1.

Solution

By direct integration, the general solution is

y = x3 − 3x2 + 5x + C,

where C is an arbitrary constant.

From the boundary condition,

2 = 1− 3 + 5 + C, so that C = −1.

Thus the particular solution obeying the given boundary condition is

y = x3 − 3x2 + 5x− 1.
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2. Solve the differential equation

x
dy

dx
+ y = x3,

subject to the boundary condition that y = 4 when x = 2.

Solution

The left hand side of the differential equation may be recognised as the exact derivative
with respect to x of the function xy.

Hence, we may write

d

dx
(xy) = x3;

and, by direct integration, this gives

xy =
x4

4
+ C,

where C is an arbitrary constant.

That is,

y =
x3

4
+

C

x
.

Applying the boundary condition,

4 = 2 +
C

2
,

which implies that C = 4 and the particular solution is

y =
x3

4
+

4

x
.

3. Determine the general solution to the differential equation

sin x + sin y + x cos y
dy

dx
= 0.

Solution

The second and third terms on the right hand side may be recognised as the exact
derivative of the function x sin y; and, hence, we may write

3



sin x +
d

dx
(x sin y) = 0.

By direct integration, we obtain

− cos x + x sin y = C,

where C is an arbitrary constant.

This result counts as the general solution without further modification; but an explicit
formula for y in terms of x may, in this case, be written in the form

y = Sin−1
[
C + cos x

x

]
.

15.1.3 THE METHOD OF SEPARATION OF THE VARIABLES

The method of this section relates to differential equations of the first order which may be
written in the form

P (y)
dy

dx
= Q(x).

Integrating both sides with respect to x gives

∫
P (y)

dy

dx
dx =

∫
Q(x) dx.

But, from the formula for integration by substitution in Units 12.3 and 12.4, this simplifies
to

∫
P (y) dy =

∫
Q(x) dx.

Note:
The way to remember this result is to treat dx and dy, in the given differential equation, as
if they were separate numbers; then rearrange the equation so that one side contains only
y while the other side contains only x; that is, we separate the variables. The process is
completed by putting an integral sign in front of each side.
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EXAMPLES

1. Solve the differential equation

x
dy

dx
= y,

subject to the boundary condition that y = 6 when x = 2.

Solution

The differential equation may be rearranged as

1

y

dy

dx
=

1

x
;

and, hence, ∫ 1

y
dy =

∫ 1

x
dx,

giving

ln y = ln x + C.

Applying the boundary condition,

ln 6 = ln 2 + C,

so that

C = ln 6− ln 2 = ln
(

6

2

)
= ln 3.

The particular solution is therefore

ln y = ln x + ln 3 or y = 3x.

Note:
In a general solution where most of the terms are logarithms, the calculation can be
made simpler by regarding the arbitrary constant itself as a logarithm, calling it ln A,
for instance, rather than C. In the above example, we would then write

ln y = ln x + ln A simplifying to y = Ax.

On applying the boundary condition, 6 = 2A, so that A = 3 and the particular solution
is the same as before.
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2. Solve the differential equation

x(4− x)
dy

dx
− y = 0,

subject to the boundary condition that y = 7 when x = 2.

Solution

The differential equation may be rearranged as

1

y

dy

dx
=

1

x(4− x)
.

Hence,

∫ 1

y
dy =

∫ 1

x(4− x)
dx;

or, using the theory of partial fractions,

∫ 1

y
dy =

∫ [
1
4

x
+

1
4

4− x

]
dx.

The general solution is therefore

ln y =
1

4
ln x− 1

4
ln(4− x) + ln A

or

y = A
(

x

4− x

) 1
4

.

Applying the boundary condition, 7 = A, so that the particular solution is

y = 7
(

x

4− x

) 1
4

.

6



15.1.4 EXERCISES

1. Determine the general solution of the differential equation

dy

dx
= x5 + 3e−2x.

2. Given that differential equation

x2 dy

dx
+ 2xy = sin x

is exact, determine its general solution.

3. Given that the differential equation

tan x
dy

dx
+ ysec2x = cos 2x

is exact, determine the particular solution for which y = 1 when x = π
4
.

4. Use the method of separation of the variables to determine the general solution of each
of the following differential equations:

(a)

dx

dy
= (x− 1)(x + 2);

(b)

x(y − 3)
dy

dx
= 4y.

5. Use the method of separation of the variables to solve the following differential equations
subject to the given boundary condition:

(a)

(1 + x3)
dy

dx
= x2y,

where y = 2 when x = 1;
(b)

x3 + (y + 1)2 dy

dx
= 0,

where y = 0 when x = 0.

7



15.1.5 ANSWERS TO EXERCISES

1.

y =
x6

6
− 3e−2x

2
+ C.

2.

y =
C − cos x

x2
.

3.

y =
3

2
cot x− cos2x.

4. (a)

y = ln

A
(

x− 1

x + 2

) 1
3

 ;

(b)

y = ln[Ax4y3].

5. (a)

y3 = 4(1 + x3);

(b)

4[1− (y + 1)3] = 3x4.

8
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UNIT 15.2 - ORDINARY DIFFERENTIAL EQUATIONS 2

FIRST ORDER EQUATIONS (B)

15.2.1 HOMOGENEOUS EQUATIONS

A differential equation of the first order is said to be “homogeneous” if, on replacing x
by λx and y by λy in all the parts of the equation except dy

dx
, λ may be removed from the

equation by cancelling a common factor of λn, for some integer n.

Note:
Some examples of homogeneous equations would be

(x + y)
dy

dx
+ (4x− y) = 0, and 2xy

dy

dx
+ (x2 + y2) = 0,

where, from the first of these, a factor of λ could be cancelled and, from the second, a factor
of λ2 could be cancelled.

15.2.2 THE STANDARD METHOD

It turns out that the substitution

y = vx

(
giving

dy

dx
= v + x

dv

dx

)
,

always converts a homogeneous differential equation into one in which the variables can be
separated. The method will be illustrated by examples.

EXAMPLES

1. Solve the differential equation

x
dy

dx
= x + 2y,

subject to the condition that y = 6 when x = 6.

Solution

If y = vx, then dy
dx

= v + xdv
dx

, so that the differential equation becomes

x

(
v + x

dy

dx

)
= x + 2vx.

1



That is,

v + x
dv

dx
= 1 + 2v

or

x
dv

dx
= 1 + v.

On separating the variables,

∫ 1

1 + v
dv =

∫ 1

x
dx,

giving

ln(1 + v) = ln x + ln A,

where A is an arbitrary constant.

An alternative form of this solution, without logarithms, is

Ax = 1 + v

and, substituting back v = y
x
, the solution becomes

Ax = 1 +
y

x

or

y = Ax2 − x.

Finally, if y = 6 when x = 1, we have 6 = A− 1 and, hence, A = 7.

The required particular solution is thus

y = 7x2 − x.

2. Determine the general solution of the differential equation

(x + y)
dy

dx
+ (4x− y) = 0.

2



Solution

If y = vx, then dy
dx

= v + xdv
dx

, so that the differential equation becomes

(x + vx)

(
v + x

dv

dx

)
+ (4x− vx) = 0.

That is,

(1 + v)

(
v + x

dv

dx

)
+ (4− v) = 0

or

v + x
dv

dx
=

v − 4

v + 1
.

On further rearrangement, we obtain

x
dv

dx
=

v − 4

v + 1
− v =

−4− v2

v + 1
;

and, on separating the variables,

∫ v + 1

4 + v2
dv = −

∫ 1

x
dx

or

1

2

∫ [
2v

4 + v2
+

2

4 + v2

]
dv = −

∫ 1

x
dx.

Hence,

1

2

[
ln(4 + v2) + tan−1v

2

]
= − ln x + C,

where C is an arbitrary constant.

Substituting back v = y
x
, gives the general solution

1

2

[
ln

(
4 +

y2

x2

)
+ tan−1

(
y

2x

)]
= − ln x + C.
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3. Determine the general solution of the differential equation

2xy
dy

dx
+ (x2 + y2) = 0.

Solution

If y = vx, then dy
dx

= v + xdv
dx

, so that the differential equation becomes

2vx2

(
v + x

dv

dx

)
+ (x2 + v2x2) = 0.

That is,

2v

(
v + x

dv

dx

)
+ (1 + v2) = 0

or

2vx
dv

dx
= −(1 + 3v2).

On separating the variables, we obtain∫ 2v

1 + 3v2
dx = −

∫ 1

x
dx,

which gives

1

3
ln(1 + 3v2) = − ln x + ln A,

where A is an arbitrary constant.

Hence,

(1 + 3v2)
1
3 =

A

x

or, on substituting back v = y
x
,

(
x2 + 3y2

x2

) 1
3

= Ax,

which can be written

x2 + 3y2 = Bx5,

where B = A3.

4



15.2.3 EXERCISES

Use the substitution y = vx to solve the following differential equations subject to the given
boundary condition:

1.

(2y − x)
dy

dx
= 2x + y,

where y = 3 when x = −2.

2.

(x2 − y2)
dy

dx
= xy,

where y = 5 when x = 0.

3.

x3 + y3 = 3xy2 dy

dx
,

where y = 1 when x = 2.

4.

x(x2 + y2)
dy

dx
= 2y3,

where y = 2 when x = 1.

5.

x
dy

dx
− (y +

√
x2 − y2) = 0,

where y = 0 when x = 1.

5



15.2.4 ANSWERS TO EXERCISES

1.

y2 − xy − x2 = 11.

2.

y = 5e
− x2

2y2 .

3.

x3 − 2y3 = 3x.

4.

3x2y = 2(y2 − x2).

5.

esin−1 y
x = x.

6
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UNIT 15.3 - ORDINARY DIFFERENTIAL EQUATIONS 3

FIRST ORDER EQUATIONS (C)

15.3.1 LINEAR EQUATIONS

For certain kinds of first order differential equation, it is possible to multiply the equation
throughout by a suitable factor which converts it into an exact differential equation.

For instance, the equation

dy

dx
+

1

x
y = x2

may be multiplied throughout by x to give

x
dy

dx
+ y = x3.

It may now be written

d

dx
(xy) = x3

and, hence, it has general solution

xy =
x4

4
+ C,

where C is an arbitrary constant.

Notes:

(i) The factor, x which has multiplied both sides of the differential equation serves as an
“integrating factor”, but such factors cannot always be found by inspection.

(ii) In the discussion which follows, we shall develop a formula for determining integrating
factors, in general, for what are known as “linear differential equations”.

1



DEFINITION

A differential equation of the form

dy

dx
+ P (x)y = Q(x)

is said to be “linear”.

RESULT

Given the linear differential equation

dy

dx
+ P (x)y = Q(x),

the function

e
∫

P (x) dx

is always an integrating factor; and, on multiplying the differential equation throughout by
this factor, its left hand side becomes

d

dx

[
y × e

∫
P (x) dx

]
.

Proof

Suppose that the function, R(x), is an integrating factor; then, in the equation

R(x)
dy

dx
+ R(x)P (x)y = R(x)Q(x),

the left hand side must be the exact derivative of some function of x.

Using the formula for differentiating the product of two functions of x, we can make it the
derivative of R(x)y provided we can arrange that

R(x)P (x) =
d

dx
[R(x)].

2



But this requirement can be interpreted as a differential equation in which the variables R(x)
and x may be separated as follows:

∫ 1

R(x)
dR(x) =

∫
P (x) dx.

Hence,

ln R(x) =
∫

P (x) dx.

That is,

R(x) = e
∫

P (x) dx,

as required.

The solution is obtained by integrating the formula

d

dx
[y ×R(x)] = R(x)P (x).

Note:
There is no need to include an arbitrary constant, C, when P (x) is integrated, since it
would only serve to introduce a constant factor of eC in the above result, which would then
immediately cancel out on multiplying the differential equation by R(x).

EXAMPLES

1. Determine the general solution of the differential equation

dy

dx
+

1

x
y = x2.

Solution

An integrating factor is

e
∫

1
x

dx = eln x = x.

3



On multiplying throughout by the integrating factor, we obtain

d

dx
[y × x] = x3;

and so,

yx =
x4

4
+ C,

where C is an arbitrary constant.

2. Determine the general solution of the differential equation

dy

dx
+ 2xy = 2e−x2

.

Solution

An integrating factor is

e
∫

2x dx = ex2

.

Hence,

d

dx

[
y × ex2

]
= 2,

giving

yex2

= 2x + C,

where C is an arbitrary constant.

15.3.2 BERNOUILLI’S EQUATION

A similar type of differential equation to that in the previous section has the form

dy

dx
+ P (x)y = Q(x)yn.

4



It is called “Bernouilli’s Equation” and may be converted to a linear differential equation
by making the substitution

z = y1−n.

Proof

The differential equation may be rewritten as

y−n dy

dx
+ P (x)y1−n = Q(x).

Also,

dz

dx
= (1− n)y−n dy

dx
.

Hence the differential equation becomes

1

1− n

dz

dx
+ P (x)z = Q(x).

That is,

dz

dx
+ (1− n)P (x)z = (1− n)Q(x),

which is a linear differential equation.

Note:
It is better not to regard this as a standard formula, but to apply the method of obtaining
it in the case of particular examples.

EXAMPLES

1. Determine the general solution of the differential equation

xy − dy

dx
= y3e−x2

.

5



Solution

The differential equation may be rewritten

−y−3 dy

dx
+ x.y−2 = e−x2

.

Substituting z = y−2, we obtain dz
dx

= −2y−3 dy
dx

and, hence,

1

2

dz

dx
+ xz = e−x2

or

dz

dx
+ 2xz = 2e−x2

.

An integrating factor for this equation is

e
∫

2x dx = ex2

.

Thus,

d

dx

(
zex2

)
= 2,

giving

zex2

= 2x + C,

where C is an arbitrary constant.

Finally, replacing z by y−2,

y2 =
ex2

2x + C
.

2. Determine the general solution of the differential equation

dy

dx
+

y

x
= xy2.

6



Solution

The differential equation may be rewritten

y−2 dy

dx
+

1

x
.y−1 = x.

On substituting z = y−1 we obtain dz
dx

= −y−2 dy
dx

so that

−dz

dx
+

1

x
.z = x

or

dz

dx
− 1

x
.z = −x.

An integrating factor for this equation is

e
∫

(− 1
x) dx = e− ln x =

1

x
.

Hence,

d

dx

(
z × 1

x

)
= −1,

giving

z

x
= −x + C,

where C is an arbitrary constant.

The general solution of the given differential equation is therefore

1

xy
= −x + C or y =

1

Cx− x2
.

15.3.3 EXERCISES

Use an integrating factor to solve the following differential equations subject to the given
boundary condition:

1.

3
dy

dx
+ 2y = 0,

where y = 10 when x = 0.
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2.

3
dy

dx
− 5y = 10,

where y = 4 when x = 0.

3.

dy

dx
+

y

x
= 3x,

where y = 2 when x = −1.

4.

dy

dx
+

y

1− x
= 1− x2,

where y = 0 when x = −1.

5.

dy

dx
+ y cot x = cos x,

where y = 5
2

when x = π
2
.

6.

(x2 + 1)
dy

dx
− xy = x,

where y = 0 when x = 1.

7.

3y − 2
dy

dx
= y3e4x,

where y = 1 when x = 0.

8.

2y − x
dy

dx
= x(x− 1)y4,

where y3 = 14 when x = 1.

8



15.3.4 ANSWERS TO EXERCISES

1.

y = 10e−
2
3
x.

2.

y = 6e
5
3
x − 2.

3.

yx = x3 − 1.

4.

y =
1

2
(1− x)(1 + x)2.

5.

y =
sin x

2
+

2

sin x
.

6.

y = 1 + x2 −
√

2(1 + x2).

7.

y2 =
7e3x

e7x + 6
.

8.

y3 =
56x6

21x6 − 24x7 + 7
.

9
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UNIT 15.4 - ORDINARY DIFFERENTIAL EQUATIONS 4

SECOND ORDER EQUATIONS (A)

15.4.1 INTRODUCTION

In the discussion which follows, we shall consider a particular kind of second order ordinary
differential equation which is called “linear, with constant coefficients”; it has the
general form

a
d2y

dx2
+ b

dy

dx
+ cy = f(x),

where a, b and c are the constant coefficients.

The various cases of solution which arise depend on the values of the coefficients, together
with the type of function, f(x), on the right hand side. These cases will now be dealt with
in turn.

15.4.2 SECOND ORDER HOMOGENEOUS EQUATIONS

The term “homogeneous”, in the context of second order differential equations, is used to
mean that the function, f(x), on the right hand side is zero. It should not be confused with
the previous use of this term in the context of first order differential equations.

We therefore consider equations of the general form

a
d2y

dx2
+ b

dy

dx
+ cy = 0.

Note:
A very simple case of this equation is

d2y

dx2
= 0,

which, on integration twice, gives the general solution

y = Ax + B,

1



where A and B are arbitrary constants. We should therefore expect two arbitrary constants
in the solution of any second order linear differential equation with constant coefficients.

The Standard General Solution

The equivalent of

a
d2y

dx2
+ b

dy

dx
+ cy = 0

in the discussion of first order differential equations would have been

b
dy

dx
+ cy = 0; that is,

dy

dx
+

c

b
y = 0

and this could have been solved using an integrating factor of

e
∫

c
b

dx = e
c
b
x,

giving the general solution

y = Ae−
c
b
x,

where A is an arbitrary constant.

It seems reasonable, therefore, to make a trial solution of the form y = Aemx, where A 6= 0,
in the second order case.

We shall need

dy

dx
= Amemx and

d2y

dx2
= Am2emx.

Hence, on substituting the trial solution, we require that

aAm2emx + bAmemx + cAemx = 0;

and, by cancelling Aemx, this condition reduces to

2



am2 + bm + c = 0,

a quadratic equation, called the “auxiliary equation”, having the same (constant) coeffi-
cients as the orginal differential equation.

In general, it will have two solutions, say m = m1 and m = m2, giving corresponding
solutions y = Aem1x and y = Bem2x of the differential equation.

However, the linearity of the differential equation implies that the sum of any two solutions
is also a solution, so that

y = Aem1x + Bem2x

is another solution; and, since this contains two arbitrary constants, we shall take it to be
the general solution.

Notes:

(i) It may be shown that there are no solutions other than those of the above form though
special cases are considered later.

(ii) It will be possible to determine particular values of A and B if an appropriate number
of boundary conditions for the differential equation are specified. These will usually be a set
of given values for y and dy

dx
at a certain value of x.

EXAMPLE

Determine the general solution of the differential equation

d2y

dx2
+ 5

dy

dx
+ 6y = 0

and also the particular solution for which y = 2 and dy
dx

= −5 when x = 0.

Solution

The auxiliary equation is m2 + 5m + 6 = 0,

which can be factorised as

3



(m + 2)(m + 3) = 0.

Its solutions are therefore m = −2 and m = −3.

Hence, the differential equation has general solution

y = Ae−2x + Be−3x,

where A and B are arbitrary constants.

Applying the boundary conditions, we shall also need

dy

dx
= −2Ae−2x − 3Be−3x.

Hence,

2 = A + B,

−5 = −2A− 3B

giving A = 1, B = 1 and a particular solution

y = e−2x + e−3x.

15.4.3 SPECIAL CASES OF THE AUXILIARY EQUATION

(a) The auxilary equation has coincident solutions

Suppose that both solutions of the auxiliary equation are the same number, m1.

In other words, the quadratic expression am2 + bm+ c is a “perfect square”, which means
that it is actually a(m−m1)

2.

Apparently, the general solution of the differential equation is

y = Aem1x + Bem1x,

4



which does not genuinely contain two arbitrary constants since it can be rewritten as

y = Cem1x where C = A + B.

It will not, therefore, count as the general solution, though the fault seems to lie with the
constants A and B rather than with m1.

Consequently, let us now examine a new trial solution of the form

y = zem1x,

where z denotes a function of x rather than a constant.

We shall also need

dy

dx
= zm1e

m1x + em1x dz

dx

and

d2y

dx2
= zm2

1e
m1x + 2m1e

m1x dz

dx
+ em1x d2z

dx2
.

On substituting these into the differential equation, we obtain the condition that

em1x

[
a

(
zm2

1 + 2m1
dz

dx
+

d2z

dx2

)
+ b

(
zm1 +

dz

dx

)
+ cz

]
= 0

or

z(am2
1 + bm1 + c) +

dz

dx
(2am1 + b) + a

d2z

dx2
= 0.

The first term on the left hand side of this condition is zero since m1 is already a solution
of the auxiliary equation; and the second term is also zero since the auxiliary equation,
am2 + bm + c = 0, is equivalent to a(m−m1)

2 = 0; that is, am2− 2am1m + am2
1 = 0. Thus

b = −2am1.

5



We conclude that d2z
dx2 = 0 with the result that z = Ax + B, where A and B are arbitrary

constants.

The general solution of the differential equation in the case of coincident solutions to the
auxiliary equation is therefore

y = (Ax + B)em1x.

EXAMPLE

Determine the general solution of the differential equation

4
d2y

dx2
+ 4

dy

dx
+ y = 0.

Solution

The auxilary equation is

4m2 + 4m + 1 = 0 or (2m + 1)2 = 0

and it has coincident solutions at m = −1
2
.

The general solution is therefore

y = (Ax + B)e−
1
2
x.

(b) The auxiliary equation has complex solutions

If the auxiliary equation has complex solutions, they will automatically appear as a pair of
“complex conjugates”, say m = α± jβ.

Using these two solutions instead of the previous m1 and m2, the general solution of the
differential equation will be

y = Pe(α+jβ)x + Qe(α−jβ)x,

where P and Q are arbitrary constants.

6



But, by properties of complex numbers, a neater form of this result is obtainable as follows:

y = eαx[P (cos βx + j sin βx) + Q(cos βx− j sin βx)]

or
y = eαx[(P + Q) cos βx + j(P −Q) sin βx].

Replacing P +Q and j(P−Q) (which are just arbitrary quantities) by A and B, we obtain the
standard general solution for the case in which the auxiliary equation has complex solutions.
It is

y = eαx[A cos βx + B sin βx].

EXAMPLE

Determine the general solution of the differential equation

d2y

dx2
− 6

dy

dx
+ 13y = 0.

Solution

The auxiliary equation is

m2 − 6m + 13 = 0,

which has solutions given by

m =
−(−6)±

√
(−6)2 − 4× 13× 1

2× 1
=

6± j4

2
= 3± j2.

7



The general solution is therefore

y = e3x[A cos 2x + B sin 2x],

where A and B are arbitrary constants.

15.4.4 EXERCISES

1. Determine the general solutions of the following differential equations:

(a)

d2y

dx2
+ 7

dy

dx
+ 12y = 0;

(b)

d2r

dθ2
+ 6

dr

dθ
+ 9r = 0;

(c)

d2θ

dt2
+ 4

dθ

dt
+ 5θ = 0.

2. Solve the following differential equations, subject to the given boundary conditions:

(a)

d2y

dx2
− 3

dy

dx
+ 2y = 0,

where y = 2 and dy
dx

= 1 when x = 0;

(b)

d2x

dt2
− 4

dx

dt
+ 3x = 0,

where x = 3 and dx
dt

= 5 when t = 0;

(c)

4
d2z

ds2
− 12

dz

ds
+ 9z = 0,

where z = 1 and dz
ds

= 5
2

when s = 0;

8



(d)

d2r

dθ2
− 2

dr

dθ
+ 2r = 0,

where r = 5 and dr
dθ

= 7 when θ = 0.

15.4.5 ANSWERS TO EXERCISES

1. (a)

y = Ae−3x + Be−4x;

(b)

r = (Aθ + B)e−3θ;

(c)

θ = e−2t[A cos 2t + B sin 2t].

2. (a)

y = 3ex − e2x;

(b)

x = 2et + e3t;

(c)

z = (s + 1)e
3
2
s;

(d)

r = eθ[5 cos θ + 2 sin θ].

9
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UNIT 15.5 - ORDINARY DIFFERENTIAL EQUATIONS 5

SECOND ORDER EQUATIONS (B)

15.5.1 NON-HOMOGENEOUS DIFFERENTIAL EQUATIONS

The following discussion will examine the solution of the second order linear differential
equation

a
d2y

dx2
+ b

dy

dx
+ cy = f(x),

in which a, b and c are constants, but f(x) is not identically equal to zero.

The Particular Integral and Complementary Function

(i) Suppose that y = u(x) is any particular solution of the differential equation; that is, it
contains no arbitrary constants. In the present context, we shall refer to such particular so-
lutions as “particular integrals” and systematic methods of finding them will be discussed
later.

It follows that

a
d2u

dx2
+ b

du

dx
+ cu = f(x).

(ii) Suppose also that we make the substitution y = u(x) + v(x) in the original differential
equation to give

a
d2(u + v)

dx2
+ b

d(u + v)

dx
+ c(u + v) = f(x).

That is,

a
d2u

dx2
+ b

du

dx
+ cu + a

d2v

dx2
+ b

dv

dx
+ cv = f(x);

and, hence,

a
d2v

dx2
+ b

dv

dx
+ cv = 0.

1



This means that the function v(x) is the general solution of the homogeneous differential
equation whose auxiliary equation is

am2 + bm + c = 0.

In future, v(x) will be called the “complementary function” in the general solution of
the original (non-homogeneous) differential equation. It complements the particular integral
to provide the general solution.

Summary

General solution = particular integral + complementary function.

15.5.2 DETERMINATION OF SIMPLE PARTICULAR INTEGRALS

(a) Particular integrals, when f(x) is a constant, k.

For the differential equation

a
d2y

dx2
+ b

dy

dx
+ cy = k,

it is easy to see that a particular integral will be y = k
c
, since its first and second derivatives

are both zero, while cy = k.

EXAMPLE

Determine the general solution of the differential equation

d2y

dx2
+ 7

dy

dx
+ 10y = 20.

Solution

(i) By inspection, we may observe that a particular integral is y = 2.

(ii) The auxiliary equation is

m2 + 7m + 10 = 0 or (m + 2)(m + 5) = 0,

2



having solutions m = −2 and m = −5.

(iii) The complementary function is

Ae−2x + Be−5x,

where A and B are arbitrary constants.

(iv) The general solution is

y = 2 + Ae−2x + Be−5x.

(b) Particular integrals, when f(x) is of the form px + q.

For the differential equation

a
d2y

dx2
+ b

dy

dx
+ cy = px + q,

it is possible to determine a particular integral by assuming one which has the same form
as the right hand side; that is, in this case, another expression consisting of a multiple of x
and constant term. The method is, again, illustrated by an example.

EXAMPLE

Determine the general solution of the differential equation

d2y

dx2
− 11

dy

dx
+ 28y = 84x− 5.

Solution

(i) First, we assume a particular integral of the form

y = αx + β,

which implies that dy
dx

= α and d2y
dx2 = 0.

3



Substituting into the differential equation, we require that

−11α + 28(αx + β) ≡ 84x− 5.

Hence, 28α = 84 and −11α + 28β = −5, giving α = 3 and β = 1.

Thus, the particular integral is

y = 3x + 1.

(ii) The auxiliary equation is

m2 − 11m + 28 = 0 or (m− 4)(m− 7) = 0,

having solutions m = 4 and m = 7.

(iii) The complementary function is

Ae4x + Be7x,

where A and B are arbitrary constants.

(iv) The general solution is

y = 3x + 1 + Ae4x + Be7x.

Note:
In examples of the above types, the complementary function must not be prefixed by “y =”,
since the given differential equation, as a whole, is not normally satisfied by the complemen-
tary function alone.

4



15.5.3 EXERCISES

1. Determine the general solutions of the following differential equations:

(a)

d2y

dx2
− dy

dx
− 2y = 6;

(b)

d2y

dx2
+ 16y = 7;

(c)

3
d2y

dx2
− 2

dy

dx
− y = x + 1;

(d)

d2y

dx2
− 6

dy

dx
+ 9y = 18x + 28.

2. Solve, completely, the following differential equations, subject to the given boundary
condidtions:

(a)

2
d2y

dx2
− 7

dy

dx
− 4y = 100,

where y = −26 and dy
dx

= 5 when x = 0;

(b)

d2y

dx2
+ 4

dy

dx
+ 4y = 12x + 16,

where y = 0 and dy
dx

= 4 when x = 0;

(c)

d2y

dx2
− 6

dy

dx
+ 10y = 10x + 14,

where y = 3 and dy
dx

= 2 when x = 0.

5



15.5.4 ANSWERS TO EXERCISES

1. (a)

y = −3 + Aex + Be2x;

(b)

y =
7

16
+ A cos 4x + B sin 4x;

(c)

y = 1− x + Aex + Be−
1
3
x;

(d)

y = 2x + 5 + (Ax + B)e3x.

2. (a)

y = −25 + e4x − 2e
1
2
x;

(b)

y = 3x + 1− (x + 1)e−2x;

(c)

y = x + 2 + e3x(cos x− 2 sin x).

6
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UNIT 15.6 - ORDINARY DIFFERENTIAL EQUATIONS 6

SECOND ORDER EQUATIONS (C)

15.6.1 RECAP

For the differential equation

a
d2y

dx2
+ b

dy

dx
+ cy = f(x),

it was seen, in Unit 15.5, that

(a) when f(x) ≡ k, a given constant, a particular integral is y = k
c
;

(b) when f(x) ≡ px+q, a linear function in which p and q are given constants, it is possible
to obtain a particular integral by assuming that y also has the form of a linear function; that
is, we make a “trial solution”, y = αx + β.

15.6.2 FURTHER TYPES OF PARTICULAR INTEGRAL

We now examine particular integrals for other cases of f(x), the method being illustrated
by examples. Also, for reasons relating to certain problematic cases discussed in Unit 15.7,
we shall determine the complementary function before determining the particular integral.

1. f(x) ≡ px2 + qx + r, a quadratic function in which p, q and r are given constants;
p 6= 0.

Trial solution : y = αx2 + βx + γ.

Note:
This is the trial solution even if q or r (or both) are zero.

EXAMPLE

Determine the general solution of the differential equation

2
d2y

dx2
− 7

dy

dx
− 4y = 4x2 + 10x− 23.

Solution

The auxilary equation is

2m2 − 7m− 4 = 0 or (2m + 1)(m− 4) = 0,

1



having solutions m = 4 and m = −1
2
.

Thus, the complementary function is

Ae4x + Be−
1
2
x,

where A and B are arbitrary constants.

To determine a particular integral, we may make a trial solution of the form

y = αx2 + βx + γ, giving dy
dx

= 2αx + β and d2y
dx2 = 2α.

We thus require that

4α− 14αx− 7β − 4αx2 − 4βx− 4γ ≡ 4x2 + 10x− 23.

That is,

−4αx2 − (14α + 4β)x + 4α− 7β − 4γ ≡ 4x2 + 10x− 23.

Comparing corresponding coefficents on both sides, this means that

−4α = 4, − (14α + 4β) = 10 and 4α− 7β − 4γ = −23,

which give α = −1, β = 1 and γ = 3.

Hence, the particular integral is

y = 3 + x− x2.

Finally, the general solution is

y = 3 + x− x2 + Ae4x + Be−
1
2
x.

2. f(x) ≡ p sin kx + q cos kx, a trigonometric function in which p, q and k are given
constants.

Trial solution : y = α sin kx + β cos kx.

Note:
This is the trial solution even if p or q is zero.

2



EXAMPLE

Determine the general solution of the differential equation

d2y

dx2
− 2

dy

dx
+ 2y = 8 cos 3x− 19 sin 3x.

Solution

The auxiliary equation is

m2 − 2m + 2 = 0,

which has complex number solutions given by

m =
2±

√
4− 8

2
= 1± j.

Hence, the complementary function is

ex(A cos x + B sin x),

where A and B are arbitrary constants.

To determine a particular integral, we may make a trial solution of the form

y = α sin 3x + β cos 3x,

giving dy
dx

= 3α cos 3x− 3β sin 3x and d2y
dx2 = −9α sin 3x− 9β cos 3x.

We thus require that

−9α sin 3x−9β cos 3x−6α cos 3x+6β sin 3x+2α sin 3x+2β cos 3x ≡ 8 cos 3x−19 sin 3x.

That is,

(−9α + 6β + 2α) sin 3x + (−9β − 6α + 2β) cos 3x ≡ 8 cos 3x− 19 sin 3x.

Comparing corresponding coefficients on both sides, we have

−7α + 6β = −19,

−6α− 7β = 8.

3



These equations are satisfied by α = 1 and β = −2, so that the particular integral is

y = sin 3x− 2 cos 3x.

Finally, the general solution is

y = sin 3x− 2 cos 3x + ex(A cos x + B sin x).

3. f(x) ≡ pekx, an exponential function in which p and k are given constants.

Trial solution : y = αekx.

EXAMPLE

Determine the general solution of the differential equation

9
d2y

dx2
+ 6

dy

dx
+ y = 50e3x.

Solution

The auxiliary equation is

9m2 + 6m + 1 = 0 or (3m + 1)2 = 0,

which has coincident solutions at m = −1
3
.

The complementary function is therefore

(Ax + B)e−
1
3
x.

To find a particular integral, we may make a trial solution of the form

y = αe3x,

which gives dy
dx

= 3αe3x and d2y
dx2 = 9αe3x.

Hence, on substituting into the differential equation, it is necessary that

81αe3x + 18αe3x + αe3x = 50e3x.

That is, 100α = 50, from which we deduce that α = 1
2

and a particular integral is

y =
1

2
e3x.

Finally, the general solution is

y =
1

2
e3x + (Ax + B)e−

1
3
x.

4



4. f(x) ≡ p sinh kx + q cosh kx, a hyperbolic function in which p, q and k are given
constants.

Trial solution : y = α sinh kx + β cosh kx.

Note:
This is the trial solution even if p or q is zero.

EXAMPLE

Determine the general solution of the differential equation

d2y

dx2
− 5

dy

dx
+ 6y = 93 cosh 5x− 75 sinh 5x.

Solution

The auxiliary equation is

m2 − 5m + 6 = 0 or (m− 2)(m− 3) = 0,

which has solutions m = 2 and m = 3 so that the complementary function is

Ae2x + Be3x,

where A and B are arbitrary constants.

To determine a particular integral, we may make a trial solution of the form

y = α sinh 5x + β cosh 5x,

giving dy
dx

= 5α cosh 5x + 5β sinh 5x and d2y
dx2 = 25α sinh 5x + 25β cosh 5x.

Substituting into the differential equation, the left-hand-side becomes

25α sinh 5x + 25β cosh 5x− 25α cosh 5x− 25β sinh 5x + 6α sinh 5x + 6β cosh 5x.

This simplifies to

(31α− 25β) sinh 5x + (31β − 25α) cosh 5x,

so that we require

31α− 25β = −75,

−25α + 31β = 93,

5



and these are satisfied by α = 0 and β = 3.

The particular integral is thus

y = 3 cosh 5x

and, hence, the general solution is

y = 3 cosh 5x + Ae2x + Be3x.

5. Combinations of Different Types of Function

In cases where f(x) is the sum of two or more of the various types of function discussed
previously, then the particular integrals for each type (determined separately) may be
added together to give an overall particular integral.

15.6.3 EXERCISES

1. Determine the general solution for each of the following differential equations:

(a)

d2y

dx2
+ 5

dy

dx
+ 4y = 4x2 + 2x− 4;

(b)

d2y

dx2
+ 4

dy

dx
+ 5y = 8 cos 2x− sin 2x;

(c)

4
d2y

dx2
+ 12

dy

dx
+ 9y = 27e−x;

(d)

d2y

dx2
− 3

dy

dx
− 10y = cosh 3x− sinh 3x.

6



2. Solve completely the following differential equations subject to the given boundary
conditions:

(a)

d2y

dx2
− y = 10− 5x2 − x + 16e−3x,

where y = 13 and dy
dx

= −2 when x = 0;

(b)

4
d2y

dx2
+ 8

dy

dx
+ 3y = 9x + 6 cos x− 19 sin x,

where y = −2 and dy
dx

= 0 when x = 0.

15.6.4 ANSWERS TO EXERCISES

1. (a)

y = x2 − 2x + 1 + Ae−x + Be−4x;

(b)

y = sin 2x + e−2x(A cos x + B sin x);

(c)

y = 3e−x + (Ax + B)e−
3
2
x;

(d)

y =
1

8
(cosh 3x− sinh 3x) + Ae−2x + Be5x.

2. (a)

y = 5x2 + x + 2e−3x + 3ex − 2e−x;

(b)

y = 3x− 8 + 2 cos x + sin x + 2e−
1
2
x + 2e−

3
2
x.

7
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UNIT 15.7 - ORDINARY DIFFERENTIAL EQUATIONS 7

SECOND ORDER EQUATIONS (D)

15.7.1 PROBLEMATIC CASES OF PARTICULAR INTEGRALS

Difficulties can arise if all or part of any trial solution would already be included in the
complementary function. We illustrate with some examples:

EXAMPLES

1. Determine the complementary function and a particular integral for the differential
equation

d2y

dx2
− 3

dy

dx
+ 2y = e2x.

Solution

The auxiliary equation is m2− 3m + 2 = 0, with solutions m = 1 and m = 2 and hence
the complementary function is Aex + Be2x, where A and B are arbitrary constants.

A trial solution of y = αe2x gives

dy

dx
= 2αe2x and

d2y

dx2
= 4αe2x

and, on substituting these into the differential equation, it is necessary that

4αe2x − 6αe2x + 2αe2x ≡ e2x.

That is, 0 ≡ e2x which is impossible.

However, if y = αe2x has proved to be unsatisfactory, let us investigate, as an alternative,
y = F (x)e2x (where F (x) is a function of x instead of a constant).

We have

dy

dx
= 2F (x)e2x + F ′(x)e2x

and, hence,

d2y

dx2
= 4F (x)e2x + 2F ′(x)e2x + F ′′(x)e2x + 2F ′(x)e2x.

1



On substituting these into the differential equation, it is necessary that

(4F (x) + 2F ′(x) + F ′′(x) + 2F ′(x)− 6F (x)− 3F ′(x) + 2F (x)) e2x ≡ e2x.

That is,

F ′′(x) + F ′(x) = 1,

which is satisfied by the function F (x) ≡ x and thus a suitable particular integral is

y = xe2x.

Note:
It may be shown, in other cases too that, if the standard trial solution is already
contained in the complementary function, then it is is necessary to multiply it by x in
order to obtain a suitable particular integral.

2. Determine the complementary function and a particular integral for the differential
equation

d2y

dx2
+ y = sin x.

Solution

The auxilary equation is m2 + 1 = 0, with solutions m = ±j and, hence, the comple-
mentary function is A sin x + B cos x, where A and B are arbitrary constants.

A trial solution of y = α sin x + β cos x gives

d2y

dx2
= −α sin x− β cos x;

and, on substituting into the differential equation, it is necessary that 0 ≡ sin x, which
is impossible.

Here, we may try y = x(α sin x + β cos x), giving

dy

dx
= α sin x + β cos x + x(α cos x− β sin x) = (α− βx) sin x + (β + αx) cos x

and, therefore,

d2y

dx2
= (α−βx) cos x−β sin x−(β+αx) sin x+α cos x = (2α−βx) cos x−(2β+αx) sin x.

2



Substituting into the differential equation, we thus require that

(2α− βx) cos x− (2β + αx) sin x + x(α sin x + β cos x) ≡ sin x,

which simplifies to

2α cos x− 2β sin x ≡ sin x.

Thus 2α = 0 and −2β = 1.

An appropriate particular integral is now

y = −1

2
x cos x.

3. Determine the complementary function and a particular integral for the differential
equation

9
d2y

dx2
+ 6

dy

dx
+ y == 50e−

1
3
x.

Solution

The auxiliary equation is 9m2 + 6m + 1 = 0, or (3m + 1)2 = 0, which has coincident
solutions m = −1

3
and so the complementary function is

(Ax + B)e−
1
3
x.

In this example, both e−
1
3
x and xe−

1
3
x are contained in the complementary function.

Thus, in the trial solution, it is necessary to multiply by a further x, giving

y = αx2e−
1
3
x.

We have

dy

dx
= 2αxe−

1
3
x − 1

3
x2e

1
3
x

and

d2y

dx2
= 2αe−

1
3
x − 2

3
αxe−

1
3
x − 2

3
αxe−

1
3
x +

1

9
αx2e−

1
3
x.

3



Substituting these into the differential equation, it is necessary that(
18α− 12αx + αx2 + 12αx− 2αx2 + αx2

)
e−

1
3
x = 50e−

1
3
x

and, hence, 18α = 50 or α = 25
9
.

An appropriate particular integral is

y =
25

9
x2e−

1
3
x.

4. Determine the complementary function and a particular integral for the differential
equation

d2y

dx2
− 5

dy

dx
+ 6y = sinh 2x.

Solution

The auxiliary equation is m2 − 5m + 6 = 0 or (m− 2)(m− 3) = 0 which has solutions
m = 2 and m = 3 and, hence, the complementary function is

Ae2x + Be3x.

However, since sinh 2x ≡ 1
2
(e2x − e−2x), part of it is contained in the complementary

function and we must find a particular integral for each part separately.

(a) For 1
2
e2x, we may try

y = xαe2x,

giving

dy

dx
= αe2x + 2xαe2x

and

d2y

dx2
= 2αe2x + 2αe2x + 4xαe2x.

Substituting these into the differential equation, it is necessary that

(4α + 4xα− 5α− 10xα + 6xα) e2x ≡ 1

2
e2x,

which gives α = −1
2
.
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(b) For −1
2
e−2x, we may try

y = βe−2x,

giving

dy

dx
= −2βe−2x

and

d2y

dx2
= 4βe−2x.

Substituting these into the differential equation, it is necessary that

(4β + 10β + 6β)e−2x ≡ −1

2
e−2x,

which gives β = − 1
40

.

The overall particular integral is thus

y = −1

2
xe2x − 1

40
e−2x.

15.7.2 EXERCISES

Solve completely the following differential equations subject to the given boundary condi-
tions:

1.

d2y

dx2
+ 4

dy

dx
+ 3y = e−x,

where y = 0 and dy
dx

= 5
2

when x = 0.

2.

d2y

dx2
+ 9y = 2 sin 3x,

where y = 2 and dy
dx

= 8
3

when x = 0.
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3.

d2y

dx2
− 10

dy

dx
+ 25y = 8e3x + 25x2 − 20x + 27,

where y = 5 and dy
dx

= 13 when x = 0.

4.

d2y

dx2
− 3

dy

dx
+ 2y = cosh x,

where y = 7
12

and dy
dx

= 1
2

when x = 0.

5.

4
d2y

dx2
+ 4

dy

dx
+ y = 24e−

1
2
x

where y = 6 and dy
dx

= 2 when x = 0.

15.7.3 ANSWERS TO EXERCISES

1.

y =
1

2
xe−x + Ae−x + Be−3x.

2.

y = −1

3
x cos 3x + 2 cos 3x + sin 3x.

3.

y = 2e3x + x2 + 1 + (2− 3x)e5x.

4.

y =
1

12

(
e−x − 6xex − ex + 7e2x

)
.

5.

y = 3x2e−
1
2
x + (5x + 6)e−

1
2
x.

6



“JUST THE MATHS”

UNIT NUMBER

15.8

ORDINARY
DIFFERENTIAL EQUATIONS 8

(Simultaneous equations (A))

by

A.J.Hobson

15.8.1 The substitution method
15.8.2 Exercises
15.8.3 Answers to exercises



UNIT 15.8 - ORDINARY DIFFERENTIAL EQUATIONS 8

SIMULTANEOUS EQUATIONS (A)

15.8.1 THE SUBSTITUTION METHOD

The methods discussed in previous Units for the solution of second order ordinary linear
differential equations with constant coefficients may now be used for cases of two first or-
der differential equations which must be satisfied simultaneously. The technique will be
illustrated by the following examples:

EXAMPLES

1. Determine the general solutions for y and z in the case when

5
dy

dx
− 2

dz

dx
+ 4y − z = e−x,−−−−−−−−−− (1)

dy

dx
+ 8y − 3z = 5e−x.−−−−−−−−− (2)

Solution

First, we eliminate one of the dependent variables from the two equations; in this case,
we eliminate z.

From equation (2),

z =
1

3

(
dy

dx
+ 8y − 5e−x

)

and, on substituting this into equation (1), we obtain

5
dy

dx
− 2

3

(
d2y

dx2
+ 8

dy

dx
+ 5e−x

)
+ 4y − 1

3

(
dy

dx
+ 8y − 5e−x

)
= e−x.

That is, − 2

3

d2y

dx2
− 2

3

dy

dx
+

4

3
y =

8

3
e−x

or

d2y

dx2
+

dy

dx
− 2y = −4e−x.

1



The auxiliary equation is

m2 + m− 2 = 0 or (m− 1)(m + 2) = 0,

giving a complementary function of Aex+Be−2x, where A and B are arbitrary constants.

A particular integral will be of the form ke−x, where k− k− 2k = −4 and hence k = 2.

Thus,

y = 2e−x + Aex + Be−2x.

Finally, from the formula for z in terms of y,

z =
1

3

(
−2e−x + Aex − 2Be−2x + 16e−x + 8Aex + 8Be−2x − 5e−x

)
.

That is,

z = 3e−x + 3Ae−x + 2Be−2x.

Note:
The above example would have been a little more difficult if the second differential
equation had contained a term in dz

dx
. But, if this were the case, we could eliminate

dz
dx

between the two equations in order to obtain a statement with the same form as
Equation (2).

2. Solve, simultaneously, the differential equations

dz

dx
+ 2y = ex,−−−−−−−− (1)

dy

dx
− 2z = 1 + x,−−−−−−−(2)

given that y = 1 and z = 2 when x = 0.

Solution:

From equation (2), we have

z =
1

2

[
dy

dx
− 1− x

]
.

2



Substituting into the first differential equation gives

1

2

[
d2y

dx2
− 1

]
+ 2y = ex

or

d2y

dx2
+ 4y = 2ex + 1.

The auxiliary equation is therefore m2 +4 = 0, having solutions m = ±j2, which means
that the complementary function is

A cos 2x + B sin 2x,

where A and B are arbitrary constants.

The particular integral will be of the form y = pex + q,

where

pex + 4pex + 4q = 2ex + 1.

We require, then, that 5p = 2 and 4q = 1; and so the general solution for y is

y = A cos 2x + B sin 2x +
2

5
ex +

1

4
.

Using the earlier formula for z, we obtain

z =
1

2

[
−2A sin 2x + 2B cos 2x +

2

5
ex − 1− x

]
= B cos 2x− A sin 2x +

1

5
ex − 1

2
− x

2
.

Applying the boundary conditions,

1 = A +
2

5
+

1

4
giving A =

7

20

and

2 = B +
1

5
− 1

2
giving B =

23

10
.

The required solutions are therefore

y =
7

20
cos 2x +

23

10
sin 2x +

2

5
ex +

1

4

and

z =
23

10
cos 2x− 7

20
sin 2x +

1

5
ex − 1

2
− x

2
.

3



15.8.2 EXERCISES

Solve the following pairs of simultaneous differential equations, subject to the given boundary
conditions:

1.

dy

dx
+ 2z = e−x,

dz

dx
+ 3z = y,

given that y = 1 and z = 0 when x = 0.

2.

dy

dx
− z = sin x,

dz

dx
+ y = cos x,

given that y = 3 and z = 4 when x = 0.

3.

dy

dx
+ 2y − 3z = 1,

dz

dx
− y = e−2x,

given that y = 0 and z = 0 when x = 0.

4.

dy

dx
= 2z,

dz

dx
= 8y,

given that y = 1 and z = 0 when x = 0.

4



5.

dy

dx
+ 4

dz

dx
+ 6z = 0,

5
dy

dx
+ 2

dz

dx
+ 6y = 0,

given that y = 3 and z = 0 when x = 0.

Hint: First eliminate the dz
dx

terms to obtain a formula for z in terms of y and dy
dx

.

6.

10
dy

dx
− 3

dz

dx
+ 6y + 5z = 0,

2
dy

dx
− dz

dx
+ 2y + z = 2e−x,

given that y = 2 and z = −1 when x = 0.

Hint: First, eliminate the dy
dx

and z terms in one step, to obtain a formula for y in

terms of dz
dx

and x.

15.8.3 ANSWERS TO EXERCISES

1.

y = (2x + 1)e−x and z = xe−x.

2.

y = (x + 4) sin x + 3 cos x and z = (x + 4) cos x− 3 sin x.

3.

y =
1

2
ex +

1

2
e−3x − e−2x and z =

1

2
ex − 1

6
e−3x − 1

3
.

4.

y =
1

2
e4x − 1

2
e−4x ≡ sinh 4x and z = e4x + e−4x ≡ 2 cosh 4x.

5.

y = 2e−x + e−2x and z = e−x − e−2x.

6.

y = sin x + 2e−x and z = e−x − 2 cos x.

5
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UNIT 15.9 - ORDINARY DIFFERENTIAL EQUATIONS 9

SIMULTANEOUS EQUATIONS (B)

15.9.1 INTRODUCTION

For students who have studied the principles of eigenvalues and eigenvectors (see Unit 9.6), a
second method of solving two simultaneous linear differential equations is to interpret them
as a single equation using matrix notation. The discussion will be limited to the simpler
kinds of example, and we shall find it convenient to use t, x1 and x2 rather than x, y and z.

15.9.2 MATRIX METHODS FOR HOMOGENEOUS SYSTEMS

To introduce the technique, we begin by considering two simultaneous differential equations
of the form

dx1

dt
= ax1 + bx2,

dx2

dt
= cx1 + dx2.

which are of the “homogeneous” type, since no functions of t, other than x1 and x2, appear
on the right hand sides.

(i) First, we write the differential equations in matrix form as

d

dt

[
x1

x2

]
=

[
a b
c d

]
.
[
x1

x2

]
,

which may be interpreted as

dX

dt
= MX where X =

[
x1

x2

]
, and M =

[
a b
c d

]
.

(ii) Secondly, in a similar way to the method appropriate to a single differential equation,
we make a trial solution of the form

X = Keλt,

1



where

K =
[
k1

k2

]

is a constant matrix of order 2× 1.

This requires that

λKeλt = MKeλt or λK = MK,

which we may recognise as the condition that λ is an eigenvalue of the matrix M, and K is
an eigenvector of M.

The solutions for λ are obtained from the “characteristic equation”

|M− λI| = 0.

In other words,

∣∣∣∣ a− λ b
c b− λ

∣∣∣∣ = 0,

leading to a quadratic equation having real and distinct solutions (λ = λ1 and λ = λ2), real
and coincident solutions (λ only) or conjugate complex solutions (λ = l ± jm).

(iii) The possibilities for the matrix K are obtained by solving the homogeneous linear equa-
tions

(a− λ1k1 + bk2 = 0,

ck1 + (d− λ1)k2 = 0,

giving k1 : k2 = 1 : α (say)

and

2



(a− λ2)k1 + bk2 = 0,

ck1 + (d− λ2)k2 = 0,

giving k1 : k2 = 1 : β (say).

Finally, it may be shown that, according to the types of solution to the auxiliary equation,
the solution of the differential equation will take one of the following three forms, in which
A and B are arbitrary constants:

(a)

A
[

1
α

]
eλ1t + B

[
1
β

]
eλ2t;

(b)

{
(At + B)

[
1
α

]
+

A

b

[
0
1

]}
eλt;

or

(c)

elt
{[

A
pA + qB

]
cos mt +

[
B

pB − qA

]
sin mt

}
,

where, in (c), 1 : α = 1 : p + jq and 1 : β = 1 : p− jq.

EXAMPLES

1. Determine the general solution of the simultaneous differential equations

dx1

dt
= −4x1 + 5x2,

dx2

dt
= −x1 + 2x2.

3



Solution

The characteristic equation is ∣∣∣∣−4− λ 5
−1 2− λ

∣∣∣∣ = 0.

That is,

λ2 + 2λ− 3 = 0 or (λ− 1)(λ + 3) = 0.

When λ = 1, we need to solve the homogeneous equations

−5k1 + 5k2 = 0,

−k1 + k2 = 0,

both of which give k1 : k2 = 1 : 1.

When λ = −3, we need to solve the homogeneous equations

−k1 + 5k2 = 0,

−k1 + 5k2 = 0,

both of which give k1 : k2 = 1 : 1
5
.

The general solution is therefore

[
x1

x2

]
= A

[
1
1

]
et + B

[
1
1
5

]
e−3t

or, alternatively,

[
x1

x2

]
= A

[
1
1

]
et + B

[
5
1

]
e−3t,

where A and B are arbitrary constants.
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2. Determine the general solution of the simultaneous differential equations

dx1

dt
= x1 − x2,

dx2

dt
= x1 + 3x2.

Solution

The characteristic equation is ∣∣∣∣ 1− λ −1
1 3− λ

∣∣∣∣ = 0.

That is,

λ2 − 4λ + 4 = 0 or (λ− 2)2 = 0.

When λ = 2, we need to solve the homogeneous equations

−k1 − k2 = 0,

k1 + k2 = 0,

both of which give k1 : k2 = 1 : −1.

The general solution is therefore

[
x1

x2

]
=

{
(At + B)

[
1
−1

]
− A

[
0
1

]}
e2t,

where A and B are arbitrary constants.

3. Determine the general solution of the simultaneous differential equations

dx1

dt
= x1 − 5x2,

dx2

dt
= 2x1 + 3x2.

5



Solution

The characteristic equation is ∣∣∣∣ 1− λ −5
2 3− λ

∣∣∣∣ = 0.

That is,

λ2 − 4λ + 13 = 0,

which gives λ = 2± j3.

When λ = 2 + j3, we need to solve the homogeneous equations

(−1− j3)k1 − 5k2 = 0,

2k1 + (1− j3)k2 = 0,

both of which give k1 : k2 = 1 : −1−j3
5

.

When λ = 2− j3, we need to solve the homogeneous equations

(−1 + j3)k1 − 5k2 = 0,

2k1 + (1 + j3)k2 = 0,

both of which give k1 : k2 = 1 : −1+j3
5

.

The general solution is therefore

e2t

5

{[
A

−A + 3B

]
cos 3t +

[
B

−B − 3A

]
sin 3t

}
,

where A and B are arbitrary constants.

Note:
From any set of simultaneous differential equations of the form

a
dx1

dt
+ b

dx2

dt
+ cx1 + dx2 = 0,

a′
dx1

dt
+ b′

dx2

dt
+ b′x1 + c′x2 = 0,

6



it is possible to eliminate dx1

dt
and dx2

dt
in turn, in order to obtain two equivalent equations

of the form discussed in the above examples.

15.9.3 EXERCISES

1. Determine the general solution of the simultaneous differential equations

dx1

dt
= x1 + 3x2,

dx2

dt
= 3x1 + x2.

2. Solve completely, the simultaneous differential equations

dx1

dt
= 3x1 + 2x2,

dx2

dt
= 4x1 + x2,

given that x1 = 3 and x2 = −3 when t = 0.

3. Solve completely, the simultaneous differential equations

dx1

dt
= −x1 + 9x2,

dx2

dt
= 11x1 + x2,

given that x1 = 20 and x2 = 20 when t = 0.

4. Solve completely, the simultaneous differential equations

dx1

dt
− dx2

dt
+ 2x1 − 2x2 = 0,

dx1

dt
+ 2

dx2

dt
− 7x1 − 5x2 = 0,

given that x1 = 2 and x2 = 0 when t = 0.
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5. Determine the general solution of the simultaneous differential equations

dx1

dt
= 5x1 + 2x2,

dx2

dt
= −2x1 + x2.

6. Determine the general solution of the simultaneous differential equations

dx1

dt
= 8x1 + x2,

dx2

dt
= −5x1 + 6x2.

15.9.4 ANSWERS TO EXERCISES

1.

A
[
1
1

]
e4t + B

[
1
−1

]
e−2t.

2. [
1
1

]
e5t + 2

[
1
−2

]
e−t.

3.

2
[

1
−1

]
e−10t +

[
18
22

]
e10t.

4. [
1
1

]
e4t +

[
1
−1

]
e−2t.

5. {
(At + B)

[
1
−1

]
+

A

2

[
0
1

]}
e3t.

6.

e7t
{[

A
−A + 2B

]
cos 2t +

[
B

−B − 2A

]
sin 2t

}
.

8
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UNIT 15.10 - ORDINARY DIFFERENTIAL EQUATIONS 10

SIMULTANEOUS EQUATIONS (C)

15.10.1 MATRIX METHODS FOR NON-HOMOGENEOUS SYSTEMS

In Units 15.5, 15.6 and 15.7 , it was seen that, for a single linear differential equation with
constant coefficients, the general solution is made up of a particular integral and a comple-
mentary function (the latter being the general solution of the corresponding homogeneous
differential equation).

In the work which follows, a similar principle is applied to a pair of simultaneous non-
homogeneous differential equations of the form

dx1

dt
= ax1 + bx2 + f(t),

dx2

dt
= cx1 + dx2 + g(t).

The method will be illustrated by the following example, in which f(t) ≡ 0:

EXAMPLE

Determine the general solution of the simultaneous differential equations

dx1

dt
= x2,−−−−−−−−−−−(1)

dx2

dt
= −4x1 − 5x2 + g(t),−−−−−(2)

where g(t) is (a) t, (b) e2t (c) sin t, (d) e−t.

Solutions

(i) First, we write the differential equations in matrix form as

d

dt

[
x1

x2

]
=

[
0 1
−4 −5

]
.
[
x1

x2

]
+

[
0
1

]
g(t),

1



which may be interpreted as

dX

dt
= MX + Ng(t) where X =

[
x1

x2

]
, M =

[
0 1
−4 −5

]
and N =

[
0
1

]
.

(ii) Secondly, we consider the corresponding “homogeneous” system

dX

dt
= MX,

for which the characteristic equation is

∣∣∣∣ 0− λ 1
−4 −5− λ

∣∣∣∣ = 0,

and gives

λ(5 + λ) + 4 = 0 or λ2 + 5λ + 4 = 0 or (λ + 1)(λ + 4) = 0.

(iii) The eigenvectors of M are obtained from the homogeneous equations

−λk1 + k2 = 0,

−4k1 − (5 + λ)k2 = 0.

Hence, in the case when λ = −1, we solve

k1 + k2 = 0,

−4k1 − 4k2 = 0,

and these are satisfied by any two numbers in the ratio k1 : k2 = 1 : −1.
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Also, when λ = −4, we solve

4k1 + k2 = 0,

−4k1 − k2 = 0

which are satisfied by any two numbers in the ratio k1 : k2 = 1 : −4.

The complementary function may now be written in the form

A
[

1
−1

]
e−t + B

[
1
−4

]
e−4t,

where A and B are arbitrary constants.

(iv) In order to obtain a particular integral for the equation

dX

dt
= MX + Ng(t),

we note the second term on the right hand side and investigate a trial solution of a similar
form. The three cases in this example are as follows:

(a) g(t) ≡ t

Trial solution X = P + Qt,

where P and Q are constant matrices of order 2× 1.

We require that

Q = M(P + Qt) + Nt,

whereupon, equating the matrix coefficients of t and the constant matrices,

MQ + N = 0 and Q = MP,

3



giving

Q = −M−1N and P = M−1Q.

Thus, using

M−1 =
1

4

[−5 −1
4 0

]
,

we obtain

Q = −1

4

[−5 −1
4 0

]
.
[
0
1

]
=

[
0.25
0

]

and

P =
1

4

[−5 −1
4 0

]
.
[
0.25
0

]
=

[−0.3125
0.25

]
.

The general solution, in this case, is

X = A
[

1
−1

]
e−t + B

[
1
−4

]
e−4t +

[−0.3125
0.25

]
+

[
0.25
0

]
t.

(b) g(t) ≡ e2t

Trial solution X = Pe2t

We require that

2Pe2t = MPe2t + Ne2t.

That is,

2P = MP + N.

4



The matrix, P, may now be determined from the formula

(2I−M)P = N;

or, in more detail,

[
2 −1
4 7

]
.P = N.

Hence,

P =
1

18

[
7 1
−4 2

]
.
[
1
0

]
=

1

18

[
7
−4

]
.

The general solution, in this case, is

X = A
[

1
−1

]
e−t + B

[
1
−4

]
e−4t +

1

18

[
7
−4

]
e2t.

(c) g(t) ≡ sin t

Trial solution X = P sin t + Q cos t.

We require that

P cos t−Q sin t = M(P sin t + Q cos t) + N sin t.

Equating the matrix coefficients of cos t and sin t,

P = MQ and −Q = MP + N,

which means that

−Q = M2Q + N or (M2 + I)Q = −N.

5



Thus,

Q = −(M2 + I)−1N,

where

M2 + I =
[

0 1
−4 −5

]
.
[

0 1
−4 −5

]
+

[
1 0
0 1

]
=

[−3 −5
20 22

]

and, hence,

Q = − 1

34

[
22 5
−20 −3

]
.
[
0
1

]
=

1

34

[−5
3

]
.

Also,

P = MQ =
1

34

[
0 1
−4 −5

]
.
[−5

3

]
=

1

34

[
3
5

]
.

The general solution, in this case, is

X = A
[

1
−1

]
e−t + B

[
1
−4

]
e−4t +

1

34

[
3
5

]
sin t +

1

34

[−5
3

]
cos t.

(d) g(t) ≡ e−t

In this case, the function, g(t), is already included in the complementary function and it
becomes necessary to assume a particular integral of the form

X = (P + Qt)e−t,

where P and Q are constant matrices of order 2× 1.

We require that

Qe−t − (P + Qt)e−t = M(P + Qt)e−t + Ne−t,

6



whereupon, equating the matrix coefficients of te−t and e−t, we obtain

−Q = MQ and Q− P = MP + N.

The first of these conditions shows that Q is an eigenvector of the matrix M corresponding
the eigenvalue −1 and so, from earlier work,

Q = k
[

1
−1

]

for any constant k.

Also,

(M + I)P = Q− N;

or, in more detail,

[
1 1
−4 −4

]
.
[
p1

p2

]
= k

[
1
−1

]
−

[
0
1

]
.

Hence,

p1 + p2 = k,

−4p1 − 4p2 = −k − 1.

Using p1 + p2 = k and p1 + p2 = k+1
4

, we deduce that k = 1
3

and that the matrix P is given
by

P =
[

l
1
3
− l

]
=

1

3

[
0
1

]
+ l

[
1
−1

]

for any number, l.

7



Taking l = 0 for simplicity, a particular integral is therefore

X =
1

3

{[
0
1

]
+

[
1
−1

]
t
}

e−t.

and the general solution is

X = A
[

1
−1

]
e−t + B

[
1
−4

]
e−4t +

1

3

{[
0
1

]
+

[
1
−1

]
t
}

e−t.

Note:
In examples for which neither f(t) nor g(t) is identically equal to zero, the particular integral
may be found by adding together the separate forms of particular integral for f(t) and g(t)
and writing the system of differential equations in the form

dX

dt
= MX + N1f(t) + N2g(t),

where

N1 =
[
1
0

]
and N2 =

[
0
1

]
.

For instance, if f(t) ≡ t and g(t) ≡ e2t, the particular integral would take the form

X = P + Qt + Re2t,

where P, Q and R are matrices of order 2× 1.

15.10.2 EXERCISES

1. Determine the general solutions of the following systems of simultaneous differential
equations:

(a)

dx1

dt
= x1 + 3x2 + 5t,

dx2

dt
= 3x1 + x2 + e3t.
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(b)

dx1

dt
= 3x1 + 2x2 + t2,

dx2

dt
= 4x1 + x2 + e−2t.

2. Determine the complete solutions of the following systems of differential equations,
subject to the conditions given:

(a)

dx1

dt
= −x1 + 9x2 + 3,

dx2

dt
= 11x1 + x2 + e10t,

given that x1 = 1
225

and x2 = − 1
100

when t = 0.

(b)

dx1

dt
= 5x1 + 2x2 + 2t2 + t,

dx2

dt
= −2x1 + x2,

given that x1 = 32
27

and x2 = −12
27

when t = 0.

(c)

dx1

dt
= 8x1 + x2 + sin t,

dx2

dt
= −5x1 + 6x2 + cos t,

given that x1 = 0 and x2 = 0 when t = 0.

9



15.10.3 ANSWERS TO EXERCISES

1. (a)

A
[
1
1

]
e4t + B

[
1
−1

]
e−2t +

1

32

[−25
15

]
+

1

8

[
5
−15

]
t− 1

5

[
3
2

]
e3t;

(b)

A
[
1
1

]
e5t + B

[
1
−2

]
e−t +

2

125

[
41
−84

]
+

2

25

[−9
16

]
t +

1

5

[
1
−4

]
t2 +

1

7

[
2
−5

]
e−2t.

2. (a)

− 7

45

[
1
−1

]
e−10t +

13

900

[
9
11

]
e10t +

3

100

[
1
−11

]
+

1

180

[
0
1

]
e10t +

1

20

[
9
11

]
te10t;

(b) {
(2t + 1)

[
1
−1

]
+

[
0
1

]}
e3t +

1

27

[
5
−12

]
+

1

27

[
1
−22

]
t− 2

9

[
1
2

]
t2;

(c)

1

145

{
e7t

([−1
25

]
cos 2t +

[−12
−10

]
sin 2t

)
+

[−17
−10

]
sin t +

[
1
−25

]
cos t

}
.
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UNIT 16.1 - LAPLACE TRANSFORMS 1 - DEFINITIONS AND RULES

16.1.1 INTRODUCTION

The theory of “Laplace Transforms” to be discussed in the following notes will be for
the purpose of solving certain kinds of “differential equation”; that is, an equation which
involves a derivative or derivatives.

The particular differential equation problems to be encountered will be limited to the two
types listed below:

(a) Given the “first order linear differential equation with constant coefficients”,

a
dx

dt
+ bx = f(t),

together with the value of x when t = 0 (that is, x(0)), determine a formula for x in terms
of t, which does not include any derivatives.

(b) Given the “second order linear differential equation with constant coefficients”,

a
d2x

dt2
+ b

dx

dt
+ cx = f(t),

together with the values of x and dx
dt

when t = 0 (that is, x(0) and x′(0)), determine a formula
for x in terms of t which does not include any derivatives.

Roughly speaking, the method of Laplace Transforms is used to convert a calculus problem
(the differential equation) into an algebra problem (frequently an exercise on partial fractions
and/or completing the square).

The solution of the algebra problem is then fed backwards through what is called an “Inverse
Laplace Transform” and the solution of the differential equation is obtained.

LAPLACE

'

&

$

%

'

&

$

%
CALCULUS ALGEBRA-� -�

The background to the development of Laplace Transforms would be best explained using
certain other techniques of solving differential equations which may not have been part of
earlier work. This background will therefore be omitted here.
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DEFINITION
The Laplace Transform of a given function f(t), defined for t > 0, is defined by the definite
integral ∫ ∞

0
e−stf(t) dt,

where s is an arbitrary positive number.

Notes
(i) The Laplace Transform is usually denoted by L[f(t)] or F (s), since the result of the
definite integral in the definition will be an expression involving s.

(ii) Although s is an arbitrary positive number, it is occasionally necessary to assume that it
is large enough to avoid difficulties in the calculations; (see the note to the second standard
result below).

16.1.2 LAPLACE TRANSFORMS OF SIMPLE FUNCTIONS

The following is a list of standard results on which other Laplace Transforms will be based:

1. f(t) ≡ tn.

F (s) =
∫ ∞

0
e−sttn dt = In say.

Hence,

In =

[
tne−st

−s

]∞
0

+
n

s

∫ ∞

0
e−sttn−1 dt =

n

s
.In−1,

using the fact that e−st tends to zero much faster than any other function of t can tend
to infinity. That is, a decaying exponential will always have the dominating effect.

We conclude that

In =
n

s
.
(n− 1)

s
.
(n− 2)

s
....

2

s
.
1

s
.I0 =

n!

sn
.I0.

But,

I0 =
∫ ∞

0
e−st dt =

[
e−st

−s

]∞
0

=
1

s
.

Thus,

L[tn] =
n!

sn+1
.

Note:
This result also shows that

L[1] =
1

s
,

since 1 = t0.
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2. f(t) ≡ e−at.

F (s) =
∫ ∞

0
e−ste−at dt =

∫ ∞

0
e−(s+a)t dt

=

[
e−(s+a)t

−(s + a)

]∞
0

=
1

s + a
.

Hence,

L[e−at] =
1

s + a
.

Note:
A slightly different form of this result, less commonly used in applications to science
and engineering, is

L[ebt] =
1

s− b
;

but, to obtain this result by integration, we would need to assume that s > b to ensure
that e−(s−b)t is genuinely a decaying exponential.

3. f(t) ≡ cos at.

F (s) =
∫ ∞

0
e−st cos at dt =

[
e−st sin at

a

]∞
0

+
s

a

∫ ∞

0
e−st sin at dt

using Integration by Parts, once.

Using Integration by Parts a second time,

F (s) = 0 +
s

a

{[
− e−st cos at

a

]∞
0

− s

a

∫ ∞

0
e−st cos at dt

}
,

which gives

F (s) =
s

a2
− s2

a2
.F (s).

That is,

F (s) =
s

s2 + a2
.

In other words,

L[cos at] =
s

s2 + a2
.
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4. f(t) ≡ sin at.

The method is similar to that for cos at, and we obtain

L[sin at] =
a

s2 + a2
.

16.1.3 ELEMENTARY LAPLACE TRANSFORM RULES

The following list of results is of use in finding the Laplace Transform of a function which is
made up of basic functions, such as those encountered in the previous section.

1. LINEARITY

If A and B are constants, then

L[Af(t) + Bg(t)] = AL[f(t)] + BL[g(t)].

Proof:

This follows easily from the linearity of an integral.

EXAMPLE

Determine the Laplace Transform of the function,

2t5 + 7 cos 4t− 1.

Solution

L[2t5 + 7 cos 4t− 1] = 2.
5!

s6
+ 7.

s

s2 + 42
− 1

s
=

240

s6
+

7s

s2 + 16
− 1

s
.

2. THE TRANSFORM OF A DERIVATIVE

The two results which follow are of special use when solving first and second order
differential equations. We shall begin by discussing them in relation to an arbitrary
function, f(t); then we shall restate them in the form which will be needed for solving
differential equations.

(a)
L[f ′(t)] = sL[f(t)]− f(0).

Proof:

L[f ′(t)] =
∫ ∞

0
e−stf ′(t) dt =

[
e−stf(t)

]∞
0

+ s
∫ ∞

0
e−stf(t) dt

using integration by parts.

Thus,
L[f ′(t)] = −f(0) + sL[f(t)],

as required.
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(b)
L[f ′′(t)] = s2L[f(t)]− sf(0)− f ′(0).

Proof:

Treating f ′′(t) as the first derivative of f ′(t), we have

L[f ′′(t)] = sL[f ′(t)]− f ′(0),

which gives the required result on substituting from (a) the expression for L[f ′(t)].

Alternative Forms (Using L[x(t)] = X(s)):

(i)

L

[
dx

dt

]
= sX(s)− x(0).

(ii)

L

[
d2x

dt2

]
= s2X(s)− sx(0)− x′(0) or s[sX(s)− x(0)]− x′(0).

3. THE (First) SHIFTING THEOREM

L[e−atf(t)] = F (s + a).

Proof:

L[e−atf(t)] =
∫ ∞

0
e−ste−atf(t) dt =

∫ ∞

0
e−(s+a)tf(t) dt,

which can be regarded as the effect of replacing s by s + a in L[f(t)]. In other words,
F (s + a).

Notes:
(i) Sometimes, this result is stated in the form

L[ebtf(t)] = F (s− b)

but, in science and engineering, the exponential is more likely to be a decaying expo-
nential.

(ii) There is, in fact, a Second Shifting Theorem, encountered in more advanced courses;
but we do not include it in this Unit (see Unit 16.5).

EXAMPLE

Determine the Laplace Transform of the function, e−2t sin 3t.

Solution

First of all, we note that

L[sin 3t] =
3

s2 + 32
=

3

s2 + 9
.

Replacing s by (s + 2) in this result, the First Shifting Theorem gives

L[e−2t sin 3t] =
3

(s + 2)2 + 9
.

5



4. MULTIPLICATION BY t

L[tf(t)] = − d

ds
[F (s)].

Proof:

It may be shown that

d

ds
[F (s)] =

∫ ∞

0

∂

∂s
[e−stf(t)]dt =

∫ ∞

0
− te−stf(t) dt = − L[tf(t)].

EXAMPLE

Determine the Laplace Transform of the function,

t cos 7t.

Solution

L[t cos 7t] = − d

ds

[
s

s2 + 72

]
= − (s2 + 72).1− s.2s

(s2 + 72)2
=

s2 − 49

(s2 + 49)2
.
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THE USE OF A TABLE OF LAPLACE TRANSFORMS AND RULES

For the purposes of these Units, the following brief table may be used to determine the
Laplace Transforms of functions of t without having to use integration:

f(t) L[f(t)] = F (s)

K (a constant) K
s

e−at 1
s+a

tn n!
sn+1

sin at a
s2+a2

sinhat a
s2−a2

cos at s
s2+a2

coshat s
s2−a2

te−at 1
(s+a)2

t sin at 2as
(s2+a2)2

t cos at (s2−a2)
(s2+a2)2

sin at− at cos at 2a3

(s2+a2)2

16.1.4 FURTHER LAPLACE TRANSFORM RULES

1.

L

[
dx

dt

]
= sX(s)− x(0).

2.

L

[
d2x

dt2

]
= s2X(s)− sx(0)− x′(0) or s[sX(s)− x(0)]− x′(0).

3. The Initial Value Theorem

lim
t→0

f(t) = lim
s→∞

sF (s),

provided that the indicated limits exist.
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4. The Final Value Theorem

lim
t→∞

f(t) = lim
s→0

sF (s),

provided that the indicated limits exist.

5. The Convolution Theorem

L
[∫ t

0
f(T )g(t− T ) dT

]
= F (s)G(s).

16.1.5 EXERCISES

1. Use a table the table of Laplace Transforms to find L[f(t)] in the following cases:

(a)

3t2 + 4t− 1;

(b)

t3 + 3t2 + 3t + 1 (≡ (t + 1)3);

(c)

2e5t − 3et + e−7t;

(d)

2 sin 3t− 3 cos 2t;

(e)

t sin 6t;

(f)

t(et + e−2t);

(g)

1

2
(1− cos 2t) (≡ sin2t).

2. Using the First Shifting Theorem, obtain the Laplace Transforms of the following func-
tions of t:

(a)

e−3t cos 5t;

(b)

t2e2t;
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(c)

e−2t
(
2t3 + 3t− 2

)
;

(d)

cosh2t. sin t;

(e)

e−atf ′(t),

where L[f(t)] = F (s).

3. (a) If
x = t3e−t,

determine the Laplace Transform of d2x
dt2

without differentiating x more than once
with respect to t.

(b) If
dx

dt
+ x = et,

where x(0) = 0, show that

X(s) =
1

s2 − 1
.

4. Verify the Initial and Final Value Theorems for the function

f(t) = te−3t.

16.1.6 ANSWERS TO EXERCISES

1. (a)

6

s3
+

4

s2
− 1

s
;

(b)

6

s4
+

6

s3
+

3

s2
+

1

s
;

(c)

2

s− 5
− 3

s− 1
+

1

s + 7
;

(d)

6

s2 + 9
− 3s

s2 + 4
;
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(e)

12s

(s2 + 36)2
;

(f)

1

(s− 1)2
+

1

(s + 2)2
;

(g)

1

2

[
1

s
− s

s2 + 4

]
.

2. (a)

s + 3

(s + 3)2 + 25
;

(b)

2

(s− 2)3
;

(c)

12

(s + 2)4
+

3

(s + 2)2
− 2

s + 2
;

(d)

1

2

[
1

(s− 2)2 + 1
+

1

(s + 2)2 + 1

]
;

(e)

(s + a)F (s + a)− f(0).

3. (a)

6s2

(s + 1)4
;

(b) On the left hand side, use the formula for L
[

dx
dt

]
.

4.

lim
t→0

f(t) = 0 and lim
t→∞

f(t) = 0.
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UNIT 16.2 - LAPLACE TRANSFORMS 2
INVERSE LAPLACE TRANSFORMS

In order to solve differential equations, we now examine how to determine a function of the
variable, t, whose Laplace Transform is already known.

16.2.1 THE DEFINITION OF AN INVERSE LAPLACE TRANSFORMS

A function of t, whose Laplace Transform is the given expression, F (s), is called the “Inverse
Laplace Transform” of f(t) and may be denoted by the symbol

L−1[F (s)].

Notes:
(i) Since two functions which coincide for t > 0 will have the same Laplace Transform, we
can determine the Inverse Laplace Transform of F (s) only for positive values of t.

(ii) Inverse Laplace Transforms are linear since

L−1 [AF (s) + BG(s)]

is a function of t whose Laplace Transform is

AF (s) + BG(s);

and, by the linearity of Laplace Transforms, discussed in Unit 16.1, such a function is

AL−1[F (s)] + BL−1[G(s)].

16.2.2 METHODS OF DETERMINING AN INVERSE LAPLACE
TRANSFORM

The type of differential equation to be encountered in simple practical problems usually
lead to Laplace Transforms which are “rational functions of s”. We shall restrict the
discussion to such cases, as illustrated in the following examples, where the table of standard
Laplace Transforms is used whenever possible. The partial fractions are discussed in detail,
but other, shorter, methods may be used if known (for example, the “Cover-up Rule” and
“Keily’s Method”; see Unit 1.9)

EXAMPLES

1. Determine the Inverse Laplace Transform of

F (s) =
3

s3
+

4

s− 2
.

Solution

f(t) =
3

2
t2 + 4e2t t > 0

1



2. Determine the Inverse Laplace Transform of

F (s) =
2s + 3

s2 + 3s
=

2s + 3

s(s + 3)
.

Solution

Applying the principles of partial fractions,

2s + 3

s(s + 3)
≡ A

s
+

B

s + 3
,

giving
2s + 3 ≡ A(s + 3) + Bs

Note:
Although the s of a Laplace Transform is an arbitrary positive number, we may tem-
porarily ignore that in order to complete the partial fractions. Otherwise, entire partial
fractions exercises would have to be carried out by equating coefficients of appropriate
powers of s on both sides.

Putting s = 0 and s = −3 gives

3 = 3A and − 3 = −3B;

so that
A = 1 and B = 1.

Hence,

F (s) =
1

s
+

1

s + 3

Finally,
f(t) = 1 + e−3t t > 0.

3. Determine the Inverse Laplace Transform of

F (s) =
1

s2 + 9
.

Solution

f(t) =
1

3
sin 3t t > 0.

4. Determine the Inverse Laplace Transform of

F (s) =
s + 2

s2 + 5
.

Solution

f(t) = cos t
√

5 +
2√
5

sin t
√

5 t > 0.
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5. Determine the Inverse Laplace Transform of

F (s) =
3s2 + 2s + 4

(s + 1)(s2 + 4)
.

Solution

Applying the principles of partial fractions,

3s2 + 2s + 4

(s + 1)(s2 + 4)
≡ A

s + 1
+

Bs + C

s2 + 4
.

That is,
3s2 + 2s + 4 ≡ A(s2 + 4) + (Bs + C)(s + 1).

Substituting s = −1, we obtain

5 = 5A which implies that A = 1.

Equating coefficients of s2 on both sides,

3 = A + B so that B = 2.

Equating constant terms on both sides,

4 = 4A + C so that C = 0.

We conclude that

F (s) =
1

s + 1
+

2s

s2 + 4
.

Hence,
f(t) = e−t + 2 cos 2t t > 0.

6. Determine the Inverse Laplace Transform of

F (s) =
1

(s + 2)5
.

Solution

Using the First Shifting Theorem and the Inverse Laplace Transform of n!
sn+1 , we obtain

f(t) =
1

24
t4e−2t t > 0.

7. Determine the Inverse Laplace Transform of

F (s) =
3

(s− 7)2 + 9
.

Solution

Using the First Shifting Theorem and the Inverse Laplace Transform of a
s2+a2 , we obtain

f(t) = e7t sin 3t t > 0.
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8. Determine the Inverse Laplace Transform of

F (s) =
s

s2 + 4s + 13
.

Solution

The denominator will not factorise conveniently, so we complete the square, giving

F (s) =
s

(s + 2)2 + 9
.

In order to use the First Shifting Theorem, we must try to include s+2 in the numerator;
so we write

F (s) =
(s + 2)− 2

(s + 2)2 + 9
=

s + 2

(s + 2)2 + 32
− 2

3
.

3

(s + 2)2 + 32
.

Hence,

f(t) = e−2t cos 3t− 2

3
e−2t sin 3t =

1

3
e−2t [3 cos 3t− 2 sin 3t] t > 0.

9. Determine the Inverse Laplace Transform of

F (s) =
8(s + 1)

s(s2 + 4s + 8)
.

Solution

Applying the principles of partial fractions,

8(s + 1)

s(s2 + 4s + 8)
≡ A

s
+

Bs + C

s2 + 4s + 8
.

Mutiplying up, we obtain

8(s + 1) ≡ A(s2 + 4s + 8) + (Bs + C)s.

Substituting s = 0 gives
8 = 8A so that A = 1.

Equating coefficients of s2 on both sides,

0 = A + B which gives B = −1.

Equating coefficients of s on both sides,

8 = 4A + C which gives C = 4.

Thus,

F (s) =
1

s
+

−s + 4

s2 + 4s + 8
.
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The quadratic denominator will not factorise conveniently, so we complete the square
to give

F (s) =
1

s
+

−s + 4

(s + 2)2 + 4
,

which, on rearrangement, becomes

F (s) =
1

s
− s + 2

(s + 2)2 + 22
+

6

(s + 2)2 + 22
.

Thus, from the First Shifting Theorem,

f(t) = 1− e−2t cos 2t + 3e−2t sin 2t t > 0.

10. Determine the Inverse Laplace Transform of

F (s) =
s + 10

s2 − 4s− 12
.

Solution

This time, the denominator will factorise, into (s + 2)(s− 6), and partial fractions give

s + 10

(s + 2)(s− 6)
≡ A

s + 2
+

B

s− 6
.

Hence,
s + 10 ≡ A(s− 6) + B(s + 2).

Putting s = −2,
8 = −8A giving A = −1.

Putting s = 6,
16 = 8B giving B = 2.

We conclude that

F (s) =
−1

s + 2
+

2

s− 6
.

Finally,
f(t) = −e−2t + 2e6t t > 0.

However, if we did not factorise the denominator, a different form of solution could be
obtained as follows:

F (s) =
(s− 2) + 12

(s− 2)2 − 42
=

s− 2

(s− 2)2 − 42
+ 3.

4

(s− 2)2 + 42
.

Hence,
f(t) = e2t[cosh4t + 3sinh4t] t > 0.
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11. Determine the Inverse Laplace Transform of

F (s) =
1

(s− 1)(s + 2)
.

Solution

The Inverse Laplace Transform of this function could certainly be obtained by using
partial fractions, but we note here how it could be obtained from the Convolution
Theorem.

Writing

F (s) =
1

(s− 1)
.

1

(s + 2)
,

we obtain

f(t) =
∫ t

0
eT .e−2(t−T ) dT =

∫ t

0
e(3T−2t) dT =

[
e3T−2t

3

]t

0

.

That is,

f(t) =
et

3
− e−2t

3
t > 0.

16.2.3 EXERCISES

Determine the Inverse Laplace Transforms of the following rational functions of s:

1. (a)

1

(s− 1)2
;

(b)

1

(s + 1)2 + 4
;

(c)

s + 2

(s + 2)2 + 9
;

(d)

s− 2

(s− 3)3
;
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(e)

1

(s2 + 4)2
;

(f)

s + 1

s2 + 2s + 5
;

(g)

s− 3

s2 − 4s + 5
;

(h)

s− 3

(s− 1)2(s− 2)
;

(i)

5

(s + 1)(s2 − 2s + 2)
;

(j)

2s− 9

(s− 3)(s + 2)
;

(k)

3

s(s2 + 9)
;

(l)

2s− 1

(s− 1)(s2 + 2s + 2)
.

2. Use the Convolution Theorem to obtain the Inverse Laplace Transform of

s

(s2 + 1)2
.

16.2.4 ANSWERS TO EXERCISES

1. (a)

tet t > 0;
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(b)

1

2
e−t sin 2t t > 0;

(c)

e−2t cos 3t t > 0;

(d)

e3t
[
t +

1

2
t2

]
t > 0;

(e)

1

16
[sin 2t− 2t cos 2t] t > 0;

(f)

e−t cos 2t t > 0;

(g)

e2t[cos t− sin t] t > 0;

(h)

2tet + et − e2t t > 0;

(i)

e−t + et[2 sin t− cos t] t > 0;

(j)

1

5
[13e−2t − 3e3t] t > 0;

(k)

1

3
[1− cos 3t] t > 0;

(l)

1

5
[et − e−t cos t + 8e−t sin t] t > 0.

2.

1

2
t sin t t > 0.
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UNIT 16.3 - LAPLACE TRANSFORMS 3 - DIFFERENTIAL EQUATIONS

16.3.1 EXAMPLES OF SOLVING DIFFERENTIAL EQUATIONS

In the work which follows, the problems considered will usually take the form of a linear
differential equation of the second order with constant coefficients.

That is,

a
d2x

dt2
+ b

dx

dt
+ cx = f(t).

However, the method will apply equally well to the corresponding first order differential
equation,

a
dx

dt
+ bx = f(t).

The technique will be illustrated by examples.

EXAMPLES

1. Solve the differential equation

d2x

dt2
+ 4

dx

dt
+ 13x = 0,

given that x = 3 and dx
dt

= 0 when t = 0.

Solution

Taking the Laplace Transform of the differential equation,

s[sX(s)− 3] + 4[sX(s)− 3] + 13X(s) = 0.

Hence,
(s2 + 4s + 13)X(s) = 3s + 12,

giving

X(s) ≡ 3s + 12

s2 + 4s + 13
.

The denominator does not factorise, therefore we complete the square to obtain

X(s) ≡ 3s + 12

(s + 2)2 + 9
≡ 3(s + 2) + 6

(s + 2)2 + 9
≡ 3.

s + 2

(s + 2)2 + 9
+ 2.

3

(s + 2)2 + 9
.

1



Thus,
x(t) = 3e−2t cos 3t + 2e−2t sin 3t t > 0

or
x(t) = e−2t[3 cos 3t + 2 sin 3t] t > 0.

2. Solve the differential equation

d2x

dt2
+ 6

dx

dt
+ 9x = 50 sin t,

given that x = 1 and dx
dt

= 4 when t = 0.

Solution

Taking the Laplace Transform of the differential equation,

s[sX(s)− 1]− 4 + 6[sX(s)− 1] + 9X(s) =
50

s2 + 1
,

giving

(s2 + 6s + 9)X(s) =
50

s2 + 1
+ s + 10.

Hint: Do not combine the terms on the right into a single fraction - it won’t help !

Thus,

X(s) ≡ 50

(s2 + 6s + 9)(s2 + 1)
+

s + 10

s2 + 6s + 9

or

X(s) ≡ 50

(s + 3)2(s2 + 1)
+

s + 10

(s + 3)2
.

Using the principles of partial fractions in the first term on the right,

50

(s + 3)2(s2 + 1)
≡ A

(s + 3)2
+

B

s + 3
+

Cs + D

s2 + 1
.

Hence,
50 ≡ A(s2 + 1) + B(s + 3)(s2 + 1) + (Cs + D)(s + 3)2.

Substituting s = −3,
50 = 10A giving A = 5.

Equating coefficients of s3 on both sides,

0 = B + C. (1)
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Equating the coefficients of s on both sides (we shall not need the s2 coefficients in this
example),

0 = B + 9C + 6D. (2)

Equating the constant terms on both sides,

50 = A + 3B + 9D = 5 + 3B + 9D. (3)

Putting C = −B into (2), we obtain

− 8B + 6D = 0, (4)

and we already have
3B + 9D = 45. (3)

These last two solve easily to give B = 3 and D = 4 so that C = −3.

We conclude that

50

(s + 3)2(s2 + 1)
≡ 5

(s + 3)2
+

3

s + 3
+
−3s + 4

s2 + 1
.

In addition to this, we also have

s + 10

(s + 3)2
≡ s + 3

(s + 3)2
+

7

(s + 3)2
≡ 1

s + 3
+

7

(s + 3)2
.

The total for X(s) is therefore given by

X(s) ≡ 12

(s + 3)2
+

4

s + 3
− 3.

s

s2 + 1
+ 4.

1

s2 + 1
.

Finally,
x(t) = 12te−3t + 4e−3t − 3 cos t + 4 sin t t > 0.

3. Solve the differential equation

d2x

dt2
+ 4

dx

dt
− 3x = 4et,

given that x = 1 and dx
dt

= −2 when t = 0.

Solution

Taking the Laplace Transform of the differential equation,

s[sX(s)− 1] + 2 + 4[sX(s)− 1]− 3X(s) =
4

s− 1
.
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This gives

(s2 + 4s− 3)X(s) =
4

s− 1
+ s + 2.

Therefore,

X(s) ≡ 4

(s− 1)(s2 + 4s− 3)
+

s + 2

s2 + 4s− 3
.

Applying the principles of partial fractions,

4

(s− 1)(s2 + 4s− 3)
≡ A

s− 1
+

Bs + C

s2 + 4s− 3
.

Hence,
4 ≡ A(s2 + 4s− 3) + (Bs + C)(s− 1).

Substituting s = 1, we obtain

4 = 2A; that is, A = 2.

Equating coefficients of s2 on both sides,

0 = A + B, so that B = −2.

Equating constant terms on both sides,

4 = −3A− C, so that C = −10.

Thus, in total,

X(s) ≡ 2

s− 1
+

−s− 8

s2 + 4s− 3
≡ 2

s− 1
+

−s− 8

(s + 2)2 − 7
or

X(s) ≡ 2

s− 1
− s + 2

(s + 2)2 − 7
− 6

(s + 2)2 − 7
.

Finally,

x(t) = 2et − e−2tcosht
√

7− 6√
7
e−2tsinht

√
7 t > 0.

16.3.2 THE GENERAL SOLUTION OF A DIFFERENTIAL EQUATION

On some occasions, we may either be given no boundary conditions at all; or else the bound-
ary conditions given do not tell us the values of x(0) and x′(0).

In such cases, we simply let x(0) = A and x′(0) = B to obtain a solution in terms of A and
B called the ”general solution”.

If any non-standard boundary conditions are provided, we then substitute them into the
general solution to obtain particular values of A and B.
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EXAMPLE

Determine the general solution of the differential equation

d2x

dt2
+ 4x = 0

and, hence, determine the particular solution in the case when x(π
2
) = −3 and x′(π

2
) = 10.

Solution

Taking the Laplace Transform of the differential equation,

s(sX(s)− A)−B + 4X(s) = 0.

That is,
(s2 + 4)X(s) = As + B.

Hence,

X(s) ≡ As + B

s2 + 4
≡ A.

s

s2 + 4
+ B.

1

s2 + 4
.

This gives

x(t) = A cos 2t +
B

2
sin 2t t > 0;

but, since A and B are arbitrary constants, this may be written in the simpler form

x(t) = A cos 2t + B sin 2t t > 0,

in which B
2

has been rewritten as B.

To apply the boundary conditions, we require also the formula for x′(t), namely

x′(t) = − 2A sin 2t + 2B cos 2t.

Hence, − 3 = − A and 10 = − 2B giving A = 3 and B = - 5.

Therefore, the particular solution is

x(t) = 3 cos 2t− 5 sin 2t t > 0.

5



16.3.3 EXERCISES

1. Solve the following differential equations subject to the conditions given:

(a)

d2x

dt2
− 2

dx

dt
+ 5x = 0,

given that x(0) = 3 and x′(0) = 1;

(b)

4
d2x

dt2
+ 4

dx

dt
+ x = 0,

given that x(0) = 4 and x′(0) = 1;

(c)

d2x

dt2
+ 2

dx

dt
− 8x = 2t,

given that x(0) = 3 and x′(0) = 1;

(d)

d2x

dt2
− 4x = 2e2t,

given that x(0) = 1 and x′(0) = 10.5;

(e)

d2x

dt2
+ 4x = 3cos2t,

given that x(0) = 1 and x′(0) = 2.

Hint: cos 2t ≡ 2cos2t− 1.

2. Determine the particular solution of the differential equation

d2x

dt2
− 2

dx

dt
= et(t− 3)

in the case when x(0) = 2 and x(3) = −1.

Hint:
Since x(0) is given, just let x′(0) = B to obtain a solution in terms of B; then substitute
the second boundary condition at the end.

6



16.3.4 ANSWERS TO EXERCISES

1. (a)

X(s) =
3s− 5

s2 − 2s + 5
,

giving
x(t) = et(3 cos 2t− sin 2t) t > 0;

(b)

X(s) =
4

s + 1
2

+
3

(s + 1
2
)2

,

giving

x(t) = 4e−
1
2
t + 3te−

1
2
t = e−

1
2
t[4 + 3t] t > 0;

(c)

X(s) =
27

12
.

1

s− 2
+

39

48
.

1

s + 4
− 1

4
.
1

s2
− 1

16
.
1

s
,

giving

x(t) =
27

12
e2t +

39

48
e−4t − 1

4
t− 1

16
t > 0;

(d)

X(s) =
1
2

(s− 2)2
+

3

s− 2
− 2

s + 2
,

giving

x(t) =
1

2
te2t + 3e2t − 2e−2t t > 0;

(e)

X(s) =
3

2
.

s

(s2 + 4)2
+

3

8
.
1

s
+

5

8
.

s

s2 + 4
+

2

s2 + 4
,

giving

x(t) =
3

8
t sin 2t +

3

8
+

5

8
cos 2t + sin 2t t > 0.

2.

x(t) = 3et − tet − 1 t > 0.
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UNIT 16.4 - LAPLACE TRANSFORMS 4
SIMULTANEOUS DIFFERENTIAL EQUATIONS

16.4.1 AN EXAMPLE OF SOLVING SIMULTANEOUS
LINEAR DIFFERENTIAL EQUATIONS

In this Unit, we shall consider a pair of differential equations involving an independent
variable, t, such as a time variable, and two dependent variables, x and y, such as electric
currents or linear displacements.

The general format is as follows:

a1
dx

dt
+ b1

dy

dt
+ c1x + d1y = f1(t),

a2
dx

dt
+ b2

dy

dt
+ c2x + d2y = f2(t).

To solve these equations simultaneously, we take the Laplace Transform of each equation
obtaining two simultaneous algebraic equations from which we may determine X(s) and
Y (s), the Laplace Transforms of x(t) and y(t) respectively.

EXAMPLE

Solve, simultaneously, the differential equations

dy

dt
+ 2x = et,

dx

dt
− 2y = 1 + t,

given that x(0) = 1 and y(0) = 2.

Solution

Taking the Laplace Transforms of the differential equations,

sY (s)− 2 + 2X(s) =
1

s− 1
,

1



sX(s)− 1− 2Y (s) =
1

s
+

1

s2
.

That is,

2X(s) + sY (s) =
1

s− 1
+ 2, (1)

sX(s)− 2Y (s) =
1

s
+

1

s2
+ 1. (2)

Using (1)× 2 + (2)× s, we obtain

(4 + s2)X(s) =
2

s− 1
+ 4 + 1 +

1

s
+ s.

Hence,

X(s) =
2

(s− 1)(s2 + 4)
+

5

s2 + 4
+

1

s(s2 + 4)
+

s

s2 + 4
.

Applying the methods of partial fractions, this gives

X(s) =
2

5
.

1

s− 1
+

7

20
.

s

s2 + 4
+

23

5
.

1

s2 + 4
+

1

4
.
1

s
.

Thus,

x(t) =
2

5
et +

1

4
+

7

20
cos 2t +

23

10
sin 2t t > 0.

We could now start again by eliminating x from equations (1) and (2) in order to calculate
y, and this is often necessary; but, since

2y =
dx

dt
− 1− t

in the current example,

y(t) =
1

5
et − 1

2
− 7

20
sin 2t +

23

10
cos 2t− t

2
t > 0.
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16.4.2 EXERCISES

Use Laplace Transforms to solve the following pairs of simultaneous differential equations,
subject to the given boundary conditions:

1.

dx

dt
+ 2y = e−t,

dy

dt
+ 3y = x,

given that x = 1 and y = 0 when t = 0.

2.

dx

dt
− y = sin t,

dy

dt
+ x = cos t,

given that x = 3 and y = 4 when t = 0.

3.

dx

dt
+ 2x− 3y = 1,

dy

dt
− x + 2y = e−2t,

given that x = 0 and y = 0 when t = 0.

4.

dx

dt
= 2y,

dy

dt
= 8x,

given that x = 1 and y = 0 when t = 0.
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5.

10
dx

dt
− 3

dy

dt
+ 6x + 5y = 0,

2
dx

dt
− dy

dt
+ 2x + y = 2e−t,

given that x = 2 and y = −1 when t = 0.

6.

dx

dt
+ 4

dy

dt
+ 6y = 0,

5
dx

dt
+ 2

dy

dt
+ 6x = 0,

given that x = 3 and y = 0 when t = 0.

7.

dx

dt
= 2y,

dy

dt
= 2z,

dz

dt
= 2x,

given that x = 1, y = 0 and z = −1 when t = 0.
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16.4.3 ANSWERS TO EXERCISES

1.

x = (2t + 1)e−t and y = te−t.

2.

x = (t + 4) sin t + 3 cos t and y = (t + 4) cos t− 3 sin t.

3.

x = 2− e−2t[1 +
√

3 sinh t
√

3 + cosh t
√

3]

and

y = 1− e−2t

[
cosh t

√
3 +

1√
3

sinh t
√

3

]
.

4.

x = sinh 4t and y = 2 cosh 4t.

5.

x = 4 cos t− 2e−t and y = e−t − 2 cos t.

6.

x = 2e−t + e−2t amd y = e−t − e−2t.

7.

x = e−t

[
1√
3

sin t
√

3 + cos t
√

3

]
,

y =
−2√

3
e−t sin t

√
3

and

z = e−t

[
1√
3

sin t
√

3− cos t
√

3

]
.
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UNIT 16.5 - LAPLACE TRANSFORMS 5

THE HEAVISIDE STEP FUNCTION

16.5.1 THE DEFINITION OF THE HEAVISIDE STEP FUNCTION

The Heaviside Step Function, H(t), is defined by the statements

H(t) =
{

0 for t < 0;
1 for t > 0.

Note:
H(t) is undefined when t = 0.

-

6

H(t)

O t

1

EXAMPLE

Express, in terms of H(t), the function, f(t), given by the statements

f(t) =
{

0 for t < T ;
1 for t > T .

1



Solution

-

6

f(t)

T
t

1

O

Clearly, f(t) is the same type of function as H(t), but we have effectively moved the origin
to the point (T, 0). Hence,

f(t) ≡ H(t− T ).

Note:
The function H(t−T ) is of importance in constructing what are known as “pulse functions”
(see later).

16.5.2 THE LAPLACE TRANSFORM OF H(t - T)

From the definition of a Laplace Transform,

L[H(t− T )] =
∫ ∞
0

e−stH(t− T ) dt

=
∫ T

0
e−st.0 dt +

∫ ∞
T

e−st.1 dt

=

[
e−st

−s

]∞
T

=
e−sT

s
.

Note:
In the special case when T = 0, we have

L[H(t)] =
1

s
,

which can be expected since H(t) and 1 are identical over the range of integration.

2



16.5.3 PULSE FUNCTIONS

If a < b, a “rectangular pulse”, P (t), of duration, b− a, and magnitude, k, is defined by
the statements,

P (t) =
{

k for a < t < b;
0 for t < a or t > b.

-

6

P (t)

t

k

a b
O

We can show that, in terms of Heaviside functions, the above pulse may be represented by

P (t) ≡ k[H(t− a)−H(t− b)].

Proof:

(i) If t < a, then H(t− a) = 0 and H(t− b) = 0. Hence, the above right-hand side = 0.

(ii) If t > b, then H(t− a) = 1 and H(t− b) = 1. Hence, the above right-hand side = 0.

(iii) If a < t < b, then H(t−a) = 1 and H(t− b) = 0. Hence, the above right-hand side = k.

EXAMPLE

Determine the Laplace Transform of a pulse, P (t), of duration, b− a, having magnitude, k.

Solution

L[P (t)] = k

[
e−sa

s
− e−sb

s

]
= k.

e−sa − e−sb

s
.

3



Notes:

(i) The “strength” of the pulse, described above, is defined as the area of the rectangle
with base, b− a, and height, k. That is,

strength = k(b− a).

(ii) In general, the expression,

[H(t− a)−H(t− b)]f(t),

may be considered to “switch on” the function, f(t), between t = a and t = b but “switch
off” the function, f(t), when t < a or t > b.

(iii) Similarly, the expression,
H(t− a)f(t),

may be considered to “switch on” the function, f(t), when t > a but “switch off” the
function, f(t), when t < a.

For example, the train of rectangular pulses, Q(t), in the following diagram:

-

6

Q(t)

a 3a 5a
t

k

O

may be represented by the function

Q(t) ≡ k {[H(t)−H(t− a)] + [H(t− 2a)−H(t− 3a)] + [H(t− 4a)−H(t− 5a)] + ...........} .

4



16.5.4 THE SECOND SHIFTING THEOREM

THEOREM

L[H(t− T )f(t− T )] = e−sT L[f(t)].

Proof:

Left-hand side = ∫ ∞
0

e−stH(t− T )f(t− T ) dt

=
∫ T

0
0 dt +

∫ ∞
T

e−stf(t− T ) dt

=
∫ ∞

T
e−stf(t− T ) dt.

Making the substitution u = t− T , we obtain∫ ∞
0

e−s(u+T )f(u) du

= e−sT
∫ ∞
0

e−suf(u) du = e−sT L[f(t)].

EXAMPLES

1. Express, in terms of Heaviside functions, the function

f(t) =
{

(t− 1)2 for t > 1;
0 for 0 < t < 1.

and, hence, determine its Laplace Transform.

Solution

For values of t > 0, we may write

f(t) = (t− 1)2H(t− 1).

Therefore, using T = 1 in the second shifting theorem,

L[f(t)] = e−sL[t2] = e−s.
2

s3
.
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2. Determine the inverse Laplace Transform of the expression

e−7s

s2 + 4s + 5
.

Solution

First, we find the inverse Laplace Transform of the expression,

1

s2 + 4s + 5
≡ 1

(s + 2)2 + 1
.

From the first shifting theorem, this will be the function

e−2t sin t, t > 0.

From the second shifting theorem, the required function will be

H(t− 7)e−2(t−7) sin(t− 7), t > 0.

16.5.5 EXERCISES

1. (a) For values of t > 0, express, in terms of Heaviside functions, the function,

f(t) =
{

e−t for 0 < t < 3;
0 for t > 3.

(b) Determine the Laplace Transform of the function, f(t), in part (a).

2. For values of t > 0, express, in terms of Heaviside functions, the function,

f(t) =
{

f1(t) for 0 < t < a;
f2(t) for t > a.

3. For values of t > 0, express the following functions in terms of Heaviside functions:

(a)

f(t) =
{

t2 for 0 < t < 2;
4t for t > 2.

(b)

f(t) =


sin t for 0 < t < π;
sin 2t for π < t < 2π;
sin 3t for t > 2π.

6



4. Use the second shifting theorem to determine the Laplace Transform of the function,

f(t) ≡ t3H(t− 1).

Hint:
Write t3 ≡ [(t− 1) + 1]3.

5. Determine the inverse Laplace Transforms of the following:

(a)

e−2s

s2
;

(b)

8e−3s

s2 + 4
;

(c)

se−2s

s2 + 3s + 2
;

(d)

e−3s

s2 − 2s + 5
.

6. Solve the differential equation

d2x

dt2
+ 4x = H(t− 2),

given that x = 0 and dx
dt

= 1 when t = 0.

16.5.6 ANSWERS TO EXERCISES

1. (a)

e−t[H(t)−H(t− 3)];

(b)

L[f(t)] =
1− e−3(s+1)

s + 1
.
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2.

f(t) ≡ f1(t)[H(t)−H(t− a)] + f2(t)H(t− a)].

3. (a)

f(t) ≡ t2[H(t)−H(t− 2)] + 4tH(t− 2);

(b)

f(t) ≡ sin t[H(t)−H(t− π)] + sin 2t[H(t− π)−H(t− 2π)] + sin 3t[H(t− 2π).

4.

L[f(t)] =
[

6

s4
+

6

s3
+

3

s2
+

1

s

]
e−s.

5. (a)

H(t− 2)(t− 2);

(b)

4H(t− 3) sin 2(t− 3);

(c)

H(t− 2)[2e−2(t−2) − e−(t−2);

(d)

1

2
H(t− 3)e(t−3) sin 2(t− 3).

6.

x =
1

2
sin 2t +

1

4
H(t− 2)[1− cos 2(t− 2)].

8
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UNIT 16.6 - LAPLACE TRANSFORMS 6
THE DIRAC UNIT IMPULSE FUNCTION

16.6.1 THE DEFINITION OF THE DIRAC UNIT IMPULSE FUNCTION

A pulse of large magnitude, short duration and finite strength is called an “impulse”. In
particular, a “unit impulse” is an impulse of strength 1.

ILLUSTRATION

Consider a pulse, of duration α, between t = 0 and t = α, having magnitude, 1
α
. The

strength of the pulse is then 1.

-

6

t

1
α

α
O

From Unit 16.5, this pulse is given by

H(t)−H(t− α)

α
.

If we now allow α to tend to zero, we obtain a unit impulse located at t = 0. This leads to
the following definition:

DEFINITION 2

The “Dirac unit impulse function” , δ(t) is defined to be an impulse of unit strength
located at t = 0. It is given by

δ(t) = lim
α→0

H(t)−H(t− α)

α
.

1



Notes:

(i) An impulse of unit strength located at t = T is represented by δ(t− T ).

(ii) An alternative definition of the function δ(t− T ) is as follows:

δ(t− T ) =
{

0 for t 6= T ;
∞ for t = T .

and

lim
h→0

∫ T+h

T−h
δ(t− T ) dt = 1.

-

6

t

1
2h

T − h T + h
O

THEOREM

∫ b

a
f(t)δ(t− T ) dt = f(T ) if a < T < b.

Proof:

Since δ(t − T ) is equal to zero everywhere except at t = T , the left-hand side of the above
formula reduces to

lim
h→0

∫ T+h

T−h
f(t)δ(t− T ) dt.

But, in the small interval from T − h to T + h, f(t) is approximately constant and equal to
f(T ). Hence, the left-hand side may be written

f(T )

[
lim
h→0

∫ T+h

T−h
δ(T − T ) dt

]
,

2



which reduces to f(T ), using note (ii) in the definition of the Dirac unit impulse function.

16.6.2 THE LAPLACE TRANSFORM OF THE DIRAC UNIT IMPULSE
FUNCTION

RESULT

L[δ(t− T )] = e−sT ;

and, in particular,
L[δ(t)] = 1.

Proof:

From the definition of a Laplace Transform,

L[δ(t− T ) =
∫ ∞
0

e−stδ(t− T ) dt.

But, from the Theorem discussed above, with f(t) = e−st, we have

L[δ(t− T )] = e−sT .

EXAMPLES

1. Solve the differential equation,

3
dx

dt
+ 4x = δ(t),

given that x = 0 when t = 0.

Solution

Taking the Laplace Transform of the differential equation,

3sX(s) + 4X(s) = 1.

That is,

X(s) =
1

3s + 4
=

1

3
.

1

s + 4
3

.

Hence,

x(t) =
1

3
e−

4t
3 .

3



2. Show that, for any function, f(t),∫ ∞
0

f(t)δ′(t− a) dt = −f ′(a).

Solution

Using Integration by Parts, the left-hand side of the formula may be written

[f(t)δ(t− a)]∞0 −
∫ ∞
0

f ′(t)δ(t− a) dt.

The first term of this reduces to zero, since δ(t− a) is equal to zero except when t = a.

The required result follows from the Theorem discussed earlier, with T = a.

16.6.3 TRANSFER FUNCTIONS

In scientific applications, the solution of an ordinary differential equation having the form

a
d2x

dt2
+ b

dx

dt
+ cx = f(t),

is sometimes called the “response of a system to the function f(t)”.

The term “system” may, for example, refer to an oscillatory electrical circuit or a mechanical
vibration.

It is also customary to refer to f(t) as the “input” and x(t) as the “output” of a system.

In the work which follows, we shall consider the special case in which x = 0 and dx
dt

= 0 when
t = 0; that is, we shall assume zero initial conditions.

Impulse response function and transfer function

Consider, for the moment, the differential equation having the form,

a
d2u

dt2
+ b

du

dt
+ cu = δ(t).

Here, we refer to the function, u(t), as the “impulse response function” of the original
system.

The Laplace Transform of its differential equation is given by

(as2 + bs + c)U(s) = 1.
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Hence,

U(s) =
1

as2 + bs + c
,

which is called the “transfer function” of the original system.

EXAMPLE

Determine the transfer function and impulse response function for the differential equation,

3
dx

dt
+ 4x = f(t),

assuming zero initial conditions.

Solution

To find U(s) and u(t), we have

3
du

dt
+ 4u = δt,

so that

(3s + 4)U(s) = 1

and, hence, the transfer function is

U(s) =
1

3s + 4
=

1

3
.

1

s + 4
3

.

Taking the inverse Laplace Transform of U(s) gives the impulse response function,

u(t) =
1

3
e−

4t
3 .
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System response for any input

Assuming zero initial conditions, the Laplace Transform of the differential equation

a
d2x

dt2
+ bx + cx = f(t)

is given by

(as2 + bs + c)X(s) = F (s),

which means that

X(s) =
F (s)

as2 + bs + c
= F (s).U(s).

In order to find the response of the system to the function f(t), we need the inverse Laplace
Transform of F (s).U(s) which may possibly be found using partial fractions but may, if
necessary, be found by using the Convolution Theorem referred to in Unit 16.1

The Convolution Theorem shows, in this case, that

L
[∫ t

0
f(T ).u(t− T ) dT

]
= F (s).U(s);

in other words,

L−1[F (s).U(s)] =
∫ t

0
f(T ).u(t− T ) dT.

6



EXAMPLE

The impulse response of a system is known to be u(t) = 10e−t

3
.

Determine the response, x(t), of the system to an input of f(t) ≡ sin 3t.

Solution

First, we note that

U(s) =
10

3(s + 1)
and F (s) =

3

s2 + 9
.

Hence,

X(s) =
10

(s + 1)(s2 + 9)
=

1

s + 1
+
−s + 1

s2 + 9
,

using partial fractions.

Thus

x(t) = e−t − cos 3t +
1

3
sin 3t t > 0.

Alternatively, using the Convolution Theorem,

x(t) =
∫ t

0
sin 3T.

10e−(t−T )

3
dT ;

but the integration here can be made simpler if we replace sin 3T by ej3T and use the
imaginary part, only, of the result.

Hence,

x(t) = Im

(∫ t

0

10

3
e−t.e(1+j3)T dT

)

= Im

10

3

[
e−t e

(1+j3)T

1 + j3

]t

0
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= Im

(
10

3

[
e−t.e(1+j3)t − e−t

1 + j3

])

= Im

(
10

3

[
[(cos 3t− e−t) + j sin 3t](1− j3)

10

])

=
10

3

[
sin 3t− 3 cos 3t + 3e−t

10

]

= e−t − cos 3t +
1

3
sin 3t t > 0,

as before.

Note:
Clearly, in this example, the method using partial fractions is simpler.

16.6.4 STEADY-STATE RESPONSE TO A SINGLE FREQUENCY INPUT

In the differential equation,

a
d2x

dt2
+ b

dx

dt
+ cx = f(t),

suppose that the quadratic denominator of the transfer function, U(s), has negative real
roots; that is, it gives rise to an impulse response, u(t), involving negative powers of e and,
hence, tending to zero as t tends to infinity.

Suppose also that f(t) takes one of the forms, cos ωt or sin ωt, which may be regarded,
respectively, as the real and imaginary parts of the function, ejωt.

It turns out that the response, x(t), will consist of a “transient” part which tends to
zero as t tends to infinity, together with a non-transient part forming the “steady-state
response”.

We illustrate with an example:
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EXAMPLE

Consider that

d2x

dt2
+ 3

dx

dt
+ 2x = ej7t,

where x = 2 and dx
dt

= 1 when t = 0.

Taking the Laplace Transform of the differential equation,

s(sX(s)− 2)− 1 + 3(sX(s)− 2) + 2X(s) =
1

s− j7
.

That is,

(s2 + 3s + 2)X(s) = 2s + 7 +
1

s− j7
,

giving

X(s) =
2s + 7

s2 + 3s + 2
+

1

(s− j7)(s2 + 3s + 2)
=

2s + 7

(s + 2)(s + 1)
+

1

(s− j7)(s + 2)(s + 1)
.

Using the “cover-up” rule for partial fractions, we obtain

X(s) =
5

s + 1
− 3

s + 2
+

1

(−1− j7)(s + 1)
+

1

(2 + j7)(s + 2)
+

U(j7)

(s− j7)
,

where

U(s) ≡ 1

s2 + 3s + 2

is the transfer function.

Taking inverse Laplace Transforms,
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x(t) = 5e−t − 3e−2t +
1

−1− j7
e−t +

1

2 + j7
e−2t + U(j7)ej7t.

The first four terms on the right-hand side tend to zero as t tends to infinity, so that the
final term represents the steady state response; we need its real part if f(t) ≡ cos 7t and its
imaginary part if f(t) ≡ sin 7t.

Summary

The above example illustrates the result that the steady-state response, s(t), of a system to
an input of ejωt is given by

s(t) = U(jω)ejωt.

16.6.5 EXERCISES

1. Evaluate ∫ ∞
0

e−4tδ′(t− 2) dt.

2. In the following cases, solve the differential equation

d2x

dt2
+ 4x = f(t),

where x = 0 and dx
dt

= 1 when t = 0:

(a)

f(t) ≡ δ(t);

(b)

f(t) ≡ δ(t− 2).

3. Determine the transfer function and impulse response function for the differential equa-
tion,

2
d2x

dt2
− 3

dx

dt
+ x = f(t),

assuming zero initial conditions.
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4. The impulse response function of a system is known to be u(t) = e3t.

Determine the response, x(t), of the system to an input of f(t) ≡ 6 cos 3t.

5. Determine the steady-state response to the system

3
dx

dt
+ x = f(t)

in the cases when

(a)

f(t) ≡ ej2t;

(b)

f(t) ≡ 3 cos 2t.

16.6.6 ANSWERS TO EXERCISES

1.

4e−8.

2. (a)

x = sin 2t t > 0;

(b)

x = sin t + H(t− 2) sin(t− 2) t 6= 2.

3.

U(s) =
1

2s2 − 3s + 1
and u(t) = [et − e

1
2
t].

4.

1

13

[
18e3t − 18 cos 2t + 12 sin 2t

]
t > 0.

5. (a)

(1− j6)ej2t

37
t > 0;

(b)

1

37
(cos 2t + 6 sin 2t) t > 0.
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UNIT 16.7 - LAPLACE TRANSFORMS 7 (AN APPENDIX)

ONE VIEW OF HOW LAPLACE TRANSFORMS MIGHT HAVE ARISEN.

(i) Let us consider that our main problem is to solve a second order linear differential
equation with constant coefficients, the general form of which is

a
d2x

dt2
+ b

dx

dt
+ cx = f(t).

(ii) Assuming that the solution of an equivalent first order differential equation,

a
dx

dt
+ bx = f(t),

has already been included in previous knowledge, we examine a typical worked example as
follows:

EXAMPLE

Solve the differential equation,
dx

dt
+ 3x = e2t,

given that x = 0 when t = 0.

Solution

A method called the “integrating factor method” uses the coefficient of x to find a
function of t which multiplies both sides of the given differential equation to convert it to an
“exact” differential equation.

The integrating factor in the current example is e3t since the coefficient of x is 3.

We obtain, therefore,

e3t

[
dx

dt
+ 3x

]
= e5t.

which is equivalent to
d

dt

[
xe3t

]
= e5t.

On integrating both sides with respect to t,

xe3t =
e5t

5
+ C

1



or

x =
e2t

5
+ Ce−3t.

Putting x = 0 and t = 0, we have

0 =
1

5
+ C.

Hence, C = −1
5

and the complete solution becomes

x =
e2t

5
− e−3t

5
.

(iii) As a lead up to what follows, we shall now examine a different way of setting out the
above working in which we do not leave the substitution of the boundary condition until the
very end.

We multiply both sides of the differential equation by e3t as before, but we then integrate
both sides of the new “exact” equation from 0 to t.

∫ t

0

d

dt

[
xe3t

]
dt =

∫ t

0
e5t dt.

That is, [
xe3t

]t

0
=

[
e5t

5

]t

0

,

giving

xe3t − 0 =
e5t

5
− 1

5
.

since x = 0 when t = 0.

In other words,

x =
e2t

5
− e−3t

5
,

as before.

(iv) Now let us consider whether an example of a second order linear differential equation
could be solved by a similar method.
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EXAMPLE

Solve the differential equation,

d2x

dt2
− 10

dx

dt
+ 21x = e9t,

given that x = 0 and dx
dt

= 0 when t = 0.

Solution

Supposing that there might be an integrating factor for this equation, we shall take it to be
est where s, at present, is unknown, but assumed to be positive.

Multiplying throughout by est and integrating from 0 to t, as in the previous example,

∫ t

0
est

[
d2x

dt2
− 10

dx

dt
+ 21x

]
dt =

∫ t

0
e(s+9)t dt =

[
e(s+9)t

s + 9

]t

0

.

Now, using integration by parts, with the boundary condition,

∫ t

0
est dx

dt
dt = estx− s

∫ t

0
estx dt

and ∫ t

0
est d

2x

dt2
dt = est dx

dt
− s

∫ t

0
est dx

dt
dt = est dx

dt
− sestx + s2

∫ t

0
estx dt.

On substituting these results into the differential equation, we may collect together (on the
left hand side) terms which involve

∫ t
0 estx dt and est as follows:

(s2 + 10s + 21)
∫ t

0
estx dt + est

[
dx

dt
− (s + 10)x

]
=

e(s+9)t

s + 9
− 1

s + 9
.

(v) OBSERVATIONS

(a) If we had used e−st instead of est, the quadratic expression in s, above, would have had
the same coefficients as the original differential equation; that is, (s2 − 10s + 21).

(b) Using e−st with s > 0, if we had integrated from 0 to ∞ instead of 0 to t, the second
term on the left hand side above would have been absent, since e−∞ = 0.
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(vi) Having made our observations, we start again, multiplying both sides of the differential
equation by e−st and integrating from 0 to ∞ to obtain

(s2 − 10s + 21)
∫ ∞
0

e−stx dt =

[
e(−s+9)t

−s + 9

]∞
0

=
−1

−s + 9
=

1

s− 9
.

Of course, this works only if s > 9, but we can easily assume that it is so. Hence,

∫ ∞
0

e−stx dt =
1

(s− 9)(s2 − 10s + 21)
=

1

(s− 9)(s− 3)(s− 7)
.

Applying the principles of partial fractions, we obtain∫ ∞
0

e−stx dt =
1

12
.

1

s− 9
+

1

24
.

1

s− 3
− 1

8
.

1

s− 7
.

(vii) But, finally, it can be shown by an independent method of solution that

x =
e9t

12
+

e3t

24
− e7t

8
.

and we may conclude that the solution of the differential equation is closely linked to the
integral ∫ ∞

0
e−stx dt,

which is called the “Laplace Transform” of x(t).
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UNIT 16.8 - Z TRANSFORMS 1 - DEFINITION AND RULES

16.8.1 INTRODUCTION - Linear Difference Equations

Closely linked with the concept of a linear differential equation with constant coefficients is
that of a “linear difference equation with constant coefficients”.

Two particular types of difference equation to be discussed in the present section may be
defined as follows:

DEFINITION 1

A first-order linear difference equation with constant coefficients has the general form,

a1un+1 + a0un = f(n),

where a0, a1 are constants, n is a positive integer, f(n) is a given function of n (possibly zero)
and un is the general term of an infinite sequence of numbers, {un} ≡ u0, u1, u2, u3, . . . .

DEFINITION 2

A second-order linear difference equation with constant coefficients has the general form,

a2un+2 + a1un+1 + a0un = f(n),

where a0, a1, a2 are constants, n is an integer, f(n) is a given function of n (possibly zero)
and un is the general term of an infinite sequence of numbers, {un} ≡ u0, u1, u2 , u3, . . . .

Notes:

(i) We shall assume that the sequences under discussion are such that un = 0 whenever
n < 0.

(ii) Difference equations are usually associated with given “boundary conditions”, such as the
value of u0 for a first-order equation or the values of u0 and u1 for a second-order equation.

ILLUSTRATION

Certain simple difference equations may be solved by very elementary methods.
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For example, suppose that we wish to solve the difference equation,

un+1 − (n + 1)un = 0,

subject to the boundary condition that u0 = 1.

We may rewrite the difference equation as

un+1 = (n + 1)un

and, by using this formula repeatedly, we obtain

u1 = u0 = 1, u2 = 2u1 = 2, u3 = 3u2 = 3× 2, u4 = 4u3 = 4× 3× 2, . . . .

In general, for this illustration, un = n!.

However, not all difference equations can be solved as easily as this and we shall now discuss
the Z-Transform method of solving more advanced types.

16.8.2 STANDARD DEFINITION AND RESULTS

THE DEFINITION OF A Z-TRANSFORM (WITH EXAMPLES)

The Z-Transform of the sequence of numbers, {un} ≡ u0, u1, u2, u3, . . . ., is defined by
the formula,

Z{un} =
∞∑

r=0

urz
−r,

provided that the series converges (allowing for z to be a complex number if necessary).

EXAMPLES

1. Determine the Z-Transform of the sequence,

{un} ≡ {an},

where a is a non-zero constant.
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Solution

Z{an} =
∞∑

r=0

arz−r.

That is,

Z{an} = 1 +
a

z
+

a2

z2
+

a3

z3
+ . . . . =

1

1− a
z

=
z

z − a
,

by properties of infinite geometric series.

Thus,

Z{an} =
z

z − a
.

2. Determine the Z-Transform of the sequence,

{un} = {n}.

Solution

Z{n} =
∞∑

r=0

rz−r.

That is,

Z{n} =
1

z
+

2

z2
+

3

z3
+

4

z4
+ . . . . ,

which may be rearranged as

Z{n} =
(

1

z
+

1

z2
+

1

z3
+ . . . .

)
+

(
1

z2
+

1

z3
+

1

z4
+ . . . .

)
+

(
1

z3
+

1

z4
+ . . . .

)
,

giving

Z{n} =
1
z

1− 1
z

+
1
z2

1− 1
z

+
1
z3

1− 1
z

+ . . . . =
1

1− 1
z

[
1
z

1− 1
z

]
,

by properties of infinite geometric series.

Thus,

Z{n} =
z

(1− z)2
=

z

(z − 1)2
.
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Note:
Other Z-Transforms may be obtained, in the same way as in the above examples, from the
definition.

We list, here, for reference, a short table of standard Z-Transforms, including those already
proven:

A SHORT TABLE OF Z-TRANSFORMS

{un} Z{un} Region of Existence

{1} z
z−1

|z| > 1

{an} (a constant) z
z−a

|z| > |a|

{n} z
(z−1)2

|z| > 1

{
e−nT

}
(T constant) z

z−e−T |z| > e−T

sin nT (T constant) z sin T
z2−2z cos T+1

|z| > 1

cos nT (T constant) z(z−cos T )
z2−2z cos T+1

|z| > 1

1 for n = 0 1 All z
0 for n > 0
(Unit pulse sequence)

0 for n = 0 1
z−a

|z| > |a|
{an−1} for n > 0
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16.8.3 PROPERTIES OF Z-TRANSFORMS

(a) Linearity

If {un} and {vn} are sequences of numbers, while A and B are constants, then

Z{Aun + Bvn} ≡ A.Z{un}+ B.Z{vn}.

Proof:

The left-hand side of the above identity is equivalent to

∞∑
r=0

(Aur + Bvr)z
−r ≡ A

∞∑
r=0

urz
−r + B

∞∑
r=0

vrz
−r,

which, in turn, is equivalent to the right-hand side.

EXAMPLE

Z{5.2n − 3n} =
5z

z − 2
− 3z

(z − 1)2
.

(b) The First Shifting Theorem

Z{un−1} ≡
1

z
.Z{un},

where {un−1} denotes the sequence whose first term, corresponding to n = 0, is taken as
zero and whose subsequent terms, corresponding to n = 1, 2, 3, 4, . . . ., are the terms
u0, u1, u3, u4, . . . of the original sequence.

Proof:

The left-hand side of the above identity is equivalent to

∞∑
r=0

ur−1z
−r ≡ u0

z
+

u1

z2
+

u2

z3
+

u3

z4
+ . . . .,
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since it is assumed that un = 0 whenever n < 0.

Thus,

Z{un−1} ≡
1

z
.
[
u0 +

u1

z
+

u2

z2
+

u3

z3
+ . . . .

]
,

which is equivalent to the right-hand side.

Note:
A more general form of the first shifting theorem states that

Z{un−k} ≡
1

zk
.Z{un},

where {un−k} denotes the sequence whose first k terms, corresponding to
n = 0, 1, 2, . . . . , k − 1, are taken as zero and whose subsequent terms, corresponding to
n = k, k + 1, k + 2, . . . . are the terms u0, u1, u2, . . . . of the original sequence.

ILLUSTRATION

Given that {un} ≡ {4n}, we may say that

Z{un−2} ≡
1

z2
.Z{un} ≡

1

z2
.

z

z − 4
≡ 1

z(z − 4)
.

Note:
In this illustration, the sequence, {un−2} has terms 0, 0, 1, 4, 42, 43, . . . and, by applying
the definition of a Z-Transform directly, we would obtain

Z{un−2} =
1

z2
+

4

z3
+

42

z4
+

43

z5
. . . .,

which gives

Z{un} ≡
1

z2
.

1

1− 4
z

≡ 1

z(z − 4)
,

by properties of infinite geometric series.
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(c) The Second Shifting Theorem

Z{un+1} ≡ z.Z{un} − z.u0

Proof:

The left-hand side of the above identity is equivalent to

∞∑
r=0

ur+1z
−r ≡ u1 +

u2

z
+

u3

z2
+

u4

z4
+ . . . .

This may be rearranged as

z.
[
u0 +

u1

z
+

u2

z2
+

u3

z3
+

u4

z4
+ . . . .

]
− z.u0

which, in turn, is equivalent to the right-hand side.

Note:
This “recursive relationship” may be applied repeatedly. For example, we may deduce
that

Z{un+2} ≡ z.Z{un+1} − z.u1 ≡ z2.Z{un} − z2.u0 − z.u1

16.8.4 EXERCISES

1. Determine, from first principles, the Z-Transforms of the following sequences, {un}:

(a)

{un} ≡ {e−n};

(b)

{un} ≡ {cos πn}.
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2. Determine the Z-Transform of the following sequences:

(a)

{un} ≡ {7.(3)n − 4.(−1)n} ;

(b)

{un} ≡
{
6n + 2e−5n

}
;

(c)

{un} ≡ {13 + sin 2n− cos 2n} .

3. Determine the Z-Transform of {un−1} and {un−2} for the sequences in question 1.

4. Determine the Z-Transform of {un+1} and {un+2} for the sequences in question 1.

16.8.5 ANSWERS TO EXERCISES

1. (a)

ez

ez − 1
;

(b)

z

z + 1
.

2. (a)

7z

z − 3
− 4z

z + 1
;

(b)

6z

(z − 1)2
+

2z

z − e−5
;

(c)

13z

z − 1
+

z(sin 2 + cos 2− z)

z2 − 2z cos 2 + 1
.
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3. (a)

Z{un−1} ≡
e

ez − 1
(n > 0), Z{un−2} ≡

e

z(ez − 1)
(n > 1);

(b)

Z{un−1} ≡
1

z + 1
(n > 0), Z{un−2} ≡

1

z(z + 1)
(n > 1).

Note:
u−2 = 0 and u−1 = 0.

4. (a)

Z{un+1} ≡
z

ez − 1
, Z{un+2} ≡

z

e(ez − 1)
;

(b)

Z{un+1} ≡ − z

z + 1
, Z{un+2} ≡

z

z + 1
.
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UNIT 16.9 - Z TRANSFORMS 2

INVERSE Z - TRANSFORMS

16.9.1 THE USE OF PARTIAL FRACTIONS

When solving linear difference equations by means of Z-Transforms, it is necessary to be able
to determine a sequence, {un}, of numbers, whose Z-Transform is a known function, F (z),
of z. Such a sequence is called the “inverse Z-Transform of F (z)” and may be denoted
by Z−1[F (z)].

For simple difference equations, the function F (z) turns out to be a rational function of
z, and the method of partial fractions may be used to determine the corresponding inverse
Z-Transform.

EXAMPLES

1. Determine the inverse Z-Transform of the function

F (z) ≡ 10z(z + 5)

(z − 1)(z − 2)(z + 3)
.

Solution

Bearing in mind that

Z{an} =
z

z − a
,

for any non-zero constant, a, we shall write

F (z) ≡ z.

[
10(z + 5)

(z − 1)(z − 2)(z + 3)

]
,

which gives

F (z) ≡ z.
[ −15

z − 1
+

14

z − 2
+

1

z + 3

]
or

F (z) ≡ z

z + 3
+ 14

z

z − 2
− 15

z

z − 1
.

Hence,

Z−1[F (z)] = {(−3)n + 14(2)n − 15} .

1



2. Determine the Inverse Z-Transform of the function

F (z) ≡ 1

z − a
.

Solution

In this example, there is no factor, z, in the function F (z) and we shall see that it is
necessary to make use of the first shifting theorem.

First, we may write

F (z) ≡ 1

z

[
z

z − a

]

and, since the inverse Z-Transform of the expression inside the brackets is an, the first
shifting theorem tells us that

Z−1[F (z)] =
{

0 when n = 0;
an−1 when n > 0.

Note:
This may now be taken as a standard result.

3. Determine the inverse Z-Transform of the function

F (z) ≡ 4(2z + 1)

(z + 1)(z − 3)
.

Solution

Expressing F (z) in partial fractions, we obtain

F (z) ≡ 1

z + 1
+

7

(z − 3)
.

Hence,

Z−1[F (z)] =
{

0 when n = 0;
(−1)n−1 + 7.(3)n−1 when n > 0.

2



16.9.2 EXERCISES

1. Determine the inverse Z-Transforms of each of the following functions, F (z):

(a)

F (z) ≡ z

z − 1
;

(b)

F (z) ≡ z

z + 1
;

(c)

F (z) ≡ 2z

2z − 1
;

(d)

F (z) ≡ z

3z + 1
;

(e)

F (z) ≡ z

(z − 1)(z + 2)
;

(f)

F (z) ≡ z

(2z + 1)(z − 3)
;

(g)

F (z) ≡ z2

(2z + 1)(z − 1)
.

2. Determine the inverse Z-Transform of each of the following functions, F (z), and list the
first five terms of the sequence obtained:

(a)

F (z) ≡ 1

z − 1
;

(b)

F (z) ≡ z + 2

z + 1
;

3



(c)

F (z) ≡ z − 3

(z − 1)(z − 2)
;

(d)

F (z) ≡ 2z2 − 7z + 7

(z − 1)2(z − 2)
.

16.9.3 ANSWERS TO EXERCISES

1. (a)

Z−1[F (z)] = {1}

(b)

Z−1[F (z)] = {(−1)n}

(c)

Z−1[F (z)] =
{(

1

2

)n}
;

(d)

Z−1[F (z)] =
{

1

3

(
−1

3

)n}
;

(e)

Z−1[F (z)] =
{

1

3
[1− (−2)n]

}
;

(f)

Z−1[F (z)] =
{

1

7

[
(3)n −

(
−1

2

)n]}
;

(g)

Z−1[F (z)] =
{

1

3
+

1

6

(
−1

2

)n}
.

4



2. (a)

Z−1[F (z)] =
{

0 when n = 0;
1 when n > 0;

The first five terms are 0,1,1,1,1

(b)

Z−1[F (z)] =
{

1 when n = 0;
(−1)n−1 when n > 0.

The first five terms are 1,1,−1,1,−1

(c)

Z−1[F (z)] =
{

0 when n = 0;
2− (2)n−1 when n > 0.

The first five terms are 0,1,0,−2,−6

(d)

Z−1[F (z] =
{

0 when n = 0;
3− 2n + (2)n−1 when n > 0.

The first five terms are 0,2,1,1,3

5
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UNIT 16.10 - Z TRANSFORMS 3

THE SOLUTION OF LINEAR DIFFERENCE EQUATIONS

Linear difference equations may be solved by constructing the Z-Transform of both sides of
the equation. The method will be illustrated with linear difference equations of the first and
second orders (with constant coefficients).

16.10.1 FIRST ORDER LINEAR DIFFERENCE QUATIONS

EXAMPLES

1. Solve the linear difference equation,

un+1 − 2un = (3)−n,

given that u0 = 2/5.

Solution

First of all, using the second shifting theorem,

Z{un+1} = z.Z{un} − z.
2

5
.

Taking the Z-Transform of the difference equation, we obtain

z.Z{un} −
2

5
.z − 2Z{un} =

z

z − 1
3

,

so that, on rearrangement,

Z{un} =
2

5
.

z

z − 2
+

z(
z − 1

3

)
(z − 2)

≡ 2

5
.

z

z − 2
+ z.

[
−3

5

z − 1
3

+
3
5

z − 2

]

≡ z

z − 2
− 3

5
.

z

z − 1
3

.

Taking the inverse Z-Transform of this function of z gives the solution

{un} ≡
{
(2)n − 3

5
(3)−n

}
.

1



2. Solve the linear difference equation,

un+1 + un = f(n),

given that

f(n) ≡
{

1 when n = 0;
0 when n > 0.

and u0 = 5.

Solution

First of all, using the second shifting theorem,

Z{un+1} = z.Z{un} − z.5

Taking the Z-Transform of the difference equation, we obtain

z.Z{un} − 5z + Z{un} = 1,

which, on rearrangement, gives

Z{un} =
1

z + 1
+

5z

z + 1
.

Hence,

{un} =
{

5 when n = 0;
(−1)n−1 + 5(−1)n ≡ 4(−1)n when n > 0.

2



16.10.2 SECOND ORDER LINEAR DIFFERENCE EQUATIONS

EXAMPLES

1. Solve the linear difference equation

un+2 = un+1 + un,

given that u0 = 0 and u1 = 1.

Solution

First of all, using the second shifting theorem,

Z{un+1} = z.Z{un − z.0 ≡ z.Z{un}

and

Z{un+2} = z2Z{un} − z.1 ≡ z2Z{un} − z.

Taking the Z-Transform of the difference equation, we obtain

z2.Z{un} − z = z.Z{un}+ Z{un},

so that, on rearrangement,

Z{un} =
z

z2 − z − 1
,

which may be written

Z{un} =
z

(z − α)(z − β)
,

where, from the quadratic formula,

α, β =
1±

√
5

2
.

Using partial fractions,

Z{un} =
1

α− β

[
z

z − α
− z

z − β

]
.

Taking the inverse Z-Transform of this function of z gives the solution

{un} ≡
{

1

α− β
[(α)n − (β)n]

}
.

3



2. Solve the linear difference equation

un+2 − 7un+1 + 10un = 16n,

given that u0 = 6 and u1 = 2.

Solution

First of all, using the second shifting theorem,

Z{un+1} = z.Z{un} − 6z

and

Z{un+2} = z2.Z{un} − 6z2 − 2z.

Taking the Z-Transform of the difference equation, we obtain

z2.Z{un} − 6z2 − 2z − 7 [z.Z{un} − 6z] + 10Z{un} =
16z

(z − 1)2
,

which, on rearrangement, gives

Z{un}[z2 − 7z + 10]− 6z2 + 40z =
16z

(z − 1)2
;

and, hence,

Z{un} =
16z

(z − 1)2(z − 5)(z − 2)
+

6z2 − 40z

(z − 5)(z − 2)
.

Using partial fractions, we obtain

Z{un} = z.

[
4

z − 2
− 3

z − 5
+

4

(z − 1)2
+

5

z − 1

]
.

The solution of the difference equation is therefore

{un} ≡ {4(2)n − 3(5)n + 4n + 5} .

4



3. Solve the linear difference equation

un+2 + 2un = 0

given that u0 = 1 and u1 =
√

2.

Solution

First of all, using the second shifting theorem,

Z{un+2} = z2Z{un} − z2 − z
√

2.

Taking the Z-Transform of the difference equation, we obtain

z2Z{un} − z2 − z
√

2 + 2Z{un} = 0,

which, on rearrangement, gives

Z{un} =
z2 + z

√
2

z2 + 2
≡ z.

z +
√

2

z2 + 2
≡ z.

z +
√

2

(z + j
√

2)(z − j
√

2)
.

Using partial fractions,

Z{un} = z

[ √
2(1 + j)

j2
√

2(z − j
√

2)
+

√
2(1− j)

−j2
√

2(z + j
√

2)

]
≡ z.

[
(1− j)

2(z − j
√

2)
+

(1 + j)

2(z + j
√

2)

]
,

so that

{un} ≡
{

1

2
(1− j)(j

√
2)n +

1

2
(1 + j)(−j

√
2)n

}

≡
{

1

2
(
√

2)n [(1− j)(j)n + (1 + j)(−j)n]
}

≡
{

1

2
(
√

2)n
[√

2e−j π
4 .ej nπ

2 +
√

2ej π
4 .e−j nπ

2

]}

≡
{

1

2
(
√

2)n+1
[
ej

(2n−1)π
4 + e−j

(2n−1)π
4

]}

≡
{

1

2
(
√

2)n+1.2 cos
(2n− 1)π

4

}

≡
{

(
√

2)n+1 cos
(2n− 1)π

4

}
.

5



16.10.3 EXERCISES

1. Solve the following first-order linear difference equations:

(a)

3un+1 + 2un = (−1)n,

given that u0 = 0;
(b)

un+1 − 5un = 3(2)n,

given that u0 = 1;
(c)

un+1 + un = n,

given that u0 = 1;
(d)

un+1 + 2un = f(n),

where

f(n) ≡
{

3 when n = 0;
0 when n > 0;

and u0 = 2;
(e)

un+1 − 3un = sin
nπ

2
+

1

2
cos

nπ

2
,

given that u0 = 0.

2. Solve the following second-order linear difference equations:

(a)

un+2 − 2un+1 + un = 0,

given that u0 = 0 and u1 = 1;
(b)

un+2 − 4un = n,

given that u0 = 0 and u1 = 1;

6



(c)

un+2 − 8un+1 − 9un = 24,

given that u0 = 2 and u1 = 0;

(d)

6un+2 + 5un+1 − un = 20,

given that u0 = 3 and u1 = 8;

(e)

un+2 + 2un+1 − 15un = 32 cos nπ,

given that u0 = 0 and u1 = 0;

(f)

un+2 − 3un+1 + 3un = 5,

given that u0 = 5 and u1 = 8.

16.10.4 ANSWERS TO EXERCISES

1. (a)

{un} ≡
{(
−2

3

)n

− (−1)n
}

;

(b)

{un} ≡ {2(5)n − (2)n} ;

(c)

{un} ≡
{

1

2
n− 1

4
+

5

4
(−1)n

}
;

(d)

{un} ≡ 2(−2)n + 3(−2)n−1 when n > 0;

(e)

{un} ≡
{

1

4

[
(3n −

√
2 cos

(2n− 1)π

4

]}
.

7



2. (a)

{un} ≡ {n};

(b)

{un} ≡
{

1

2
(2)n − 1

3
n− 5

18
(−2)n − 2

9

}
;

(c)

{un} ≡
{

1

2
(9)n + 3(−1)n − 3

2

}
;

(d)

{un} ≡
{
2 + (6)1−n − 5(−1)n

}
;

(e)

{un} ≡
{
2(−1)n+1 + (3)n + (−5)n

}
;

(f)

{un} ≡
{

5 + (2
√

3)n+1 cos
(n− 3)π

6

}
.

8
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UNIT 17.1 - NUMERICAL MATHEMATICS 1

THE APPROXIMATE SOLUTION OF ALGEBRAIC EQUATIONS

17.1.1 INTRODUCTION

In the work which follows, we shall consider the solution of the equation

f(x) = 0,

where f(x) is a given function of x.

It is assumed that examples of such equations will have been encountered earlier at an
elementary level; as, for instance, with quadratic equations where there is simple formula for
obtaining solutions.

However, the equation
f(x) = 0

cannot, in general, be solved algebraically to give exact solutions and we have to be satisfied,
at most, with approximate solutions. Nevertheless, it is often possible to find approximate
solutions which are correct to any specified degree of accuracy; and this is satisfactory for
the applications of mathematics to science and engineering.

It is certainly possible to consider graphical methods of solving the equation

f(x) = 0,

where we try to plot a graph of the equation

y = f(x),

then determine where the graph crosses the x-axis. But this method can be laborious and
inaccurate and will not be discussed, here, as a viable method.

Three so called “iterative” methods will be included, below, where repeated use of the
method is able to improve the accuracy of an approximate solution, already obtained.

17.1.2 THE BISECTION METHOD

Suppose a and b are two numbers such that f(a) < 0 and f(b) > 0. We may obtain these
by trial and error or by sketching, roughly, the graph of the equation

y = f(x),

in order to estimate convenient values a and b between which the graph crosses the x-axis;
whole numbers will usually suffice.

1
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If we let c = (a + b)/2, there are three possibilities;

(i) f(c) = 0, in which case we have solved the equation;

(ii) f(c) < 0, in which case there is a solution between c and b enabling us repeat the
procedure with these two numbers;

(iii) f(c) > 0, in which case there is a solution between c and a enabling us to repeat the
procedure with these two numbers.

Each time we apply the method, we bisect the interval between the two numbers being used
so that, eventually, the two numbers used will be very close together. The method stops
when two consecutive values of the mid-point agree with each other to the required number
of decimal places or significant figures.

Convenient labels for the numbers used at each stage (or iteration) are

a0, b0, c0, a1, b1, c1, a2, b2, c2, a3, b3, c3, ..., an, bn, cn, ....

EXAMPLE

Determine, correct to three decimal places, the positive solution of the equation

ex = x + 2.

Solution

We could first observe, from a rough sketch of the graphs of

y = ex and y = x + 2,

2



that the graphs intersect each other at a positive value of x. This confirms that there is
indeed a positive solution to our equation.
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But now let
f(x) = ex − x− 2

and look for two numbers between which f(x) changes sign from positive to negative. By
trial and error, suitable numbers are 1 and 2, since

f(1) = e− 3 < 0 and f(2) = e2 − 5 > 0.

The rest of the solution may be set out in the form of a table as follows:

n an bn cn f(cn)
0 1.00000 2.00000 1.50000 0.98169
1 1.00000 1.50000 1.25000 0.24034
2 1.00000 1.25000 1.12500 - 0.04478
3 1.12500 1.25000 1.18750 0.09137
4 1.12500 1.18750 1.15625 0.02174
5 1.12500 1.15625 1.14062 - 0.01191
6 1.14063 1.15625 1.14844 0.00483
7 1.14063 1.14844 1.14454 - 0.00354
8 1.14454 1.14844 1.14649 0.00064
9 1.14454 1.14649 1.14552 - 0.00144

As a general rule, it is appropriate to work to two more places of decimals than that of the
required accuracy; and so, in this case, we work to five.

We can stop at stage 9, since c8 and c9 are the same value when rounded to three places of
decimals. The required solution is therefore x = 1.146

3



17.1.3 THE RULE OF FALSE POSITION

This method is commonly known by its Latin name, “Regula Falsi”, and tries to compen-
sate a little for the shortcomings of the Bisection Method.

Instead of taking c as the average of a and b, we consider that the two points, (a, f(a)) and
(b, f(b)), on the graph of the equation,

y = f(x),

are joined by a straight line; and the point at which this straight line crosses the x-axis is
taken as c.
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From elementary co-ordinate geometry, the equation of the straight line is given by

y − f(a)

f(b)− f(a)
=

x− a

b− a
.

Hence, when y = 0, we obtain

x = a− (b− a)f(a)

f(b)− f(a)
.

That is,

x =
a[f(b)− f(a)]− (b− a)f(a)

f(b)− f(a)
.

Hence,

x =
af(b)− bf(a)

f(b)− f(a)
.

4



In setting out the tabular form of a Regula Falsi solution, the cn column uses the general
formula

cn =
anf(bn)− bnf(an)

f(bn)− f(an)
.

EXAMPLE

For the equation
f(x) ≡ x3 + 2x− 1 = 0

use the Regula Falsi method with a0 = 0 and b0 = 1 to determine the first approximation,
c0, to the solution between x = 0 and x = 1.

Solution

We have f(0) = −1 and f(1) = 2, so that there is certainly a solution between x = 0 and
x = 1.

From the general formula,

c0 =
0× 2− 1× (−1)

2− (−1)
=

1

3

and, if we were to continue with the method, we would observe that f(1/3) < 0 so that
a1 = 1/3 and b1 = 1.

Note:
The Bisection Method would have given c0 = 1

2
.

17.1.4 THE NEWTON-RAPHSON METHOD

This method is based on the guessing of an approximate solution, x = x0, to the equation
f(x) = 0.

We then draw the tangent to the curve whose equation is

y = f(x)

at the point x0, f(x0) to find out where this tangent crosses the x-axis. The point obtained
is normally a better approximation x1 to the solution.
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In the diagram,

f ′(x0) =
AB

AC
=

f(x0)

h
.

Hence,

h =
f(x0)

f ′(x0)
,

so that a better approximation to the exact solution at point D is given by

x1 = x0 − h.

Repeating the process, gives rise to the following iterative formula:

xn+1 = xn −
f(xn)

f ′(xn)
.

Notes:

(i) To guess the starting approximation, x0, it is normally sufficient to use a similar technique
to that in the Bisection Method; that is, we find a pair of whole numbers, a and b, such
that f(a) < 0 and f(b) > 0; then we take x0 = (a + b)/2. In some exercises, however,
an alternative starting approximation may be suggested in order to speed up the rate of
convergence to the final solution.

(ii) There are situations where the Newton-Raphson Method fails to give a better approx-
imation; as, for example, when the tangent to the curve has a very small gradient, and
consequently meets the x-axis at a relatively great distance from the previous approxima-
tion. In this Unit, we shall consider only examples in which the successive approximations
converge rapidly to the required solution.

6



EXAMPLE

Use the Newton-Raphson method to calculate
√

5, correct to three places of decimals.

Solution

We are required to solve the equation

f(x) ≡ x2 − 5 = 0.

By trial and error, we find that a solution exists between x = 2 and x = 3 since f(2) = −1 < 0
and f(3) = 4 > 0. Hence, we use x0 = 2.5

Furthermore,
f ′(x) = 2x,

so that

xn+1 = xn −
x2

n − 5

2xn

.

Thus,

x1 = 2.5− 1.25

5
= 2.250,

x2 = 2.250− 0.0625

4.5
' 2.236,

x3 = 2.236− −0.000304

4.472
' 2.236

At each stage, we round off the result to the required number of decimal places and use the
rounded figure in the next iteration.

The last two iterations give the same result to three places of decimals and this is therefore
the required result.

7



17.1.5 EXERCISES

1. Determine the smallest positive solution to the following equations (i) by the Bisec-
tion Method and (ii) by the Regula Falsi Method, giving your answers correct to four
significant figures:

(a)

x− 2sin2x = 0;

(b)

ex − cos(x2)− 1 = 0.

2. Use the Newton-Raphson Method to determine the smallest positive solution to each
of the following equations, correct to five decimal places:

(a)

x4 = 5;

(b)

x3 + x2 − 4x + 1 = 0;

(c)

x− 2 = ln x.

17.1.6 ANSWERS TO EXERCISES

1. (a)

x ' 1.849;

(b)

x ' 0.6486

2. (a)

x ' 1.49535;

(b)

x ' 0.27389;

(c)

x ' 3.14619

8
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UNIT 17.2 - NUMERICAL MATHEMATICS 2

APPROXIMATE INTEGRATION (A)

17.2.1 THE TRAPEZOIDAL RULE

The rule which is explained below is based on the formula for the area of a trapezium. If the
parallel sides of a trapezium are of length p and q while the perpendicular distance between
them is r, then the area A is given by

A =
r(p + q)

2
.

�
�

�
PPPPPPPPP

r

p

q

Let us assume first that the curve whose equation is

y = f(x)

lies wholly above the x-axis between x = a and x = b. It has already been established, in
Unit 13.1, that the definite integral ∫ b

a
f(x) dx

can be regarded as the area between the curve y = f(x) and the x-axis from x = a to x = b.

However, suppose we divided this area into several narrow strips of equal width, h, by
marking the values x1, x2, x3, ......, xn along the x-axis (where x1 = a and xn = b) and
drawing in the corresponding lines of length y1, y2, y3, ......, yn parallel to the y-axis.

1
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Each narrow strip of width h may be considered approximately as a trapezium whose parallel
sides are of lengths yi and yi+1, where i = 1, 2, 3, ......, n− 1.

Thus, the area under the curve, and hence the value of the definite integral, approximates
to

h

2
[(y1 + y2) + (y2 + y3) + (y3 + y4) + ...... + (yn−1 + yn)].

That is, ∫ b

a
f(x) dx ' h

2
[y1 + yn + 2(y2 + y3 + y4 + ...... + yn−1)];

or, what amounts to the same thing,

∫ b

a
f(x) dx =

h

2
[First + Last + 2× The Rest].

Note:
Care must be taken at the beginning to ascertain whether or not the curve y = f(x) crosses
the x-axis between x = a and x = b. If it does, then allowance must be made for the fact that
areas below the x-axis are negative and should be calculated separately from those above
the x-axis.

EXAMPLE

Use the trapezoidal rule with five divisions of the x-axis in order to evaluate, approximately,
the definite integral: ∫ 1

0
ex2

dx.

2



Solution

First we make up a table of values as follows:

x 0 0.2 0.4 0.6 0.8 1.0

ex2
1 1.041 1.174 1.433 1.896 2.718

Then, using h = 0.2, we have

∫ 1

0
ex2

dx ' 0.2

2
[1 + 2.718 + 2(1.041 + 1.174 + 1.433 + 1.896)] ' 1.481

17.2.2 EXERCISES

Use the trapezoidal rule with six divisions of the x-axis to determine an approximation for
each of the following, working to three decimal places throughout:

1. ∫ 7

1
x ln x dx.

2. ∫ 1

−2

1

5− x2
dx.

3. ∫ π
2

π
4

cot x dx.

4. ∫ π
2

0
sin
√

x2 + 1 dx.

5. ∫ π
2

0
ln(1 + sin x) dx.

17.2.3 ANSWERS TO EXERCISES

1. 35.836 2. 0.931 3. 0.348 4. 1.468 5. 0.737
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UNIT 17.3 - NUMERICAL MATHEMATICS 3

APPROXIMATE INTEGRATION (B)

17.3.1 SIMPSON’S RULE

A better approximation to

∫ b

a
f(x)dx

than that provided by the Trapezoidal rule (Unit 17.2) may be obtained by usingan even
number of narrow strips of width, h, and considering them in pairs.

To begin with, we examine a special case in which the first strip lies to the left of the y-axis
as in the following diagram:

-

6

x

y

O

A B C

The arc of the curve passing through the points A(−h, y1), B(0, y2) and C(h, y3) may be
regarded as an arc of a parabola whose equation is

y = Lx2 + Mx + N,

provided that the coefficients L, M and N satisfy the equations

1



y1 = Lh2 −Mh + N,

y2 = N,

y3 = Lh2 + Mh + N.

Also, the area of the first pair of strips is given by

Area =
∫ h

−h
(Lx2 + Mx + N) dx

=

[
L

x3

3
+ M

x2

2
+ Nx

]h

−h

=
2Lh3

3
+ 2Nh

=
h

3
[2Lh2 + 6N ],

which, from the simultaneous equations earlier, gives

Area =
h

3
[y1 + y3 + 4y2].

But the area of every pair of strips will be dependent only on the three corresponding y
co-ordinates, together with the value of h.

Hence, the area of the next pair of strips will be

h

3
[y3 + y5 + 4y4],

and the area of the pair after that will be

2



h

3
[y5 + y7 + 4y6].

Thus, the total area is given by

Area =
h

3
[y1 + yn + 4(y2 + y4 + y6 + . . .) + 2(y3 + y5 + y7 + . . .),

usually interpreted as

Area =
h

3
[First+Last+4×The even numbered y co− ords.+2×The remaining y co− ords.]

or

Area =
h

3
[F + L + 4E + 2R]

This result is known as SIMPSON’S RULE.

Notes:

(i) Since the area of the pairs of strips depends only on the three corresponding y co-ordinates,
together with the value of h, the Simpson’s rule formula provides an approximate value of
the definite integral

∫ b

a
f(x) dx

whatever the values of a and b are, as long as the curve does not cross the x-axis between
x = a and x = b.

(ii) If the curve does cross the x-axis between x = a and x = b, it is necessary to consider
separately the positive parts of the area above the x-axis and the negative parts below the
x-axis.

(iii) The approximate evaluation, by Simpson’s rule, of a definite integral should be set out
in tabular form, as illustrated in the examples overleaf.
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EXAMPLES

1. Working to a maximum of three places of decimals throughout, use Simpson’s rule with
ten divisions to evaluate, approximately, the definite integral∫ 1

0
ex2

dx.

Solution
xi yi = ex2

i F & L E R

0 1 1
0.1 1.010 1.010
0.2 1.041 1.041
0.3 1.094 1.094
0.4 1.174 1.174
0.5 1.284 1.284
0.6 1.433 1.433
0.7 1.632 1.632
0.8 1.896 1.896
0.9 2.248 2.248
1.0 2.718 2.718

F + L → 3.718 7.268 5.544
4E → 29.072 ×4 ×2
2R → 11.088 29.072 11.088

(F + L) + 4E + 2R → 43.878 ////// //////

Hence, ∫ 1

0
ex2

dx ' 0.1

3
× 43.878 ' 1.463

2. Working to a maximum of three places of decimals throughout, use Simpson’s rule with
eight divisions between x = −1 and x = 1 and four divisions between x = 1 and x = 2
in order to evaluate, approximately, the area between the curve whose equation is

y = (x2 − 1)e−x

and the x-axis from x = −1 to x = 2.

Solution

We note that the curve crosses the x-axis when x = −1 and when x = 1, the y co-
ordinates being negative in the interval between these two values of x and positive
outside this interval.
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Hence, we need to evaluate the negative area between x = −1 and x = 1 and the
positive area between x = 1 and x = 2; then we add their numerical values together to
find the total area.

-

6

x

y

O

(a) The Negative Area

xi yi = (x2 − 1)e−x F & L E R

−1 0 0
−0.75 −0.926 −0.926
−0.5 −1.237 −1.237
−0.25 −1.204 −1.204

0 −1 −1
0.25 −0.730 −0.730
0.50 −0.455 −0.455
0.75 −0.207 −0.207
1 0 0

F + L → 0 −2.860 −2.692
4E → −11.440 ×4 ×2
2R → −5.384 −11.440 −5.384

(F + L) + 4E + 2R → −16.824 ////// //////
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(b) The Positive Area

xi yi = (x2 − 1)e−x F & L E R

1 0 0
1.25 0.161 0.161
1.5 0.279 0.279
1.75 0.358 0.358
2 0.406 0.406

F + L → 0.406 0.519 0.279
4E → 2.076 ×4 ×2
2R → 0.558 2.076 0.558

(F + L) + 4E + 2R → 3.040 ////// //////

The total area is thus

0.25

3
× (16.824 + 3.040) ' 1.655

17.3.2 EXERCISES

Use Simpson’s rule with six divisions of the x-axis to find an approximation for each of the
following, working to a maximum of three decimal places throughout:

1. ∫ 7

1
x ln x dx.

2. ∫ 1

−2

1

5− x2
dx.

3. ∫ π
2

π
4

cot x dx.

4. ∫ π
2

0
sin
√

x2 + 1 dx.

5. ∫ π
2

0
ln(1 + sin x) dx.
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17.3.3 ANSWERS TO EXERCISES

1. 35.678 2. 0.882 3. 0.347 4. 1.469 5. 0.743
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UNIT 17.4 - NUMERICAL MATHEMATICS 4
FURTHER GAUSSIAN ELIMINATION

The elementary method of Gaussian Elimination, for simultaneous linear equations, was
discussed in Unit 9.4. We introduce, here, a more general method, suitable for use with
sets of equations having decimal coefficients.

17.4.1 GAUSSIAN ELIMINATION BY “PARTIAL PIVOTING” WITH A CHECK
COLUMN

Let us first consider an example in which the coefficients are integers.

EXAMPLE

Solve the simultaneous linear equations

2x + y + z = 3,

x− 2y − z = 2,

3x− y + z = 8.

Solution

We may set out the solution, in the form of a table (rather than a matrix) indicating each
of the “pivot elements” in a box as follows:

x y z constant Σ

2 1 1 3 7
1
2

1 -2 -1 2 0
3
2

3 -1 1 8 11
−5
2

−3
2

1
2

−7
2

1 −5
2

−1
2

7
2

1
2

1 3 4

INSTRUCTIONS

(i) Divide the coefficients of x in lines 2 and 3 by the coefficient of x in line 1 and write the
respective results at the side of lines 2 and 3; (that is, 1

2
and 3

2
in this case).

(ii) Eliminate x by subtracting 1
2

times line 1 from line 2 and 3
2

times line 1 from line 3.

1



(iii) Repeat the process starting with lines 4 and 5.

(iv) line 6 implies that z = 3 and by substitution back into earlier lines, we obtain the values
y = −2 and x = 1.

OBSERVATIONS

Difficulties could arise if the pivot element were very small compared with the other quantities
in the same column, since the errors involved in dividing by small numbers are likely to be
large.

A better choice of pivot element would be the one with the largest numerical value in its
column.

We shall consider an example, now, in which this choice of pivot is made. The working will
be carried out using fractional quantities; though, in practice, decimals would normally be
used instead.

EXAMPLE

Solve the simultaneous linear equations

x− y + 2z = 5,

2x + y − z = 1,

x + 3y − z = 4.

Solution

x y z constant Σ
1
2

1 -1 2 5 7

2 1 -1 1 3
1
2

1 3 -1 4 7

On eliminating x, we obtain the new table:

y z constant Σ
−3
5

−3
2

5
2

9
2

11
2

5
2

−1
2

7
2

11
2

Eliminating y takes us to the final table as follows:
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z constant Σ
11
5

33
5

44
5

We conclude that
11z = 33 and, hence, z = 3 .

Substituting into the second table (either line will do), we have

5y − 3 = 7 and, hence, y = 2 .

Substituting into the original table (any line will do), we have

x− 2 + 6 = 5, so that x = 1 .

Notes:

(i) In questions which involve decimal quantities stated to n decimal places, the calculations
should be carried out to n + 2 decimal places to allow for rounding up.

(ii) A final check on accuracy in the above example is obtained by adding the original three
equations together and verifying that the solution obtained also satisfies the further equation

4x + 3y = 10.

(iii) It is not essential to set out the solution in the form of separate tables (at each step)
with their own headings. A continuation of the first table is acceptable.

17.4.2 EXERCISES

1. Use Gaussian Elimination by Partial Pivoting with a check column to solve the following
sets of simultaneous linear equations:

(a)

x1 + 2x2 + 3x3 = 5,

3x1 − x2 + 2x3 = 8,

4x1 − 6x2 − 4x3 = −2.

(b)

5i1 − i2 + 2i3 = 3,

2i1 + 4i2 + i3 = 8,

i1 + 3i2 − 3i3 = 2;
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(c)

i1 + 2i2 + 3i3 = −4,

2i1 + 6i2 − 3i3 = 33,

4i1 − 2i2 + i3 = 3;

(d)

7i1 − 4i2 = 12,

−4i1 + 12i2 − 6i3 = 0,

−6i2 + 14i3 = 0;

2. Use Gaussian Elimination with Partial Pivoting and a check column to solve the fol-
lowing sets of simultaneous linear equations:

(a)

1.202x1 − 4.371x2 + 0.651x3 = 19.447,

−3.141x1 + 2.243x2 − 1.626x3 = −13.702,

0.268x1 − 0.876x2 + 1.341x3 = 6.849;

(b)

−2.381x1 + 1.652x2 − 1.243x3 = 12.337,

2.151x1 − 3.427x2 + 3.519x3 = 9.212,

1.882x1 + 2.734x2 − 1.114x3 = 5.735;

17.4.3 ANSWERS TO EXERCISES

1. (a) x1 = −1, x2 = −3, x3 = 4;

(b) i1 = 0.5, i2 = 1.5, i3 = 1.0;

(c) i1 = 3.0, i2 = 2.5, i3 = −4.0;

(d) i1 = 2.26, i2 = 0.96, i3 = 0.41

2. (a) x1 = 0.229, x2 = −4.024, x3 = 2.433;

(b) x1 = −5.753, x2 = 14.187, x3 = 19.951
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UNIT 17.5 - NUMERICAL MATHEMATICS 5

ITERATIVE METHODS FOR SOLVING SIMULTANEOUS LINEAR
EQUATIONS

17.5.1 INTRODUCTION

An iterative method is one which is used repeatedly until the results obtained acquire a
pre-assigned degree of accuracy. For example, if results are required to be accurate to five
places of decimals, the number of “iterations” (that is, stages of the method) is continued
until two consecutive iterations give the same result when rounded off to that number of
decimal places. It is usually enough for the calculations themselves to be carried out to two
extra places of decimals.

A similar interpretation holds for accuracy which requires a certain number of significant
figures.

In the work which follows, we shall discuss two standard methods of solving a set of simul-
taneous linear equations of the form

a1x + b1y + c1z = k1,

a2x + b2y + c2z = k2,

a3x + b3y + c3z = k3,

when the system is “diagonally dominant”, which, in this case, means that

|a1| > |b1|+ |c1|,
|b2| > |a2|+ |c2|,
|c3| > |a3|+ |b3|.

The methods would be adaptable to a different number of simultaneous equations.

1



17.5.2 THE GAUSS-JACOBI ITERATION

This method begins by making x the subject of the first equation, y the subject of the second
equation and z the subject of the third equation.
An initial approximation such as x0 = 1, y0 = 1, z0 = 1 is substituted on the new right-hand
sides to give values x = x1, y = y1 and z = z1 on the new left-hand sides.

A continuation of the process leads to the following general scheme for the results of the
(n + 1)-th iteration:

xn+1 =
1

a1

(k1 − b1yn − c1zn) ,

yn+1 =
1

b2

(k2 − a2xn − c2zn) ,

zn+1 =
1

c3

(k3 − a3xn − b3yn ) .

This scheme will now be illustrated by numerical examples:

EXAMPLES

1. Use the Gauss-Jacobi method to solve the simultaneous linear equations

5x + y − z = 4,

x + 4y + 2z = 15,

x− 2y + 5z = 12,

obtaining x, y and z correct to the nearest whole number.

Solution

We have

xn+1 = 0.8 − 0.2yn + 0.2zn,

yn+1 = 3.75− 0.25xn − 0.5zn,

zn+1 = 2.4− 0.2xn + 0.4yn.
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Using
x0 = 1, y0 = 1, z0 = 1,

we obtain
x1 = 0.8, y1 = 3.0, z1 = 2.6,

x2 = 0.72, y2 = 2.25, z2 = 3.44,

x3 = 1.038, y3 = 1.85, z3 = 3.156

The results of the last two iterations both give

x = 1, y = 2, z = 3,

when rounded to the nearest whole number.

In fact, these whole numbers are clearly seen to be the exact solutions.

2. Use the Gauss-Jacobi method to solve the simultaneous linear equations

x + 7y − z = 3,

5x + y + z = 9,

−3x + 2y + 7z = 17,

obtaining x, y and z correct to the nearest whole number.

Solution

This set of equations is not diagonally dominant; but they can be rewritten as

7y + x− z = 3,

y + 5x + z = 9,

2y − 3x + 7z = 17,

which is a diagonally dominant set. We could also interchange the first two of the
original equations.

We have now

yn+1 = 0.43− 0.14xn + 0.14zn,

xn+1 = 1.8 − 0.2yn − 0.2zn,

zn+1 = 2.43 + 0.43xn − 0.29yn.
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Using
y0 = 1, x0 = 1, z0 = 1,

we obtain
y1 = 0.43, x1 = 1.4, z1 = 2.57,

y2 = 0.59, x2 = 1.2, z2 = 2.91,

y3 = 0.67, x3 = 1.1, z3 = 2.78

This is now enough to conclude that x = 1, y = 1, z = 3 to the nearest whole number
though, this time, they are not the exact solutions.

17.5.3 THE GAUSS-SEIDEL ITERATION

This method differs from the Gauss-Jacobi Iteration in that successive approximations are
used within each step as soon as they become available.

It turns out that the rate of convergence of this method is usually faster than that of the
Gauss-Jacobi method.

The scheme of the calculations is according to the following pattern:

xn+1 =
1

a1

(k1 − b1yn − c1zn) ,

yn+1 =
1

b2

(k2 − a2xn+1 − c2zn) ,

zn+1 =
1

c3

(k3 − a3xn+1 − b3yn+1 ) .

EXAMPLES

1. Use the Gauss-Seidel method to solve the simultaneous linear equations

5x + y − z = 4,

x + 4y + 2z = 15,

x− 2y + 5z = 12.
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Solution

This time, we write:

xn+1 = 0.8 − 0.2yn + 0.2zn,

yn+1 = 3.75− 0.25xn+1 − 0.5zn,

zn+1 = 2.4− 0.2xn+1 + 0.4yn+1,

and the sequence of successive results is as follows:

x0 = 1, y0 = 1, z0 = 1,

x1 = 0.8, y1 = 3.05, z1 = 3.46,

x2 = 0.88, y2 = 1.80, z2 = 2.94,

x3 = 1.03, y3 = 2.02, z3 = 3.00

In this particular example, the rate of convergence is about the same as for the Gauss-
Jacobi method, giving x = 1, y = 2, z = 3 to the nearest whole number; but we would
normally expect the Gauss-Seidel method to converge at a faster rate.

2. Use the Gauss Seidel method to solve the simultaneous linear equations:

7y + x− z = 3,

y + 5x + z = 9,

2y − 3x + 7z = 17.

Solution

These equations give rise to the following iterative scheme:

yn+1 = 0.43− 0.14xn + 0.14zn,

xn+1 = 1.8 − 0.2yn+1 − 0.2zn,

zn+1 = 2.43 + 0.43xn+1 − 0.29yn+1,
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The sequence of successive results is:

y0 = 1, x0 = 1, z0 = 1,

y1 = 0.43, x1 = 1.51, z1 = 2.96,

y2 = 0.63, x2 = 1.08, z2 = 2.71,

y3 = 0.66, x3 = 1.13, z3 = 2.73

Once more, to the nearest whole number, the solutions are x = 1, y = 1, z = 3.

17.5.4 EXERCISES

1. Setting x0 = y0 = z0 = 1 and working to three places of decimals, complete four
iterations of

(a) The Gauss-Jacobi method

and

(b) The Gauss-Seidel method

for the system of simultaneous linear equations

7x− y + z = 7.3,

2x− 8y − z = −6.4,

x + 2y + 9z = 13.6

To how many decimal places are your results accurate ?

2. Rearrange the following equations to form a diagonally dominant system and perform
the first four iterations of the Gauss-Seidel method, setting x0 = 1, y0 = 1 and z0 = 1
and working to two places of decimals:

x + 5y − z = 8,

−9x + 3y + 2z = 3,

x + 2y + 7z = 26.

Estimate the accuracy of your results and suggest the exact solutions (checking that
they are valid).
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3. Use an appropriate number of iterations of the Gauss-Seidel method to solve accurately,
to three places of decimals, the simultaneous linear equations

7x + y + z = 5,

−2x + 9y + 3z = 4,

x + 4y + 8z = 3.

17.5.5 ANSWERS TO EXERCISES

1. (a) x4 ' 1.014, y4 ' 0.850, z4 ' 1.199, which are accurate to one decimal place.

(b) x4 ' 0.999, y4 ' 0.900, z4 ' 1.200, which are accurate to two decimal places.

2. On interchanging the first two equations, x4 ' 0.98, y4 ' 2.00, z4 ' 2.99, which are
accurate to the nearest whole number. The exact solutions are x = 1, y = 2, z = 3.

3. x ' 0.630, y ' 0.582, z ' 0.004.
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UNIT 17.6 - NUMERICAL MATHEMATICS 6

NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL
EQUATIONS (A)

17.6.1 EULER’S UNMODIFIED METHOD

Every first order ordinary differential equation can be written in the form

dy

dx
= f(x, y);

and, if it is given that y = y0 when x = x0, then the solution for y in terms of x represents
some curve through the point P0(x0, y0).

Suppose that we wish to find the solution for y at x = d, where d > x0.

We sub-divide the interval from x = x0 to x = d into n equal parts of width, δx.

-

6

P0

x0 d
x

y

O

Letting x1, x2, x3, ... be the points of subdivision, we have

x1 = x0 + δx,

x2 = x0 + 2δx,

x3 = x0 + 3δx,

...,

...,

d = xn = x0 + nδx.

If y1, y2, y3, ... are the y co-ordinates of x1, x2, x3, ..., we are required to find yn.
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From elementary calculus, the increase in y, when x increases by δx, is given approximately
by dy

dx
δx; and since, in our case, dy

dx
= f(x, y), we have

y1 = y0 + f(x0, y0)δx,

y2 = y1 + f(x1, y1)δx,

y3 = y2 + f(x2, y2)δx,

...,

...,

yn = yn−1 + f(xn−1, yn−1)δx,

each stage using the previously calculated y value.

Note:
The method will be the same if d < x0, except that δx will be negative.

In general, each intermediate value of y is given by the formula

yi+1 = yi + f(xi, yi)δx.

EXAMPLE

Use Euler’s method with 5 sub-intervals to continue, to x = 0.5, the solution of the differential
equation,

dy

dx
= xy,

given that y = 1 when x = 0; (that is, y(0) = 1).

Solution

i xi yi f(xi, yi) yi+1 = yi + f(xi, yi)δx
0 0 1 0 1
1 0.1 1 0.1 1.01
2 0.2 1.01 0.202 1.0302
3 0.3 1.0302 0.30906 1.061106
4 0.4 1.061106 0.4244424 1.1035524
5 0.5 1.1035524 - -

Accuracy
The differential equation in the above example is simple to solve by an elementary method,

2



such as separation of the variables. It is therefore useful to compare the exact result so
obtained with the approximation which comes from Eulers’ method.∫ dy

y
=

∫
xdx.

Therefore

ln y =
x2

2
+ C;

that is,

y = Ae
x2

2 .

At x = 0, we are told that y = 1 and, hence, A = 1, giving

y = e
x2

2 .

But a table of values of x against y in the previous interval reveals the following:

x e
x2

2

0 1
0.1 1.00501
0.2 1.0202
0.3 1.04603
0.4 1.08329
0.5 1.13315

There is thus an error in our approximate value of 0.0296, which is about 2.6%. Attempts
to determine y for values of x which are greater than 0.5 would result in a very rapid growth
of error.

17.6.2 EULER’S MODIFIED METHOD

In the previous method, we used the gradient to the solution curve at the point P0 in order
to find an approximate position for the point P1, and so on up to Pn.

But the approximation turns out to be much better if, instead, we use the average of the
two gradients at P0 and P1 for which we need use only x0, y0 and δx in order to calculate
approximately.
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The gradient, m0, at P0, is given by

m0 = f(x0, y0).

The gradient, m1, at P1, is given approximately by

m1 = f(x0 + δx, y0 + δy0),

where δy0 = f(x0, y0)δx.

Note:
We cannot call y0 + δy0 by the name y1, as we did with the unmodified method, because this
label is now reserved for the new and better approximation at x = x0 + δx.

The average gradient, between P0 and P1, is given by

m∗
0 =

1

2
(m0 + m1).

Hence, our approximation to y at the point P1 is given by

y1 = y0 + m∗
0δx.

Similarly, we proceed from y1 to y2, and so on until we reach yn.

In general, the intermediate values of y are given by

yi+1 = yi + m∗
i δx.

4



EXAMPLE

Solve the example in the previous section using Euler’s Modified method.

Solution

i xi yi mi = δyi = mi+1 = m∗
i = yi+1 =

f(xi, yi) f(xi, yi)δx f(xi + δx, yi + δyi)
1
2
(mi + mi+1) yi + m∗

i δx

0 0 1 0 0 0.1 0.05 1.005
1 0.1 1.005 0.1005 0.0101 0.2030 0.1518 1.0202
2 0.2 1.0202 0.2040 0.0204 0.3122 0.2581 1.0460
3 0.3 1.0460 0.3138 0.0314 0.4310 0.3724 1.0832
4 0.4 1.0832 0.4333 0.0433 0.5633 0.4983 1.1330
5 0.5 1.1330 —— —— —— —— ——

17.6.3 EXERCISES

1. (a) Taking intervals δx = 0.2, use Euler’s unmodified method to determine y(1), given
that

dy

dx
+ y = 0,

and that y(0) = 1

Compare your solution with the exact solution given by

y = e−x.

(b) Taking intervals δx = 0.1, use Euler’s unmodified method to determine y(1), given
that

dy

dx
=

x2 + y

x
and that y(0.5) = 0.5.

Compare your solution with the exact solution given by

y = x2 +
x

2
.

(c) Taking intervals δx = 0.2, use Euler’s unmodified method to determine y(1), given
that

dy

dx
= y + e−x,

and that y(0) = 0.

Compare your solution with the exact solution given by

y = sinh x.

5



(d) Given that y(1) = 2, use Euler’s unmodified method to continue the solution of the
differential equation,

dy

dx
= x2 +

y

2
,

to obtain values of y for values of x from x = 1 to x = 1.5, in steps of 0.1.

2. Repeat all parts of question 1 using Euler’s modified method.

17.6.4 ANSWERS TO EXERCISES

1. (a) 0.33, 0.37, 11% low;

(b) 1.45 1.50. 3% low;

(c) 1.113, 1.175, 5% low;

(d) 2.0000, 2.200, 2.431 2.697 3.001, 3.347.

2. (a) 0.371, 0.368, 0.8% high;

(b) 1.495, 1.50, 0.33% low;

(c) 1.175 , accurate to three decimal places;

(d) 2.000, 2.216, 2.465, 2.751, 3.079, 3.452.

Note:
In questions 1(d) and 2(d), the actual values are 2.000, 2.245, 2.496, 2.784, 3.113 and 3.489,
from the exact solution of the differential equation.
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UNIT 17.7 - NUMERICAL MATHEMATICS 7

NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL
EQUATIONS (B)

17.7.1 PICARD’S METHOD

This method of solving a differential equation approximately is one of successive approxi-
mation; that is, it is an iterative method in which the numerical results become more and
more accurate, the more times it is used.

An approximate value of y (taken, at first, to be a constant) is substituted into the right
hand side of the differential equation

dy

dx
= f(x, y).

The equation is then integrated with respect to x giving y in terms of x as a second approx-
imation, into which given numerical values are substituted and the result rounded off to an
assigned number of decimal places or significant figures.

The iterative process is continued until two consecutive numerical solutions are the same
when rounded off to the required number of decimal places.

A hint on notation
Imagine, for example, that we wished to solve the differential equation

dy

dx
= 3x2,

given that y = y0 = 7 when x = x0 = 2.

This ofcourse can be solved exactly to give

y = x3 + C,

which requires that
7 = 23 + C.

Hence,
y − 7 = x3 − 23;

or, in more general terms
y − y0 = x3 − x3

0.

1



Thus, ∫ y

y0

dy =
∫ x

x0

3x2dx.

In other words,

∫ x

x0

dy

dx
dx =

∫ x

x0

3x2dx.

The rule, in future, therefore, will be to integrate both sides of the given differential equation
with respect to x, from x0 to x.

EXAMPLES

1. Given that
dy

dx
= x + y2,

and that y = 0 when x = 0, determine the value of y when x = 0.3, correct to four
places of decimals.

Solution

To begin the solution, we proceed as follows:∫ x

x0

dy

dx
dx =

∫ x

x0

(x + y2)dx,

where x0 = 0.

Hence,

y − y0 =
∫ x

x0

(x + y2)dx,

where y0 = 0.

That is,

y =
∫ x

0
(x + y2)dx.

(a) First Iteration
We do not know y in terms of x yet, so we replace y by the constant value y0 in the
function to be integrated.

The result of the first iteration is thus given, at x = 0.3, by

y1 =
∫ x

0
xdx =

x2

2
' 0.0450

2



(b) Second Iteration
Now we use

dy

dx
= x + y2

1 = x +
x4

4
.

Therefore, ∫ x

0

dy

dx
dx =

∫ x

0

(
x +

x4

4

)
dx,

which gives

y − 0 =
x2

2
+

x5

20
.

The result of the second iteration is thus given by

y2 =
x2

2
+

x5

20
' 0.0451

at x = 0.3.

(c) Third Iteration
Now we use

dy

dx
= x + y2

2

= x +
x4

4
+

x7

20
+

x10

400
.

Therefore, ∫ x

0

dy

dx
dx =

∫ x

0

(
x +

x4

4
+

x7

20
+

x10

400

)
dx,

which gives

y − 0 =
x2

2
+

x5

20
+

x8

160
+

x11

4400
.

The result of the third iteration is thus given by

y3 =
x2

2
+

x5

20
+

x8

160
+

x11

4400
' 0.0451 at x = 0.3

Hence, y = 0.0451, correct to four decimal places, at x = 0.3.

2. If
dy

dx
= 2− y

x

and y = 2 when x = 1, perform three iterations of Picard’s method to estimate a value
for y when x = 1.2. Work to four places of decimals throughout and state how accurate
is the result of the third iteration.
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Solution

(a) First Iteration ∫ x

x0

dy

dx
dx =

∫ x

x0

(
2− y

x

)
dx,

where x0 = 1.

That is,

y − y0 =
∫ x

x0

(
2− y

x

)
dx,

where y0 = 2.

Hence,

y − 2 =
∫ x

1

(
2− y

x

)
dx.

Replacing y by y0 = 2 in the function being integrated, we have

y − 2 =
∫ x

1

(
2− 2

x

)
dx.

Therefore,
y = 2 + [2x− 2 ln x]x1

= 2 + 2x− 2 ln x− 2 + 2 ln 1 = 2(x− ln x).

The result of the first iteration is thus given by

y1 = 2(x− ln x) ' 2.0354,

when x = 1.2.

(b) Second Iteration
In this case we use

dy

dx
= 2− y1

x
= 2− 2(x− ln x)

x
=

2 ln x

x
.

Hence, ∫ x

1

dy

dx
dx =

∫ x

1

2lnx

x
dx.

That is,

y − 2 =
[
(ln x)2

]x
1

= (ln x)2.

The result of the second iteration is thus given by

y2 = 2 + (ln x)2 ' 2.0332,

4



when x = 1.2.

(c) Third Iteration
Finally, we use

dy

dx
= 2− y2

x
= 2− 2

x
− (ln x)2

x
.

Hence, ∫ x

1

dy

dx
dx =

∫ x

1

[
2− 2

x
− (lnx)2

x

]
dx.

That is,

y − 2 =

[
2x− 2 ln x− (ln x)3

3

]x

1

= 2x− 2 ln x− (ln x)3

3
− 2.

The result of the third iteration is thus given by

y3 = 2x− 2 ln x− (ln x)3

3
' 2.0293,

when x = 1.2.

The results of the last two iterations are identical when rounded off to two places of
decimals, namely 2.03. Hence, the accuracy of the third iteration is two decimal place
accuracy.

17.7.2 EXERCISES

1. Use Picard’s method to solve the differential equation

dy

dx
= y + ex

at x = 1, correct to two significant figures, given that y = 0 when x = 0.

2. Use Picard’s method to solve the differential equation

dy

dx
= x2 +

y

2

at x = 0.5, correct to two decimal places, given that y = 1 when x = 0.

5



3. Given the differential equation
dy

dx
= 1− xy,

where y(0) = 0, use Picard’s method to obtain y as a series of powers of x which will
give two decimal place accuracy in the interval 0 ≤ x ≤ 1.

What is the solution when x = 1 ?

17.7.3 ANSWERS TO EXERCISES

1.

y(1) ' 2.7

2.

y(0.5) ' 1.33

3.

y = x− x3

3
+

x5

15
− x7

105
+

x9

945
− ......

y(1) ' 0.72

6
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UNIT 17.8 - NUMERICAL MATHEMATICS 8

NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL
EQUATIONS (C)

17.8.1 RUNGE’S METHOD

We solve, approximately, the differential equation

dy

dx
= f(x, y),

subject to the condition that y = y0 when x = x0.

Consider the graph of the solution, passing through the two points, A(x0, y0) and
B(x0 + h, y0 + k).

-

6

x

y

O

A
C

B

M N

B0

k

h
2

h
2

We can say that ∫ x0+h

x0

dy

dx
dx =

∫ x0+h

x0

f(x, y)dx.

That is,

yB − yA =
∫ x0+h

x0

f(x, y)dx.

Suppose that C is the intersection with the curve of the perpendicular bisector of MN. Then,
by Simpson’s Rule (See Unit 17.3),∫ x0+h

x0

f(x, y)dx =
h/2

3
[f(A) + f(B) + 4f(C)] .

1



(i) The value of f(A)
This is already given, namely, f(x0, y0).

(ii) The Value of f(B)

A B0��������������������������

��
���

���
���

����
���

���
���

��

B1

B2

B

���
���

In the diagram, if the tangent at A meets B0B in B1, then the gradient at A is given by

B1B0

AB0

= f(x0, y0).

Therefore,
B1B0 = AB0f(x0, y0) = hf(x0, y0).

Calling this value k1, as an initial approximation to k, we have

k1 = hf(x0, y0).

As a rough approximation to the gradient of the solution curve passing through B, we now
take the gradient of the solution curve passing through B1. Its value is

f(x0 + h, y0 + k1).

To find a better approximation, we assume that a straight line of gradient f(x0 +h, y0 +k1),
drawn at A, meets B0B in B2, a point nearer to B than B1.

Letting B0B2 = k2, we have
k2 = hf(x0 + h, y0 + k1).

2



The co-ordinates of B2 are (x0 +h, y0 +k2) and the gradient of the solution curve through B2

is taken as a closer approximation than before to the gradient of the solution curve through
B. Its value is

f(x0 + h, y0 + k2).

(iii) The Value of f(C)

A

C

C1

k1

B0�������������������������� B1

B

Let C1 be the intersection of the ordinate through C and the tangent at A. Then C1 is the
point, (

x0 +
h

2
, y0 +

k1

2

)
,

and the gradient at C1 of the solution curve through C1 is

f

(
x0 +

h

2
, y0 +

k1

2

)
.

We take this to be an approximation to the gradient at C for the arc, AB.

We saw earlier that

yB − yA =
∫ x0+h

x0

f(x, y)dx.

Therefore,

yB − yA =
h

6
[f(A) + f(B) + 4f(C)].

That is,

y = y0 +
h

6

[
f(x0, y0) + f(x0 + h, y0 + k2) + 4f

(
x0 +

h

2
, y0 +

k1

2

)]
.
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PRACTICAL LAYOUT
If

dy

dx
= f(x, y)

and y = y0 when x = x0, then the value of y when x = x0 +h is determined by the following
sequence of calculations:

1. k1 = hf(x0, y0).
2. k2 = hf(x0 + h, y0 + k1).
3. k3 = hf(x0 + h, y0 + k2).

4. k4 = hf
(
x0 + h

2
, y0 + k1

2

)
.

5. k = 1
6
(k1 + k3 + 4k4).

6. y ' y0 + k.

EXAMPLE

Solve the differential equation
dy

dx
= 5− 3y

at x = 0.1, given that y = 1 when x = 0.

Solution

We use x0 = 0, y0 = 1 and h = 0.1.

1. k1 = 0.1(5− 3) = 0.2
2. k2 = 0.1(5− 3[1.2]) = 0.14
3. k3 = 0.1(5− 3[1.14]) = 0.158
4. k4 = 0.1(5− 3[1.1]) = 0.17
5. k = 1

6
(0.2 + 0.158 + 4[0.17]) = 0.173

6. y ' 1.173 at x = 0.1

Note:
It can be shown that the error in the result is of the order h5; that is, the error is equivalent
to some constant multiplied by h5.

17.8.2 EXERCISES

1. Use Runge’s Method to solve the differential equation

dy

dx
= x + y2

at x = 0.3, given that y = 0 when x = 0.

4



Work to four places of decimals throughout.

2. Use Runge’s Method to solve the differential equation

dy

dx
=

y

y + x

at x = 1.1, given that y(1) = 1.

Work to three places of decimals throughout.

3. Use Runge’s Method with successive increments of h = 0.1 to find the solution at
x = 0.5 of the differential equation

dy

dx
= xy,

given that y(0) = 1. Work to four decimal places throughout.

Compare your results with those given by the exact solution

y = e
1
2
x2

.

4. Use Runge’s Method with h = 0.2 to determine the solution at x = 1 of the differential
equation,

dy

dx
= y + e−x,

given that y(0) = 0. Work to four decimal places throughout.

17.8.3 ANSWERS TO EXERCISES

1.

y(0.3) ' 0.0454

2.

y(1.1) ' 1.049

3.

y(0.5) ' 1.3318

4.

y(1) ' 1.1752

5
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UNIT 18.1 - STATISTICS 1 - THE PRESENTATION OF DATA

18.1.1 INTRODUCTION

(i) The collection of numerical information often leads to large masses of data which, if they
are to be understood, or presented effectively, must be summarised and analysed in some
way. This is the purpose of the subject of “Statistics”.

(ii) The source from which a set of data is collected is called a “population”. For example,
a population of 1000 ball-bearings could provide data relating to their diameters.

(iii) Statistical problems may be either “descriptive problems” (in which all the data is
known and can be analysed) or “inference problems” (in which data collected from a
“sample” population is used to infer properties of a larger population). For example, the
annual pattern of rainfall over several years in a particular place could be used to estimate
the rainfall pattern in other years.

(iv) The variables measured in a statistical problem may be either “discrete” (in which
case they may take only certain values) or “continuous” (in which case they make take
any values within the limits of the problem itself. For example, the number of students
passing an examination from a particular class of students is a discrete variable; but the
diameter of ball-bearings from a stock of 1000 is a continuous variable.

(v) Various methods are seen in the commercial presentation of data but, in this series of
Units, we shall be concerned with just two methods, one of which is tabular and the other
graphical.

18.1.2 THE TABULATION OF DATA

(a) Ungrouped Data
Suppose we have a collection of measurements given by numbers. Some may occur only
once, while others may be repeated several times.

If we write down the numbers as they appear, the processing of them is likely to be cum-
bersome. This is known as “ungrouped (or raw) data”, as, for example, in the following
table which shows rainfall figures (in inches), for a certain location, in specified months over
a 90 year period:

1



TABLE 1 - Ungrouped (or Raw) Data

18.6 13.8 10.4 15.0 16.0 22.1 16.2 36.1 11.6 7.8
22.6 17.9 25.3 32.8 16.6 13.6 8.5 23.7 14.2 22.9
17.7 26.3 9.2 24.9 17.9 26.5 26.6 16.5 18.1 24.8
16.6 32.3 14.0 11.6 20.0 33.8 15.8 15.2 24.0 16.4
24.1 23.2 17.3 10.5 15.0 20.2 20.2 17.3 16.6 16.9
22.0 23.9 24.0 12.2 21.8 12.2 22.0 9.6 8.0 20.4
17.2 18.3 13.0 10.6 17.2 8.9 16.8 14.2 15.7 8.0
17.7 16.1 17.8 11.6 10.4 13.6 8.4 12.6 8.1 11.6
21.1 20.5 19.8 24.8 9.7 25.1 31.8 24.9 20.0 17.6

(b) Ranked Data
A slightly more convenient method of tabulating a collection of data would be to arrange
them in rank order, so making it easier to see how many times each number appears. This
is known as “ranked data”.

The next table shows the previous rainfall figures in this form

TABLE 2 - Ranked Data

7.8 8.0 8.0 8.1 8.4 8.5 8.9 9.2 9.6 9.7
10.4 10.4 10.5 10.6 11.6 11.6 11.6 11.6 12.2 12.2
12.6 13.0 13.6 13.6 13.8 14.0 14.2 14.2 15.0 15.0
15.2 15.7 15.8 16.0 16.1 16.2 16.4 16.5 16.6 16.6
16.6 16.8 16.9 17.2 17.2 17.3 17.3 17.6 17.7 17.7
17.8 17.9 17.9 18.1 18.3 18.6 19.8 20.0 20.0 20.2
20.2 20.4 20.5 21.1 21.8 22.0 22.0 22.1 22.6 22.9
23.2 23.7 23.9 24.0 24.0 24.1 24.8 24.8 24.9 24.9
25.1 25.3 26.3 26.5 26.6 31.8 32.3 32.8 33.8 36.1

2



(c) Frequency Distribution Tables
Thirdly, it is possible to save a little space by making a table in which each individual item
of the ranked data is written down once only, but paired with the number of times it occurs.
The data is then presented in the form of a “frequency distribution table”.

TABLE 3 - Frequency Distribution Table

Value Frequency Value Frequency Value Frequency
7.8 1 15.8 1 21.1 1
8.0 2 16.0 1 21.8 1
8.1 1 16.1 1 22.0 2
8.4 1 16.2 1 22.1 1
8.5 1 16.4 1 22.6 1
8.9 1 16.5 1 22.9 1
9.2 1 16.6 3 23.2 1
9.6 1 16.8 1 23.7 1
9.7 1 16.9 1 23.9 1

10.4 2 17.2 2 24.0 2
10.5 1 17.3 2 24.1 1
10.6 1 17.6 1 24.8 2
11.6 4 17.7 2 24.9 2
12.2 2 17.8 1 25.1 1
12.6 1 17.9 2 25.3 1
13.0 1 18.1 1 26.3 1
13.6 2 18.3 1 26.5 1
13.8 1 18.6 1 26.6 1
14.0 1 19.8 1 31.8 1
14.2 2 20.0 2 32.3 1
15.0 2 20.2 2 32.8 1
15.2 1 20.4 1 33.8 1
15.7 1 20.5 1 36.1 1

(d) Grouped Frequency Distribution Tables
For about forty or more items in a set of numerical data, it usually most convenient to group
them together into between 10 and 25 “classes” of values, each covering a specified range
or “class interval” (for example, 7.5− 10.5, 10.5− 13.5, 13.5− 16.5,......).

Each item is counted every time it appears in order to obtain the “class frequency” and
each class interval has the same “class width”.

Too few classes means that the data is over-summarised, while too many classes means that
there is little advantage in summarising at all.
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Here, we use the convention that the lower boundary of the class is included while the upper
boundary is excluded.

Each item in a particular class is considered to be approximately equal to the “class mid-
point”; that is, the average of the two “class boundaries”.

A “grouped frequency distribution table” normally has columns which show the class
intervals, class mid-points, class frequencies, and “cumulative frequencies”, the last of
these being a running total of the frequencies themselves. There may also be a column of
“tallied frequencies”, if the table is being constructed from the raw data without having
first arranged the values in rank order.

TABLE 4 - Grouped Frequency Distribution

Class Interval Class Mid-point Tallied Frequency Frequency Cumulative Frequency
7.5− 10.5 9 ////| ////| // 12 12

10.5− 13.5 12 ////| ////| 10 22
13.5− 16.5 15 ////| ////| ////| 15 37
16.5− 19.5 18 ////| ////| ////| //// 19 56
19.5− 22.5 21 ////| ////| // 12 68
22.5− 25.5 24 ////| ////| //// 14 82
25.5− 28.5 27 /// 3 85
28.5− 31.5 30 0 85
31.5− 34.5 33 //// 4 89
34.5− 37.5 36 / 1 90

Notes:

(i) The cumulative frequency shows, at a glance, how many items in the data are less than
a specified value. In the above table, for example, 82 items are less than 25.5

(ii) It is sometimes more useful to use the ratio of the cumulative frequency to the total
number of observations. This ratio is called the “relative cumulative frequency” and,
in the above table, for example, the percentage of items in the data which are less than 25.5
is

82

90
× 100 ' 91%

4



18.1.3 THE GRAPHICAL REPRESENTATION OF DATA

(a) The Histogram
A “histogram” is a diagram which is directly related to a grouped frequency distribution
table and consists of a collection of rectangles whose height represents the class frequency
(to some suitable scale) and whose breadth represents the class width.

-
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6

7.5 22.5 37.5

The histogram shows, at a glance, not just the class intervals with the highest and lowest
frequencies, but also how the frequencies are distributed.

In the case of examination results, for example, there is usually a group of high frequencies
around the central class intervals and lower ones at the ends. Such an ideal situation would
be called a “Normal Distribution”.

(b) The Frequency Polygon
Using the fact that each class interval may be represented, on average, by its class mid-point,
we may plot the class mid-points against the class frequencies to obtain a display of single
points. By joining up these points with straight line segments and including two extra class
mid-points, we obtain a “frequency polygon”.
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Notes:

(i) Although the frequency polygon officially plots only the class mid-points against their
frequencies, it is sometimes convenient to read-off intermediate points in order to estimate
additional data. For example, we might estimate that the value 11.0 occurred 11 times when,
in fact, it did not occur at all.

We may use this technique only for continuous variables.

(ii) Frequency polygons are more useful than histograms if we wish to compare two or more
frequency distributions. A clearer picture is obtained if we plot them on the same diagram.

(iii) If the class intervals are made smaller and smaller while, at the same time, the total
number of items in the data is increased more and more, the points of the frequency polygon
will be very close together. The smooth curve joining them is called the “frequency curve”
and is of greater use for estimating intermediate values.

(c) The Cumulative Frequency Polygon (or Ogive)
The earlier use of the cumulative frequency to estimate the number (or proportion) of values
less than a certain amount may be applied graphically by plotting the upper class-boundary
against the cumulative frequency, then joining up the points plotted with straight line seg-
ments. The graph obtained is called the “cumulative frequency polygon” or “ogive”.

We may also use a second vertical axis at the right-hand end of the diagram showing the
relative cumulative frequency. The range of this axis will always be 0 to 1.
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18.1.4 EXERCISES

1. State whether the following variables are discrete or continuous:

(a) The denominators of a set of 10,000 rational numbers;

(b) The difference between a fixed integer and each one of any set of real numbers;

(c) The volume of fruit squash in a sample of 200 bottles taken from different firms;

(d) The minimum plug-gap setting specified by the makers of 30 different cars;

(e) The points gained by 80 competitors in a skating championship.

2. The following marks were obtained in an examination taken by 100 students:

Marks 25− 30 30− 35 35− 40 40− 45 45− 50
No. of Students 2 3 7 7 8

Marks 50− 55 55− 60 60− 65 65− 70 70− 75
No. of Students 25 18 12 10 8

(a) Draw a histogram for this data;

(b) Draw a cumulative frequency polygon;

(c) Estimate the mark exceeded by the top 25% of the students;

(d) Suggest a pass-mark if 15% of the students are to fail.

7



3. In a test of 35 glue-laminated beams, the following values of the “spring constant” in
kilopounds per inch were found:

SPRING CONSTANT × 100

6.72 6.77 6.82 6.70 6.78 6.70 6.62
6.75 6.66 6.66 6.64 6.76 6.73 6.80
6.72 6.76 6.76 6.68 6.66 6.62 6.72
6.76 6.70 6.78 6.76 6.67 6.70 6.72
6.74 6.81 6.79 6.78 6.66 6.76 6.72

(a) Arrange this data in rank order and hence construct a frequency distribution table;

(b) Construct a grouped frequency distribution table with class intervals of length 0.02
starting with 6.61− 6.63 and include columns to show the class mid-points and the
cumulative frequency.

4. The following data shows the diameters of 25 ball-bearings in cms.

0.386 0.391 0.396 0.380 0.397
0.376 0.384 0.401 0.382 0.404
0.390 0.404 0.380 0.390 0.388
0.381 0.393 0.387 0.377 0.399
0.400 0.383 0.384 0.390 0.379

Construct a grouped frequency distribution table with class intervals 0.375 − 0.380,
0.380− 0.385 etc. and construct

(a) the histogram;

(b) the frequency polygon;

(c) the cumulative frequency polygon (ogive).

18.1.5 SELECTED ANSWERS TO EXERCISES

1. (a) discrete

(b) continuous

(c) continuous

(d) discrete

(e) discrete

2. (c) 63% is the mark exceeded by the top 25% of students
(d) 43% needs to be the pass-mark if 15% of the students are to fail.
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UNIT 18.2 - STATISTICS 2

MEASURES OF CENTRAL TENDENCY

18.2.1 INTRODUCTION

Having shown, in Unit 18.1, how statistical data may be presented in a clear and concise
form, we shall now be concerned with the methods of analysing the data in order to obtain
the maximum amount of information from it.

In the previous Unit, it was stated that statistical problems may be either “descriptive
problems” (in which all the data is known and can be analysed) or “inference problems”
(in which data collected from a “sample” population is used to infer properties of a larger
population).

In both types of problem, it is useful to be able to measure some value around which all
items in the data may be considered to cluster. This is called “a measure of central
tendency”; and we find it by using several types of average value as follows:

18.2.2 THE ARITHMETIC MEAN (BY CODING)

To obtain the “arithmetic mean” of a finite collection of n numbers, we may simply add
all the numbers together and then divide by n. This elementary rule applies even if some of
the numbers occur more than once and even if some of the numbers are negative.

However, the purpose of this section is to introduce some short-cuts (called “coding”) in
the calculation of the arithmetic mean of large collections of data. The methods will be
illustrated by the following example, in which the number of items of data is not over-large:

EXAMPLE

The solid contents, x, of water (in parts per million) was measured in eleven samples and
the following data was obtained:

4520 4490 4500 4500
4570 4540 4520 4590
4520 4570 4520

Determine the arithmetic mean, x, of the data.
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Solution

(i) Direct Calculation

By adding together the eleven numbers, then dividing by 11, we obtain

x = 49840÷ 11 ' 4530.91

(ii) Using Frequencies

We could first make a frequency table having a column of distinct values xi, (i = 1, 2, 3, ......, 11),
a column of frequencies fi, (i = 1, 2, 3......, 11) and a column of corresponding values fixi.

The arithmetic mean is then calculated from the formula

x =
1

11

11∑
i=1

fixi.

In the present example, the table would be

xi fi fixi

4490 1 4490
4500 2 9000
4520 4 18080
4540 1 4540
4570 2 9140
4590 1 4590

Total 49840

The arithmetic mean is then x = 49840÷ 11 ' 4530.91 as before.

(iii) Reduction by a constant

With such large data-values, as in the present example, it can be convenient to reduce all of
the values by a constant, k, before calculating the arithmetic mean.

It is easy to show that, by adding the constant, k, to the arithmetic mean of the reduced
data, we obtain the arithmetic mean of the original data.

Proof:

For n values, x1, x2, x3, .........., xn, the arithmetic mean is given by
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x =
x1 + x2 + x3 + ...... + xn

n
.

If each value is reduced by a constant, k, the arithmetic mean of the reduced data is

(x1 − k) + (x2 − k) + (x3 − k) + ...... + (xn − k)

n
=

x1 + x2 + x3 + ...... + xn

n
− nk

n
= x− k.

(iv) Division by a constant

In a similar way to the previous paragraph, each value in a collection of data could by divided
by a constant, k, before calculating the arithmetic mean.

This time, we may show that the arithmetic mean of the original data is obtained on multi-
plying the arithmetic mean of the reduced data by k.

Proof:

x1

k
+ x2

k
+ x3

k
+ ...... + xn

k

n
=

x

k
.

In order to summarise the shortcuts used in the present example, the following table shows
a combination of the use of frequencies and of the two types of reduction made to the data:

xi xi − 4490 x′
i = (xi − 4490)÷ 10 fi fix

′
i

4490 0 0 1 0
4500 10 1 2 2
4520 30 3 4 12
4540 50 5 1 5
4570 80 8 2 16
4590 100 10 1 10

Total 45

The fictitious arithmetic mean, x′ =
45

11
' 4.0909

The actual arithmetic mean, x ' (4.0909× 10) + 4490 ' 4530.91
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(v) The approximate arithmetic mean for a grouped distribution

For a large number of items of data, we may (without losing too much accuracy) take all
items within a class interval to be equal to the class mid-point.

A calculation similar to that in the previous paragraph may then be performed if we reduce
each mid-point by the first mid-point and divide by the class width (or other convenient
number).

EXAMPLE

Calculate, approximately, the arithmetic mean of the data in TABLE 4 on page 4 of
Unit 18.1

Solution

Class Interval Class Mid-point xi − 9 (xi − 9)÷ 3 Frequency fix
′
i

xi = x′
i fi

7.5− 10.5 9 0 0 12 0
10.5− 13.5 12 3 1 10 10
13.5− 16.5 15 6 2 15 30
16.5− 19.5 18 9 3 19 57
19.5− 22.5 21 12 4 12 48
22.5− 25.5 24 15 5 14 70
25.5− 28.5 27 18 6 3 18
28.5− 31.5 30 21 7 0 0
31.5− 34.5 33 24 8 4 32
34.5− 37.5 36 27 9 1 9

Totals 90 274

Fictitious arithmetic mean x′ =
274

90
' 3.0444

Actual arithmetic mean = 3.044× 3 + 9 ' 18.13.

Notes:

(i) By direct calculation from TABLE 1 in Unit 18.1, it may be shown that the arithmetic
mean is 17.86 correct to two places of decimals; and this indicates an error of about 1.5%.

(ii) The arithmetic mean is widely used where samples are taken of a larger population. It
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usually turns out that two samples of the same population have arithmetic means which are
close in value.

18.2.3 THE MEDIAN

Collections of data often include one or more values which are widely out of character with
the rest; and the arithmetic mean can be significantly affected by such extreme values.

For example, the values 8,12,13,15,21,23 have an arithmetic mean of 92
6
' 15.33; but the

values 5,12,13,15,21,36 have an arithmetic mean of 102
6
' 17.00.

A second type of average, not so much affected, is defined as follows:

DEFINITION

The “median” of a collection of data is the middle value when the data is arranged in rank
order. For an even number of values in the collection of data, the median is the arithmetic
mean of the centre two values.

EXAMPLES

1. For both 8,12,13,15,21,23 and 5,12,13,15,21,36, the median is given by

13 + 15

2
= 14.

2. For a grouped distribution, the problem is more complex since we no longer have access
to the individual values from the data.

However, the area of a histogram is directly proportional to the total number of values
which it represents, since the base of all the rectangles are the same width and each
height represents a frequency.

We may thus take the median to be the value for which the vertical line through it
divides the histogram into two equal areas.

For non-symmetrical histograms, the median is often a better measure of central ten-
dency than the arithmetic mean.

Illustration

Consider the histogram from Unit 18.1, representing rainfall figures over a 90 year
period.

5



-

20

15

10

5

6

7.5 16.5 22.5 37.5

The total area of the histogram = 90× 3 = 270.

Half the area of the histogram = 135.

The area up as far as 16.5 = 3× 37 = 111 while the area up as far as 19.5 = 3× 56 = 168;
hence the Median must lie between 16.5 and 19.5

The Median = 16.5 + x where 18x = 135 − 111 = 24 since 18 is the frequency of the class
interval 16.5− 19.5

That is,

x =
24

18
=

4

3
' 1.33,

giving a Median of 17.83

Notes:

(i) The median, in this case, is close to the arithmetic mean since the distribution is fairly
symmetrical.

(ii) If a sequence of zero frequencies occurs, it may be necessary to take the arithmetic mean
of two class mid-points, which are not consecutive to each other.

(iii) Another example of the advantage of median over arithmetic mean would be the average
life of 100 electric lamps. To find the arithmetic mean, all 100 must be tested; but to find
the median, the testing may stop after the 51st.
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18.2.4 THE MODE

DEFINITIONS

1. For a collection of individual items of data, the “mode” is the value having the highest
frequency.

2. In a grouped frequency distribution, the mid-point of the class interval with the highest
frequency is called the “crude mode” and the class interval itself is called the “modal
class”.

Note:
Like the median, the mode is not much affected by changes in the extreme values of the data.
However, some distributions may have several different modes, which is a disadvantage of
this measure of central tendency.

EXAMPLE

For the histogram discussed earlier, the mode is 18.0; but if the class interval, 22.5 − 25.5,
had 5 more members, then 24.0 would be a mode as well.

18.2.5 QUANTILES

To conclude this Unit, we shall define three more standard measurements which, in fact,
extend the idea of a median; and we may recall that a median divides a collection of values
in such a way that half of them fall on either side of it.

Collectively, these three new measurements are called “quantiles” but may be considered
separately by their own names as follows:

(a) Quartiles

These are the three numbers dividing a ranked collection of values (or the area of a histogram)
into 4 equal parts.

(b) Deciles

These are the nine numbers dividing a ranked collection of values (or the area of a histogram)
into 10 equal parts.

(c) Percentiles

These are the ninety nine numbers dividing a ranked collection of values (or the area of a
histogram) into 100 equal parts.
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Note:
For collections of individual values, quartiles may need to be calculated as the arithmetic
mean of two consecutive values.

EXAMPLES

1. (a) The 25th percentile = The 1st quartile.

(b) The 5th Decile = The median.

(c) The 85th Percentile = the point at which 85% of the values fall below it and 15%
above it.

2. For the collection of values

5, 12, 13, 19, 25, 26, 30, 33,

the quartiles are 12.5, 22 and 28.

3. For the collection of values

5, 12, 13, 19, 25, 26, 30,

the quartiles are 12.5, 19 and 25.5

18.2.6 EXERCISES

1. The arithmetic mean of 75 observations is 52.6 and the arithmetic mean of 25 similar
observations is 48.4; determine the Arithmetic Mean of all 100 observations.

2. Of 500 students, whose mean height is 67.8 inches, 150 are women. If the mean height
of 150 women is 62.0 inches, what is the mean height of the men ?

3. By coding the following collection of data, determine the arithmetic mean correct to
three places of decimals:

1.847, 1.843, 1.842, 1.847, 1.848, 1.841, 1.845

4. Using a histogram of the frequency distribution shown, determine

(a) the arithmetic mean;

(b) the median class;

(c) the median;
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(d) the modal class;

(e) the crude mode.

class interval 15− 25 25− 35 35− 45 45− 55 55− 65 65− 75
Frequency 4 11 19 14 0 2

5. The number of a certain component issued, per day, from stock over a 40 day period is
given as follows:

83 80 91 81 88 82 87 97 83 99
75 85 72 92 84 90 87 78 93 98
86 80 93 86 88 83 82 101 89 82
85 95 80 89 84 92 76 81 103 94

Using class intervals 70 − 75, 75 − 80, 80 − 85 etc., draw up a frequency distribution
table and construct a histogram.

From the histogram, determine the median and the 7th Decile.

18.2.7 ANSWERS TO EXERCISES

1.

51.55

2.

70.3 inches.

3.

1.845

4. (a)

40.20

(b)

35− 45.

(c)

40.26

(d)

35− 45.

(e)

40.

5.

Median = 86.5, 7th Decile = 91.25
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UNIT 18.3 - STATISTICS 3

MEASURES OF DISPERSION (OR SCATTER)

18.3.1 INTRODUCTION

Averages typify a whole collection of values, but they give little information about how the
values are distributed within the whole collection.

For example, 99.9, 100.0, 100.1 is a collection which has an arithmetic mean of 100.0 and so
is 99.0,100.0,101.0; but the second collection is more widely dispersed than the first.

It is the purpose of this Unit to examine two types of quantity which typify the distance of
all the values in a collection from their arithmetic mean. They are known as measures of
dispersion (or scatter) and the smaller these quantities are, the more clustered are the values
around the arithmetic mean.

18.3.2 THE MEAN DEVIATION

If the n values x1, x2, x3, ......,xn have an arithmetic mean of x, then x1 − x, x2 − x,
x3 − x,......,xn − x are called the “deviations” of x1, x2, x3,......, xn from the arithmetic
mean.

Note:
The deviations add up to zero since

n∑
i=1

(xi − x) =
n∑

i=1

xi −
n∑

i=1

x = nx− nx = 0

DEFINITI0N
The “mean deviation” (or, more accurately, the “mean absolute deviation) is defined by
the formula

M.D. =
1

n

n∑
i=1

|xi − x|

1



18.3.3 PRACTICAL CALCULATION OF MEAN DEVIATION

In calculating a mean deviation, the following short-cuts usually turn out to be useful,
especially for larger collections of values:

(a) If a constant, k, is subtracted from each of the values xi (i = 1,2,3...n), and also we use
the “fictitious” arithmetic mean, x−k, in the formula, then the mean deviation is unaffected.

Proof:

1

n

n∑
i=1

|xi − x| = 1

n

n∑
i=1

|(xi − k)− (x− k)|.

(b) If we divide each of the values xi (i = 1,2,3,...n) by a positive constant, l, and also we
use the “fictitious” arithmetic mean x

l
, then the mean deviation will be divided by l.

Proof:

1

ln

n∑
i=1

|xi − x| = 1

n

n∑
i=1

∣∣∣∣xi

l
− x

l

∣∣∣∣ .
Summary
If we code the data using both a subtraction by k and a division by l, the value obtained
from the mean deviation formula needs to multiplied by l to give the correct value.

18.3.4 THE ROOT MEAN SQUARE (OR STANDARD) DEVIATION

A more common method of measuring dispersion, which ensures that negative deviations
from the arithmetic mean do not tend to cancel out positive deviations, is to determine the
arithmetic mean of their squares, and then take the square root.

DEFINITION
The “root mean square deviation” (or “standard deviaton”) is defined by the formula

R.M.S.D. =

√√√√ 1

n

n∑
i=1

(xi − x)2.
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Notes:

(i) The root mean square deviation is usually denoted by the symbol, σ.

(ii) The quantity σ2 is called the “variance”.

18.3.5 PRACTICAL CALCULATION OF THE STANDARD DEVIATION

In calculating a standard deviation, the following short-cuts usually turn out to be useful,
especially for larger collections of values:

(a) If a constant, k, is subtracted from each of the values xi (i = 1,2,3...n), and also we use
the “fictitious” arithmetic mean, x− k, in the formula, then σ is unaffected.

Proof:

√√√√ 1

n

n∑
i=1

(xi − x)2 =

√√√√ 1

n

n∑
i=1

[(xi − k)− (x− k)]2.

(b) If we divide each of the values xi (i = 1,2,3,...n) by a constant, l, and also we use the
“fictitious” arithmetic mean x

l
, then σ will be divided by l.

Proof:

1

l

√√√√ 1

n

n∑
i=1

(xi − x)2 =

√√√√ 1

n

n∑
i=1

(
xi

l
− x

l

)2

.

Summary
If we code the data using both a subtraction by k and a division by l, the value obtained
from the standard deviation formula needs to multiplied by l to give the correct value, σ.

(c) For the calculation of the standard deviation, whether by coding or not, a more convenient
formula may be obtained by expanding out the expression (xi − x)2 as follows:

σ2 =
1

n

[
n∑

i=1

x2
i − 2x

n∑
i=1

xi +
n∑

i=1

x2

]
.
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That is,

σ2 =
1

n

n∑
i=1

x2
i − 2x2 + x2,

which gives the formula

σ =

√√√√ 1

n

(
n∑

i=1

x2
i

)
− x2.

Note:
In advanced statistical work, the above formulae for standard deviation are used only for
descriptive problems in which we know every member of a collection of observations.

For inference problems, it may be shown that the standard deviation of a sample is always
smaller than that of a total population; and the basic formula used for a sample is

σ =

√√√√ 1

n− 1

n∑
i=1

(xi − x)2.

18.3.6 OTHER MEASURES OF DISPERSION

We mention here, briefly, two other measures of dispersion:

(i) The Range

This is the difference between the highest and the smallest members of a collection of values.

(ii) The Coefficient of Variation

This is a quantity which expresses the standard deviation as a percentage of the arithmetic
mean. It is given by the formula

C.V. =
σ

x
× 100.
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EXAMPLE

The following grouped frequency distribution table shows the diameter of 98 rivets:

Class Cls. Mid Freq. Cum. (xi − 6.61)÷ 0.02 fixi
′ xi

′2 fixi
′2 fi|xi

′ − x′|
Intvl. Pt. xi fi Freq. = xi

′

6.60− 6.62 6.61 1 1 0 0 0 0 0.58
6.62− 6.64 6.63 4 5 1 4 1 4 2.40
6.64− 6.66 6.65 6 11 2 12 4 24 3.72
6.66− 6.68 6.67 12 23 3 36 9 108 7.68
6.68− 6.70 6.69 5 28 4 20 16 80 3.30
6.70− 6.72 6.71 10 38 5 50 25 250 6.80
6.72− 6.74 6.73 17 55 6 102 36 612 11.90
6.74− 6.76 6.75 10 65 7 70 49 490 7.20
6.76− 6.78 6.77 14 79 8 112 64 896 10.36
6.78− 6.80 6.79 9 88 9 81 81 729 6.84
6.80− 6.82 6.81 7 95 10 70 100 700 5.46
6.82− 6.84 6.83 2 97 11 22 121 242 1.60
6.84− 6.86 6.85 1 98 12 12 144 144 0.82

Totals 98 591 4279 68.66

Estimate the arithmetic mean, the standard deviation and the mean (absolute) deviation of
these diameters.

Solution

Fictitious arithmetic mean =
591

98
' 6.03

Actual arithmetic mean = 6.03× 0.02 + 6.61 ' 6.73

Fictitious standard deviation =

√
4279

98
− 6.032 ' 2.70

Actual standard deviation = 2.70× 0.02 ' 0.054

Fictitious mean deviation =
68.66

98
' 0.70

5



Actual mean deviation ' 0.70× 0.02 ' 0.014

18.3.7 EXERCISES

1. For the collection of numbers

6.5, 8.3, 4.7, 9.2, 11.3, 8.5, 9.5, 9.2

calculate (correct to two places of decimals) the arithmetic mean, the standard deviation
and the mean (absolute) deviation.

2. Estimate the arithmetic mean, the standard deviation and the mean (absolute) devia-
tion for the following grouped frequency distribution table:

Class Interval 10− 30 30− 50 50− 70 70− 90 90− 110 110− 130
Frequency 5 8 12 18 3 2

3. The following table shows the registered speeds of 100 speedometers at 30m.p.h.

Regd. Speed Frequency
27.5− 28.5 2
28.5− 29.5 9
29.5− 30.5 17
30.5− 31.5 26
31.5− 32.5 24
32.5− 33.5 16
33.5− 34.5 5
34.5− 35.5 1

Estimate the arithmetic mean, the standard deviation and the coefficient of variation.

18.3.8 ANSWERS TO EXERCISES

1. Arithmetic mean ' 8.40, standard deviation ' 1.88, mean deviation ' 1.43

2. Arithmetic mean ' 65, standard deviation ' 24.66, mean deviation ' 20.21

3. Arithmetic mean ' 31.4, standard deviation ' 1.44, coefficient of variation ' 4.61.
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UNIT 18.4 - STATISTICS 4

THE PRINCIPLE OF LEAST SQUARES

18.4.1 THE NORMAL EQUATIONS

Suppose two variables, x and y, are known to obey a “straight line law” of the form
y = a + bx, where a and b are constants to be found.

Suppose also that, in an experiment to test this law, we obtain n pairs of values, (xi, yi),
where i = 1,2,3,...,n.

If the values xi are assigned values, they are likely to be free from error, whereas the
observed values, yi will be subject to experimental error.

The principle underlying the straight line of “best fit” is that, in its most likely position,
the sum of the squares of the y-deviations, from the line, of all observed points is a minimum.

Using partial differentiation, it may be shown that

n∑
i=1

yi = na + b
n∑

i=1

xi −−− (1)

and

n∑
i=1

xiyi = a
n∑

i=1

xi + b
n∑

i=1

x2
i −−− (2).

The statements (1) and (2) are two simultaneous equations which may be solved for a and
b.

They are called the “normal equations”.

A simpler notation for the normal equations is

Σ y = na + bΣ x

and
Σxy = aΣx + bΣ x2.

By eliminating a and b in turn, we obtain the solutions

1



a =
Σ x2.Σ y − Σx.Σ xy

nΣ x2 − (Σ x)2 and b =
nΣ xy − Σ x.Σ y

nΣ x2 − (Σ x)2 .

With these values of a and b, the straight line y = a + bx is called the “regression line of
y on x”.

EXAMPLE

Determine the equation of the regression line of y on x for the following data which shows
the Packed Cell Volume, xmm, and the Red Blood Cell Count, y millions, of 10 dogs:

x 45 42 56 48 42 35 58 40 39 50
y 6.53 6.30 9.52 7.50 6.99 5.90 9.49 6.20 6.55 8.72

Solution

x y xy x2

45 6.53 293.85 2025
42 6.30 264.60 1764
56 9.52 533.12 3136
48 7.50 360.00 2304
42 6.99 293.58 1764
35 5.90 206.50 1225
58 9.49 550.42 3364
40 6.20 248.00 1600
39 6.55 255.45 1521
50 8.72 436.00 2500

455 73.70 3441.52 21203

The regression line of y on x thus has equation y = a + bx, where

a =
(21203)(73.70)− (455)(3441.52)

(10)(21203)− (455)2
' −0.645

and

b =
(10)(3441.52)− (455)(73.70)

(10)21203)− (455)2
' 0.176

Thus, y = 0.176x− 0.645
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18.4.2. SIMPLIFIED CALCULATION OF REGRESSION LINES

A simpler method of determining the regression line of y on x for a given set of data, is to
consider a temporary change of origin to the point (x, y), where x is the arithmetic mean of
the values xi and y is the arithmetic mean of the values yi.

RESULT

The regression line of y on x contains the point (x, y).

Proof:

From the first of the normal equations,

Σ y

n
= a + b

Σ x

n
.

That is,

y = a + bx.

A change of origin to the point (x, y), with new variables X and Y , is associated with the
formulae

X = x− x and Y = y − y

and, in this system of reference, the regression line will pass through the origin.

Its equation is therefore

Y = BX,

where

B =
nΣ XY − Σ X.Σ Y

nΣ X2 − (Σ X)2 .
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However,

Σ X = Σ (x− x) = Σ x− Σ x = nx− nx = 0

and

Σ Y = Σ (y − y) = Σ y − Σ y = ny − ny = 0.

Thus,

B =
Σ XY

Σ X2
.

Note:
In a given problem, we make a table of values of xi, yi, Xi, Yi, XiYi and X2

i .

The regression line is then

y − y = B(x− x) or y = BX + (y −Bx);

though, there may be slight differences in the result obtained compared with that from the
earlier method.

EXAMPLE

Determine the equation of the regression line of y on x for the following data which shows
the Packed Cell Volume, xmm, and the Red Blood Cell Count, y millions, of 10 dogs:

x 45 42 56 48 42 35 58 40 39 50
y 6.53 6.30 9.52 7.50 6.99 5.90 9.49 6.20 6.55 8.72

Solution

The arithmetic mean of the x values is x = 45.5

The arithmetic mean of the y values is y = 7.37

This gives the following table:
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x y X = x− x Y = y − y XY X2

45 6.53 −0.5 −0.84 0.42 0.25
42 6.30 −3.5 −1.07 3.745 12.25
56 9.52 10.5 2.15 22.575 110.25
48 7.50 2.5 0.13 0.325 6.25
42 6.99 −3.5 −0.38 1.33 12.25
35 5.90 −10.5 −1.47 15.435 110.25
58 9.49 12.5 2.12 26.5 156.25
40 6.20 −5.5 −1.17 6.435 30.25
39 6.55 −6.5 −0.82 5.33 42.25
50 8.72 4.5 1.35 6.075 20.25

455 73.70 88.17 500.5

Hence,

B =
88.17

500.5
' 0.176

and so the regression line has equation

y = 0.176x + (7.37− 0.176× 45.5).

That is,

y = 0.176x− 0.638

18.4.3 EXERCISES

1. For the following tables, determine the regression line of y on x, assuming that y = a+bx.

(a)
x 0 2 3 5 6
y 6 −1 −3 −10 −16

(b)
x 0 20 40 60 80
y 54 65 75 85 96
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(c)
x 1 3 5 10 12
y 58 55 40 37 22

2. To determine the relation between the normal stress and the shear resistance of soil, a
shear-box experiment was performed, giving the following results:

Normal Stress, x p.s.i. 11 13 15 17 19 21
Shear Stress, y p.s.i. 15.2 17.7 19.3 21.5 23.9 25.4

If y = a + bx, determine the regression line of y on x.

3. Fuel consumption, y miles per gallon, at speeds of x miles per hour, is given by the
following table:

x 20 30 40 50 60 70 80 90
y 18.3 18.8 19.1 19.3 19.5 19.7 19.8 20.0

Assuming that

y = a +
b

x
,

determine the most probable values of a and b.

18.4.4 ANSWERS TO EXERCISES

1. (a)

y = 6.46− 3.52x;

(b)

y = 54.20 + 0.52x;

(c)

y = 60.78− 2.97x.

2.

y = 4.09 + 1.03x.

3.

a ' −42 and b ' 20.
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UNIT 19.1 - PROBABILITY 1 - DEFINITIONS AND RULES

19.1.1 INTRODUCTION

To introduce the definition of probability, suppose 30 high-strength bolts became mixed with
25 ordinary bolts by mistake, all of the bolts being identical in appearance.

We would like to know how sure we can be that, in choosing a bolt, it will be a high-strength
one. Phrases like “quite sure” or “fairly sure” are useless, mathematically, and we define a
way of measuring the certainty.

We know that, in 55 simultaneous choices, 30 will be of high strength and 25 will be ordinary;
so we say that, in one choice, there is a 30

55
chance of success; that is, approximately, a 0.55

chance of success.

Obviously, in one single choice, we haven’t any idea what the result will be; but experience
has proved that, in a significant number of choices, just over half will most likely give a
high-strength bolt.

Such predictions can be used, for example, to estimate the cost of mistakes on a production
line.

DEFINITION 1.
The various occurrences which are possible in a statistical problem are called “events”.
If we are interested in one particular event, it is termed “successful” when it occurs and
“unsuccessful” when it does not.

ILLUSTRATION

If, in a collection of 100 bolts, there are 30 high-strength, 25 ordinary and 45 low-strength,
then we have three possible events according to which type is chosen.
We can make 100 “trials” and, in each trial, one of three events will occur.

DEFINITION 2.
If, in n possible trials, a successful event occurs s times, then the number s

n
is called the

“probability of success in a single trial”. It is also known as the “relative frequency
of success”.

ILLUSTRATIONS

1. From a bag containing 7 black balls and 4 white balls, the probability of drawing a
white ball is 4

11
.
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2. In tossing a perfectly balanced coin, the probability of obtaining a head is 1
2
.

3. In throwing a die, the probability of getting a six is 1
6
.

4. If 50 chocolates are identical in appearance, but consist of 15 soft-centres and 35 hard-
centres, the probability of choosing a soft-centre is 15

50
= 0.3.

19.1.2 APPLICATION OF PROBABILITY TO GAMES OF CHANCE

If a competitor in a game of chance has a probability, p, of winning, and the prize money is
£m, then £mp is considered to be a fair price for entry to the game.

The quantity mp is known as the “expectation” of the competitor.

19.1.3 EMPIRICAL PROBABILITY

So far, all the problems discussed on probability have been “descriptive”; that is, we know all
the possible events, the number of successes and the number of failures. In other problems,
called “inference” problems, it is necessary either (a) to take “samples” in order to infer
facts about a total “population’ (for example, a public census or an investigation of moon-
rock); or (b) to rely on past experience (for example past records of heart deaths, road
accidents, component failure).

If the probability of success, used in a problem, has been inferred by samples or previous
experience, it is called “empirical probability”.

However, once the probability has been calculated, the calculations are carried out in the
same way as for descriptive problems.

19.1.4 TYPES OF EVENT

DEFINITION 3.
If two or more events are such that not more than one of them can occur in a single trial,
they are called “mutually exclusive”.

ILLUSTRATION

Drawing an Ace or drawing a King from a pack of cards are mutually exclusive events; but
drawing an Ace and drawing a Spade are not mutually exclusive events.

DEFINITION 4.
If two or more events are such that the probability of any one of them occurring is not
affected by the occurrence of another, they are called “independent” events.
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ILLUSTRATION

From a pack of 52 cards (that is, Jokers removed), the event of drawing and immediately
replacing a red card will have a probability of 26

52
= 0.5; and the probability of this occurring

a second time will be exactly the same. They are independent events.

However, two successive events of drawing a red card without replacing it are not indepen-
dent. If the first card drawn is red, the probability that the second is red will be 25

51
; but, if

the first card drawn is black, the probability that the second is red will be 26
51

19.1.5 RULES OF PROBABILITY

1. If p1, p2, p3, ......, pr are the separate probabilities of r mutually exclusive events, then
the probability that some one of the r events will occur is

p1 + p2 + p3 + ...... + pr.

ILLUSTRATION

Suppose a bag contains 100 balls of which 1 is red, 2 are blue and 3 are black. The
probability of choosing any one of these three colours will be

0.06 = 0.01 + 0.02 + 0.03

However, the probability of drawing a spade or an ace from a pack of 52 cards will not
be 13

52
+ 4

52
= 17

52
but 16

52
since there are just 16 cards which are either a spade or an ace.

2. If p1, p2, p3, ......, pr are the separate probabilities of r independent events, then the
probability that all will occur in a single trial is

p1.p2.p3......pr.

ILLUSTRATION

Suppose there are three bags, each containing white, red and blue balls. Suppose also
that the probabilities of drawing a white ball from the first bag, a red ball from the
second bag and a blue ball from the third bag are respectively p1, p2 and p3. The
probability of making these three choices in succession is p1.p2.p3 because they are
independent events.

However, if three cards are drawn, without replacing, from a pack of 52 cards, the
probability of drawing a 3, followed by an ace, followed by a red card will not be
4
52

. 4
52

.26
52

.
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19.1.6 CONDITIONAL PROBABILITIES

For dependent events, the multiplication rule requires a knowledge of the new probabilities
of successive events in the trial, after the previous ones have been dealt with. These are
called “conditional probabilitities”.

EXAMPLE

From a box, containing 6 white balls and 4 black balls, 3 balls are drawn at random without
replacing them. What is the probability that there will be 2 white and 1 black ?

Solution

The cases to consider, together with their probabilities are as follows:

(a) White, White, Black..............Probability = 6
10
× 5

9
× 4

8
= 120

720
= 1

6
.

(b) Black, White, White..............Probability = 4
10
× 6

9
× 5

8
= 120

720
= 1

6
.

(c) White, Black, White..............Probability = 6
10
× 4

9
× 5

8
= 120

720
= 1

6
.

The probability of any one of these three outcomes is therefore

1

6
+

1

6
+

1

6
=

1

2
.

19.1.7 EXERCISES

1. A card is drawn at random from a deck of 52 playing cards. What is the probability
that it is either an Ace or a picture card ?

2. If a die is rolled, what is the probability that the roll yields either a 3 or a 4 ?

3. In a single throw of two dice, what is the probability that a 9 or a doublet will be
thrown ?

4. Ten balls, numbered 1 to 10, are placed in a bag. One ball is drawn and not replaced;
and then a second ball is drawn. What are the probabilities that

(a) the balls numbered 3 and 7 are drawn;

(b) neither of these two balls are drawn ?

5. On a gaming machine, there are three reels with ten digits 0,1,2,3,4,5,6,7,8,9 plus a star
on each reel. When a coin is inserted, and the machine started, the three reels revolve
independently before coming to rest.
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(a) What is the probabiity of getting a particular sequence of numbers ?

(b) What is the probability of getting three stars ?

(c) What is the probability of getting the same number on each reel ?

6. Three balls in succession are drawn, without replacement, from a bag containing 8
black, 8 white and 8 red balls. If a prize of £5 is awarded for drawing no black balls,
what is the expectation ?

7. Three persons A,B and C take turns to throw three dice once. If the first one to throw
a total of 11 is awarded a prize of £200, what are the expectations of A,B and C ?

19.1.8 ANSWERS TO EXERCISES

1. 4
13

.

2. 1
3
.

3. 5
18

.

4. (a)

1

45
;

(b)

28

45
.

5. (a)

1

113
' 0.00075;

(b)

1

113
' 0.00075;

(c)

10

113
' 0.0075

6. The expectation is £1.38

7. For A,B and C, the expectations are £25, £21.88 and £19.14 respectively since the
probabilities are 1

8
, 7

82 and 7
83 respectively.
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UNIT 19.2 - PROBABILITY 2 - PERMUTATIONS AND COMBINATIONS

19.2.1 INTRODUCTION

In Unit 19.1, we saw that, in the type of problem known as “descriptive”, we can work out
the probability that an event will occur by counting up the total number of possible trials
and the number of successful ones amongst them. But this can often be a tedious process
without the results of the work which is included in the present Unit.

DEFINITION 1.
Each different arrangement of all or part of a set of objects is called a “permutation”.

DEFINITION 2.
Any set which can be made by using all or part of a given collection of objects, without
regard to order, is called a “combination”.

EXAMPLES

1. Nine balls, numbered 1 to 9, are put into a bag, then emptied into a channel which
guides them into a line of pockets. What is the probability of obtaining a particular
nine digit number ?

Solution

We require the total number of arrangements of the nine digits and this is evaluated as
follows:

There are nine ways in which a digit can appear in the first pocket and, for each of these
ways, there are then eight choices for the second pocket. Hence, the first two pockets
can be filled in 9× 8 = 72 ways.

Continuing in this manner, the total number of arrangements will be

9× 8× 7× 6× ......× 3× 2××1 = 362880 = T, (say).

This is the number of permutations of the ten digits and the required probability is
therefore equal to 1

T
.

2. A box contains five components of identical appearance but different qualities. What
is the probability of choosing a pair of components from the highest two qualities ?

Solution

Method 1.

Let the components be A, B, C, D, E in order of descending quality.

1



The choices are
AB AC AD AE
BC BD BE
CD CE
DE,

giving ten choices.

These are the various combinations of five objects, two at a time; hence, the probability
for AB = 1

10
.

Method 2.

We could also use the ideas of conditional probability as follows:

The probability of drawing A = 1
5
.

The probability of drawing B without replacing A = 1
4
.

The probability of drawing A and B in either order =

2× 1

5
× 1

4
=

1

10
.

19.2.2 RULES OF PERMUTATIONS AND COMBINATIONS

1. The number of permutations of all n objects in a set of n is

n(n− 1)(n− 2)....................3.2.1

which is denoted for short by the symbol n! It is called “n factorial”.

This rule was demonstrated in Example 1 of the previous section.

2. The number of permutations of n objects r at a time is given by

n(n− 1)(n− 2)....................(n− r + 1) =
n!

(n− r)!

Explanation

The first object can be chosen in any one of n different ways.
For each of these, the second object can then be chosen in n− 1 ways.
For each of these, the third object can then be chosen in n− 2 ways.
...
...
...
For each of these, the r-th object can be chosen in n− (r − 1) = n− r + 1 ways.

2



Note:
In Example 2 of the previous section, the number of permutations of five components
two at a time is given by

5!

(5− 2)!
=

5!

3!
=

5.4.3.2.1

3.2.1
= 20.

This is double the number of choices we obtained for any two components out of five
because, in a permutation, the order matters.

3. The number of combinations of n objects r at a time is given by

n!

(n− r)!r!

Explanation

This is very much the same problem as the number of permutations of n objects r at a
time; but, as permutations, a particular set of objects will be counted r! times. In the
case of combinations, such a set will be counted only once, which reduces the number
of possibilities by a factor of r!.

In Example 2 of the previous section, it is precisely the number of combinations of five
objects two at a time which is being calculated. That is,

5!

(5− 2)!2!
=

5!

3!2!
=

5.4.3.2.1

3.2.1.2.1
= 10,

as before.

Note:
A traditional notation for the number of permutations of n objects r at a time is nPr.
That is,

nPr =
n!

(n− r)!

A traditional notation for the number of combinations of n objects r at a time is nCr.
That is,

nCr =
n!

(n− r)!r!
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EXAMPLES

1. How many four digit numbers can be formed from the numbers 1,2,3,4,5,6,7,8,9 if no
digit can be repeated ?

Solution

This is the number of permutations of 9 objects four at a time; that is,

9!

5!
= 9.8.7.6. = 3, 024.

2. In how many ways can a team of nine people be selected from twelve ?

Solution

The required number is
12C9 =

12!

3!9!
=

12.11.10

3.2.1
= 220.

3. In how many ways can we select a group of three men and two women from five men
and four women ?

Solution

The number of ways of selecting three men from five men is

5C3 =
5!

2!3!
=

5.4.

2.1
= 10.

For each of these ways, the number of ways of selecting two women from four women is

4C2 −
4!

2!2!
=

4.3

2.1
= 6.

The total number of ways is therefore 10× 6 = 60.

4. What is the probability that one of four bridge players will obtain a thirteen
card suit ?

Solution

The number of possible suits for each player is

N = 52C13 =
52!

39!13!

The probabilty that any one of the four players will obtain a thirteen card suit is thus

4× 1

N
=

4.(39!)(13!)

52!
' 6.29× 10−10.
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5. A coin is tossed six times. Determine the probablity of obtaining exactly four heads.

Solution

In a single throw of the coin, the probability of a head (and of a tail) is 1
2
.

Secondly, the probability that a particular four out of six throws will be heads, and the
other two tails, will be

1

2
.
1

2
.
1

2
.
1

2
.
[
1

2
.
1

2

]
=

1

26
=

1

64
.

Finally, the number of choices of four throws from six throws is

6C4 =
6!

2!4!
= 15.

Hence, the required probability of exactly four heads is 15
64

.

19.2.3 PERMUTATIONS OF SETS WITH SOME OBJECTS ALIKE

INTRODUCTORY EXAMPLE
Suppose twelve switch buttons are to be arranged in a row, and there are two red buttons,
three yellow and seven green. How many possible distinct patterns can be formed ?

Solution

If all twelve buttons were of a different colour, there would be 12! possible arrangements.
If we now colour two switches red, there will be only half the number of arrangements since
every pair of positions previously held by them would have counted 2! times; that is, twice.
If we then colour another three switches yellow, the positions previously occupied by them
would have counted 3! times; that is, 6 times, so we reduce the number of arrangements
further by a factor of 6.
Similarly, by colouring another seven switches green, we reduce the number of arrangements
further by a factor of 7!.

Hence, the final number of arrangements will be

12!

2!3!7!
= 7920.

This example illustrates another standard rule that, if we have n objects of which r1 are alike
of one kind, r2 are alike of another, r3 are alike of another ........and rk are alike of another,
then the number of permutations of these n objects is given by

n!

r1!r2!r3!...rk!

5



19.2.4 EXERCISES

1. Evaluate the following:

(a) 6P3; (b) 6C3; (c) 7P4; (d) 7C4.

2. Verify that nCn−r = nCr in the following cases:

(a) n = 7 and r = 2; (b) n = 10 and r = 3; (c) n = 5 and r = 2.

3. How many four digit numbers can be formed from the digits 1,3,5,7,8,9 if none of the
digits appears more than once in each number ?

4. In how many ways can three identical jobs be filled by 12 different people ?

5. From a bag containing 7 black balls and 5 white balls, how many sets of 5 balls, of
which 3 are black and two are white, can be drawn ?

6. In how many seating arrangements can 8 people be placed around a table if there are
3 who insist on sitting together ?

7. A commitee of 10 is to be selected from 6 lawyers 8 engineers and 5 doctors. If the com-
mitte is to consist of 4 lawyers, 3 engineers and 3 doctors, how many such committees
are possible ?

8. An electrical engineer is faced with 8 brown wires and 9 blue wires. If he is to connect
4 brown wires and 3 blue wires to 7 numbered terminals, in how many ways can this
be done ?

9. A railway coach has 12 seats facing backwards and 12 seats facing forwards, In how
many ways can 10 passengers be seated if 2 refuse to face forwards and 4 refuse to face
backwards ?

6



19.2.5 ANSWERS TO EXERCISES

1. (a) 120; (b) 20; (c) 840; (d) 35.

2. (a) 21; (b) 120; (c) 10.

3.

6P4 = 360.

4.

12C3 = 220.

5.

7C3 × 5C2 = 350.

6.

3!× 8× 5! = 5760.

7.

6C4 × 8C3 × 5C3 = 8400.

8.

8C4 × 9C3 × 7! = 29, 635, 200.

9.

12P2 × 12P4 × 18P4 = 115, 165, 670, 400.
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UNIT 19.3 - PROBABILITY 3 - RANDOM VARIABLES

19.3.1 DEFINING RANDOM VARIABLES

(i) The kind of experiments discussed in the theory of probability are usually what are known
as “random experiments”.

For example, in an experiment which involves throwing a die, suppose that the die is “unbi-
ased”. This means that it is just as likely to show one face as any other.

Similarly, drawing 6 numbers out of a possible 45 for a lottery is a random experiment,
provided it is just as likely for one number to be drawn as any other.

In general, an experiment is a random experiment if there is more than one possible outcome
(or event) and any one of those possible outcomes may occur. We assume that the outcomes
are mutually exclusive (see Unit 19.1, section 19.1.4).

The probabilities of the possible outcomes of a random experiment form a collection called
the “probability distribution” of the experiment. These probabilities need not be the
same as one another.

The complete list of possible outcomes is called the “sample space” of the experiment.

(ii) In a random experiment, each of the possible outcomes may, for convenience, be asso-
ciated with a certain numerical value called a “random variable”. This variable, which
we shall call x in general, makes it possible to refer to an outcome without having to use a
complete description of it.

In tossing a coin, for instance, we might associate a head with the number 1 and a tail with
the number 0; then we could state the probabilities of either a head or a tail being obtained
by means of the formulae

P (x = 1) = 0.5 and P (x = 1) = 0.5

Note:
There is no restriction on the way we define the values of x; it would have been just as correct
to associate a head with −1 and a tail with 1. But it is customary to assign the values of
random variables as logically as possible. For example, in discussing the probability that
two 6’s would be obtained in 5 throws of a dice, we could sensibly use x = 1, 2, 3, 4, 5 and 6,
respectively, for the results that a 1,2,3,4,5 and 6 would be thrown.
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(iii) It is usually necessary to distinguish between random variables which are “discrete”
and those which are “continuous”.

Discrete random variables may take only certain specified values, while continuous random
variables may take any value with in a certain specified range.

Examples of discrete random variables include those associated with the tossing of coins, the
throwing of dice and numbers of defective components in a batch from a production line.

Examples of continuous variables include those associated with persons’ height or weight,
lifetimes of manufactured components and rainfall figures.

Note:
For a random variable, x, the associated probabilities form a function, P (x), called the
“probability function”.

19.3.2 PROBABILITY DISTRIBUTION AND
PROBABILITY DENSITY FUNCTIONS

(a) Probability Distribution Functions

A “probability distribution function”, which will normally be denoted here by F (x), is
the relationship between a random variable, x, and the probability of obtaining any outcome
for which the random variable can take values up to and including x. In other words, it is
the probability, P (≤ x), that the random variable for the outcome is less than or equal to x.

(i) Probability distribution functions for discrete variables

By way of illustration, suppose that the number of ships arriving at a container terminal
during any one day can be 0,1,2,3 or 4, with respective probabilites 0.1, 0.3, 0.35, 0.2 and
0.05. The probabilites for outcomes other than those specified is taken to be zero.
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The graph of the probability distribution function is as follows:

-
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Arrivals

Prob.

The value of the probability distribution function at a value, x, of the random variable is
the sum of the probabilities to the left of, and including, x.

In view of the discontinuous nature of the graph, we have used “bullet” marks to indicate
which end of each horizontal line belongs to the graph.

(ii) Probability distribution functions for continuous variables

For a continuous random variable, the probability distribution function is defined in a similar
way as for a discrete variable. It measures (as before) the probability that the value of the
random variable is less than or equal to x.

By way of illustration, we shall quote, here, the example of an “exponential distribution”
in which it may be shown that the lifetime of a certain electronic component (in thousands
of hours) is represented by a probability distribution function

F (x) ≡
{

1− e−
x
2 when x ≥ 0;

0 when x < 0.
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The graph of the probability distribution function is as follows:

-

6
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(b) Probability Density Functions

In the case of continuous random variables, a second function, f(x) called the “probability
density function” is defined to be the derivative, with respect to x, of the probability
distribution function, F (x).

That is,

f(x) ≡ d

dx
[F (x)].

The probability density function measures the concentration of possible values of x.

In the previous example, the probability density function is therefore given by

f(x) ≡


1
2
e−

x
2 when x ≥ 0;

0 when x < 0
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The graph of the probability density function is as follows:

-
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We may observe that most components have short lifetimes, while a small number can survive
for much longer.

(c) Properties of probability distribution and probability density functions

The following properties are a consequence of the appropriate definitions:

(i)
lim

x→−∞
F (x) = 0 and lim

x→∞
F (x) = 1.

Proof:

It is impossible for a random variable to have a value less than −∞ and it is certain to have
a value less than ∞.

(ii) If x1 < x2, then F (x1) ≤ F (x2).

Proof:

The outcomes of an experiment with random variable values up to and including x2 includes
those outcomes with random variable values up to and including x1 so that F (x2) is as least
as great as F (x1).

Note:
Results (i) and (ii) imply that, for any value of x, the probability distribution function is
either constant or increasing between 0 and 1.
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(iii) The probability that an outcome will have a random variable value, x, within the range
x1 < x ≤ x2 is given by the expression

F (x2)− F (x1).

Proof:

From, the outcomes of an experiment with random variable values up to and including x2,
suppose we exclude those outcomes with random variable values up to and including x1.
The residue will be those outcomes with random variable values which lie within the range
x1 < x ≤ x2.

Thus, the difference between the values of the probability distribution function at two par-
ticular points is the probability that the value of the random variable will either lie between
those two points or will be equal to the higher of the two.

Note:
For a continuous random variable, this is also equal to the area under the graph of the
probability density function between the two given points, by virtue of the definition that
f(x) ≡ d

dx
[F (x)].

That is,

∫ x2

x1

f(x) dx.

(iv) ∫ ∞
−∞

f(x) dx = 1.

Proof:

The total area under the probability density function must be 1 since the random variable
must have a value somewhere.

EXAMPLE

For the distribution of component lifetimes (in thousands of hours) given earlier by

F (x) ≡
{

1− e−
x
2 when x ≥ 0;

0 when x < 0,
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determine the proportion of components which last longer than 3000 hours but less than or
equal to 6000 hours.

Solution

The probability that components have lifetimes up to and including 3000 hours is given by

F (3) = 1− e−
3
2 .

The probability that components have lifetimes up to and including 600 hours is given by

F (6) = 1− e−
6
2 = 1− e−3.

The probability that components last longer than 3000 hours but less than or equal to 6000
hours is thus given by

F (6)− F (3) = e−
3
2 − e−3 ' 0.173

The required proportion is thus approximately one in six.

19.3.3 EXERCISES

1. A coin is tossed three times and the random variable, x, represents the number of heads
minus the number of tails.

Construct a definition for the probability distribution function, F (x),

(a) if the coin is ‘fair’ (perfectly balanced);

(b) if the coin is biased so that a head is twice as likely to occur as a tail.

2. Construct a definition for the probability distribution function, F (x), for the sum, x,
of numbers obtained when a pair of dice is tossed.

3. A certain assembly process is such that the probability of success at each attempt is
0.2. The probability, P (x) that x independent attempts are needed to achieve success
is given by

P (x) ≡ (0.2)(0.8)x−1 x = 1, 2, 3, . . .

7



Plot a grap of the probability distribution function, F (x), and determine the probability
that success will be achieved by

(a) less than four independent attempts;

(b) more than three but less than or equal to five independent attempts.

4. The probability density function of a random variable, x, is given by

f(x) ≡


c√
x

for 0 < x < 4;

0 elswhere,

where c is a constant.

Determine

(a) the value of c;

(b) the probability distribution function, F (x);

(c) the probability that x > 1.

5. The shelf life (in hours) of a certain perishable packaged food is a random variable, x,
with probability density function, f(x) given by

f(x) ≡
{

20000(x + 100)−3 when x > 0;
0 otherwise.

Determine the probabilities that one of these packages will have a shelf life of

(a) at least 200 hours;

(b) at most 200 hours;

(c) more than 80 hours but less than or equal to 120 hours.

19.3.4 ANSWERS TO EXERCISES

1. (a)

F (x) ≡



1
8

for −3 ≤ x < −1;

1
2

for −1 ≤ x < 1;

7
8

for 1 ≤ x < 3;

1 for x ≥ 3.
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(b)

F (x) ≡



1
27

for −3 ≤ x < −1;

7
27

for −1 ≤ x < 1;

19
27

for 1 ≤ x < 3;

1 for x ≥ 3.

2.

F (x) ≡



1
36

for 2 ≤ x < 3;
1
12

for 3 ≤ x < 4;

1
6

for 4 ≤ x < 5:

5
18

for 5 ≤ x < 6;

5
12

for 6 ≤ x < 7;

7
12

for 7 ≤ x < 8.

13
18

for 8 ≤ x < 9;

5
6

for 9 ≤ x < 10;

11
12

for 10 ≤ x < 11;

35
36

for 11 ≤ x < 12;

1 for x ≥ 12.

3. (a) 0.488 (b) 0.3123

4. (a) c = 1
4
;

(b)

F (x) =


0 when x < 0;

1
2

√
x when 0 ≤ x ≤ 4;

1 when x > 4.

(c) 1
2

5. (a) 1
9
; (b) 3

4
; (c) 0.102
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UNIT 19.4 - PROBABILITY 4
MEASURES OF LOCATION AND DISPERSION

19.4.1 COMMON TYPES OF MEASURE

We include, here three common measures of location (or central tendency), and one common
measure of dispersion (or scatter), used in the discussion of probability distributions.

(a) The Mean

(i) For Discrete Random Variables

If the values x1, x2, x3, . . . . , xn of a discrete random variable, x, have probabilities
P1, P2, P3, . . . . , Pn, respectively, then Pi represents the expected frequency of xi divided
by the total number of possible outcomes. For example, if the probability of a certain value
of x is 0.25, then there is a one in four chance of its occurring.

The arithmetic mean, µ, of the distribution may therefore be given by the formula

µ =
n∑

i=1

xiPi.

(ii) For Continuous Random Variables

In this case, it is necessary to use the probability density function, f(x), for the distribution
which is the rate of increase of the probability distribution function, F (x).

For a small interval, δx of x-values, the probability that any of these values occurs is ap-
proximately f(x)δx, which leads to the formula

µ =
∫ ∞
−∞

xf(x) dx.

(b) The Median

(i) For Discrete Random Variables

The median provides an estimate of the middle value of x, taking into account the frequency
at which each value occurs. More precisely, it is a value, m, of the random variable, x, for
which

P (x ≤ m) ≥ 1

2
and P (x ≥ m) ≥ 1

2
.

1



The median for a discrete random variable may not be unique (see Example 1, on page 3).

(ii) For Continuous Random Variables

The median for a continuous random variable is a value of the random variable, x, for which
there are equal chances of x being greater than or less than the median itself. More precisely,
it may be defined as the value, m, for which P (x ≤ m) = F (m) = 1

2
.

Note:
Other measures of location are sometimes used, such as “quartiles”, “deciles” and “per-
centiles”, which divide the range of x values into four, ten and one hundred equal parts,
respectively. For example, the third quartile of a distribution function, F (x), may be defined
as a value, q3, of the random variable, x, such that

F (q3) =
3

4
.

(c) The Mode

The mode is a measure of the most likely value occurring of the random variable, x.

(i) For Discrete Random Variables

In this case, the mode is any value of x with the highest probability, and, again, it may not
be unique (see Example 1, on page 3).

(ii) For Continuous Random Variables

In this case, we require a value of x for which the probability density function (measuring
the concentration of x values) has a maximum.

(d) The Standard Deviation

The most common meaure of dispersion (or scatter) for a probability distribution is the
“standard deviation”, σ.

(i) For Discrete Random Variables

In this case, the standard deviation is defined by the formula

σ =

√√√√ n∑
i=1

(xi − µ)2P (x).

2



(ii) For Continuous Random Variables

In this case, the standard deviation is defined by the formula

σ =

√∫ ∞
−∞

(x− µ)2f(x) dx,

where f(x) denotes the probability density function.

Each measures the dispersion of the x values around the mean, µ.

Note:
σ2 is known as the “variance” of the probability distribution.

EXAMPLES

1. Determine (a) the mean, (b) the median, (c) the mode and (d) the standard deviation
for a simple toss of an unbiased die.

Solution

(a) The mean is given by

µ =
6∑

i=1

i× 1

6
=

22

6
= 3.5

(b) Both 3 and 4 on the die fit the definition of a median, since

P (x ≤ 3) =
1

2
, P (x ≥ 3) =

2

3

and

P (x ≤ 4) =
2

3
, P (x ≥ 4) =

1

2
.

(c) All six outcomes count as a mode since they all have a probability of 1
6
.

(d) The standard deviation is given by

σ =

√√√√ 6∑
i=1

1

6
(i− 3.5)2 ' 2.917
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2. Determine (a) the mean, (b) the median, (c) the mode and (d) the standard deviation
for the distribution function

F (x) ≡
{

1− e−
x
2 when x ≥ 0;

0 when x < 0.

Solution

First, we need the probability density function, f(x), which is given by

f(x) ≡


1
2
e−

x
2 when x ≥ 0;

0 when x < 0

Hence,

(a)

µ =
∫ ∞
0

1

2
xe−

x
2 dx,

which, on integration by parts, gives

µ =
[
−xe−

x
2

]∞
0

+
∫ ∞
0

e−
x
2 dx =

[
−2e−

x
2

]∞
0

= 2.

(b) The median is the value, m, for which

F (m) =
1

2
.

That is,

1− e−
m
2 =

1

2
,

giving

−m

2
= ln

[
1

2

]
;

and, hence, m ' 1.386.

(c) The mode is zero, since the maximum value of the probability density function
occurs when x = 0.
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(d) The standard deviation is given by

σ2 =
∫ ∞
0

1

2
(x− 2)2e−

x
2 dx,

which, on integration by parts, gives

σ2 = −
[
(x− 2)2e−

x
2

]∞
0

+
∫ ∞
0

2(x− 2)e−
x
2 dx

= 4−
[
4(x− 2)e−

x
2

]∞
0

4e−
x
2 dx = 4.

Thus σ = 2.

19.4.2 EXERCISES

1. A probability function, P (x), is defined by the following table:

x 0 1 2 3 4 5 6
P (x) 0.17 0.29 0.27 0.16 0.07 0.03 0.01

Determine (a) the mean, (b) the median, (c) the mode and (d) the standard deviaton
of this distribution.

2. A certain assembly process is such that the probability of success at each attempt is
0.2. The probability, P (x) that x independent attempts are needed to achieve success
is given by

P (x) ≡ (0.2)(0.8)x−1 x = 1, 2, 3, . . .

Determine (a) the mean, (b) the median and (c) the standard deviation of this distri-
bution.

3. The running distance (in thousands of kilometres) which car owners achieve from a
certain type of tyre is a random variable with probability density function, f(x), where

f(x) ≡


1
30

e−x/30 when x > 0;

0 when x ≤ 0,
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Determine

(a) the probability that one of these tyres will last at most 19000km;

(b) (i) the mean, (ii) the median and (iii) the standard deviation of the distribution.

4. The probability density function, f(x), of a random variable, x, is defined by

f(x) ≡
{

30x2(1− x)2 when 0 < x < 1;
0 otherwise.

Determine the probability that x will take a value within two standard deviations of its
mean.

5. The probability density function, f(x), of a random variable, x, is given by

f(x) ≡


1
12

xe−x2/12 when x > 0;

0 otherwise.

Determine (a) the median and (b) the mode for this distribution. Show also, (c), that
the mean, µ, is given by

µ =
∫ ∞
0

e−x2/12 dx.

19.4.3 ANSWERS TO EXERCISES

1. (a) Mean = 1.8; (b) median = 2; (c) mode = 1; (d) standard deviation = 1.34

2. (a) Mean = 5; (b) median = 3; (c) standard deviation = 4.47

3. (a) 0.47; (b) (i) mean = 30; (ii) median = 20.8; (iii) standard deviation = 30.

4. 0.969

5. (a) Median =
√

12 ln 2; (b) mode =
√

6.
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UNIT 19.5 - PROBABILITY 5 - THE BINOMIAL DISTRIBUTION

19.5.1 INTRODUCTION AND THEORY

In this Unit, we shall be concerned, firstly, with probability problems having only two events
(which are mutually exclusive and independent), although many trials may be possible. For
example, the pairs of events could be “up and down”, “black and white”, “good and bad”,
and, in general, “successful and unsuccessful”.

Statement of the problem

Suppose that the probability of success in a single trial is unaffected when successive trials
are carried out (that is, we have independent events). Then what is the probability that, in
n successive trials, exactly r will be successful ?

General Analysis of the problem

Let us build up the solution in simple stages:

(a) If p is the probability of success in a single trial, then the probability of failure is 1−p = q,
say.

(b) In the following table, let S stand for success and let F stand for failure. The table shows
the possible results of one, two or three trials and their corresponding probabilities:

NO. OF TRIALS POSSIBLE RESULTS RESPECTIVE PROBABILITIES
1 F,S q, p
2 FF,FS,SF,SS q2, qp, pq, p2

3 FFF,FFS,FSF,FSS, q3, q2p, q2p, qp2,
SFF,SFS,SSF,SSS q2p, qp2, qp2, p3

(c) Summary

(i) In one trial, the probabilities that there will be exactly 0 or exactly 1 successes are the
respective terms of the expression

q + p.

(ii) In two trials, the probabilities that there will be exactly 0, exactly 1 or exactly 2 successes
are the respective terms of the expression

q2 + 2qp + p2; that is, (q + p)2.

1



(iii) In three trials, the probabilities that there will be exactly 0, exactly 1, exactly 2 or
exactly 3 successes are the respective terms of the expression

q3 + 3q2p + 3qp2 + p3; that is, (q + p)3.

(iv) In any number, n, of trials, the probabilities that there will be exactly 0, exactly 1,
exactly 2, exactly 3, ...... or exactly n successes are the respective terms in the binomial
expansion of the expression

(q + p)n.

(d) MAIN RESULT:

The probability that, in n trials, there will be exactly r successes, is the term containing pr

in the binomial expansion of (q + p)n.

It can be shown that this is the value of

nCrq
n−rpr.

EXAMPLES

1. Determine the probability that, in 6 tosses of a coin, there will be exactly 4 heads.

Solution
q = 0.5, p = 0.5, n = 6, r = 4.

Hence, the required probability is given by

6C4.(0.5)2.(0.5)4 =
6!

2!4!
.
1

4
.
1

16
=

15

64
.

2. Determine the probability of obtaining the most probable number of heads in 6 tosses
of a coin.

Solution

The most probable number of heads is given by 1
2
× 6 = 3.

The probability of obtaining exactly 3 heads is given by

6C3.(0.5)3(0.5)3 =
6!

3!3!
.
1

8
.
1

8
=

20

64
' 0.31
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3. Determine the probability of obtaining exactly 2 fives in 7 throws of a die.

Solution

q = 5
6
, p = 1

6
, n = 7, r = 2.

Hence, the required probability is given by

7C2.
(

5

6

)5

.
(

1

6

)2

=
7!

5!2!
.
(

5

6

)5

.
(

1

6

)2

' 0.234

4. Determine the probability of throwing at most 2 sixes in 6 throws of a die.

Solution

The phrase “at most 2 sixes” means exactly 0, or exactly 1, or exactly 2. Hence, we
add together the first three terms in the expansion of (q + p)6, where q = 5

6
and p = 1

6
.

It may be shown that

(q + p)6 = q6 + 6q5p + 15q4p2 + ......

and, by substituting for q and p, the sum of the first three terms turns out to be

21875

23328
' 0.938

5. It is known that 10% of certain components manufactured are defective. If a random
sample of 12 such components is taken, what is the probability that at least 9 are
defective ?

Solution

Firstly, we note how the information suggests that removal of components for exami-
nation does not affect the probability of 10%. This is reasonable, since our sample is
almost certainly very small compared with all components in existence.

Secondly, the probability of success in this example is 0.1, even though it refers to
defective items, and hence the probability of failure is 0.9.

Thirdly, using p = 0.1, q = 0.9, n = 12, we require the probabilities (added together)
of exactly 9, 10, 11 or 12 defective items and these are the last four terms in the
expansion of (q + p)n.

That is,

12C9.(0.9)3.(0.1)9 + 12C10.(0.9)2.(0.1)10 + 12C11.(0.9).(0.1)11 + (0.1)12 ' 1.658× 10−7.

Note:
The use of the “binomial distribution” becomes very tedious when the number of trials
is large and two other standard distributions (called the “normal distribution” and the
“Poisson distribution”) can sometimes be used.
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19.5.2 EXERCISES

1. A coin is tossed six times. What is the probability of getting exactly four heads ?

2. What is the probability of throwing at least four 7’s in five throws of a pair of dice ?

3. In a roll of five dice, what is the probability of getting exactly four faces alike ?

4. If three dice are thrown, determine the probability that

(a) all three will show the number 4;

(b) all three will be alike;

(c) two will show the number 4 and the third, something else;

(d) all three will be different;

(e) only two will be alike.

5. Hospital records show that 10% of the cases of a certain disease are fatal. If five patients
suffer from this disease, determine the probability that

(a) all will recover;

(b) at least three will die;

(c) exactly three will die;

(d) a particular three will die and the others survive.

6. A particular student can solve, on average, half of the problems given to him. In order
to pass the course, he is required to solve seven out of ten problems on an examination
paper. What is the probability that he will pass ?

19.5.3 ANSWERS TO EXERCISES

1.

15× (0.5)4 × 0.5 ' 0.47

2. (
1

6

)5

+ 5×
(

1

6

)4

×
(

5

6

)
' 0.0032

3.

6× 5×
(

1

6

)4

×
(

5

6

)
' 0.019
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4. (a) (
1

6

)3

' 0.0046;

(b)

3×
(

1

6

)2

×
(

5

6

)
' 0.069;

(c)

6×
(

1

6

)3

' 0.028;

(d)

1− 6

[(
1

6

)3

+ 3×
(

1

6

)2

×
(

5

6

)]
' 0.56;

(e)

6× 6×
(

1

6

)3

' 0.168

5. (a)

(0.9)5;

(b)

(0.1)5 + 5× (0.9)× (0.1)4 + 10× (0.9)2 × (0.1)3 ' 0.0086;

(c)

10× (0.9)2 × (0.1)3 ' 0.0081;

(d)

10× (0.9)2 × (0.1)3

5C3

' 0.00081

6.

(1 + 10 + 45 + 120)× (0.5)10 ' 0.17
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UNIT 19.6 - PROBABILITY 6

STATISTICS FOR THE BINOMIAL DISTRIBUTION

19.6.1 CONSTRUCTION OF HISTOGRAMS

Elementary discussion on the presentation of data, in the form of frequency tables, histograms
etc., usually involves experiments which are actually carried out.

But we illustrate now how the binomial distribution may be used to estimate the results of
a certain kind of experiment before it is performed.

EXAMPLE

For four coins, tossed 32 times, construct a histogram showing the expected number of
occurrences of 0,1,2,3,4..... heads.

Solution

Firstly, in a single toss of the four coins, the probability of head (or tail) for each coin is 1
2
.

The terms in the expansion of
(

1
2

+ 1
2

)4
give the probabilities of exactly 0,1,2,3 and 4 heads,

respectively.

The expansion is

(
1

2
+

1

2

)4

≡
(

1

2

)4

+ 4
(

1

2

)3 (1

2

)
+ 6

(
1

2

)2

+ 4
(

1

2

)(
1

2

)2

+
(

1

2

)4

.

That is,

(
1

2
+

1

2

)4

≡
(

1

2

)4

(1 + 4 + 6 + 4 + 1),

showing that the probabilities of 0,1,2,3 and 4 heads in a single toss of four coins are
1
16

, 1
4
, 6

16
, 1

4
, and 1

16
, respectively.

Therefore, in 32 tosses of four coins, we may expect 0 heads, twice; 1 head, 8 times; 2 heads,
12 times; 3 heads, 8 times and 4 heads, twice.

The following histogram uses class-intervals for which each member is, in fact, situated at
the mid-point:
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2

8

12 6

0 1 2 3 4

No. of heads in 32 tosses of 4 coins

Freq.

Notes:

(i) The only reason that the above histogram is symmetrical in shape is that the probability
of success and failure are equal to each other, so that the terms of the binomial expansion
are, themselves, symmetrical.

(ii) Since the widths of the class-intervals in the above histogram are 1, the areas of the
rectangles are equal to their heights. Thus, for example, the total area of the first three
rectangles represents the expected number of times of obtaining at most 2 heads in 32 tosses
of 4 coins.

19.6.2 MEAN AND STANDARD DEVIATION OF A
BINOMIAL DISTRIBUTION

THEOREM

If p is the probability of success of an event in a single trial and q is the probability of
its failure, then the binomial distribution, giving the expected frequencies of 0,1,2,3,.....n
successes in n trials, has a mean of np and a standard deviation of

√
npq, irrespective of the

number of times the experiment is to be carried out.
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Proof:

(a) The Mean

From the binomial expansion formula,

(q + p)n = qn + nqn−1p +
n(n− 1)

2!
qn−2p2 +

n(n− 1)(n− 2)

3!
qn−3p3 + . . . + nqpn−1 + pn.

Hence, if the n trials are made N times, the average number of successes is equal to the
following expression, multiplied by N , then divided by N :

0× qn + 1× nqn−1p + 2× n(n− 1)

2!
qn−2p2+

3× n(n− 1)(n− 2)

3!
qn−3p3 + . .(n− 1)× nqpn−1 + npn.

That is, the mean is

np

(
qn−1 + (n− 1)qn−2p +

(n− 1)(n− 2)

2
qn−3p2 + . . . + (n− 1)qpn−2 + pn−1

)

= np(q + p)n−1 = np since q + p = 1.

(b) The Standard Deviation

For the standard deviation, we observe that, if fr is the frequency of r successes when the n
trials are conducted N times, then

fr = N
n!

(n− r)!r!
qn−rpr.

We use this, first, to establish a result for

n∑
r=0

r2fr.

3



For example,

02f0 = 0.Nqn = 0 = 0.f0.

12f1 = 1.Nnqn−1p = 1.f1.

22f2 =

2Nn(n− 1)qn−2p2 = Nn(n− 1)qn−2p2 + Nn(n− 1)p2qn−2

= 2f2 + Nn(n− 1)p2qn−2;

32f3 =

3N
n(n− 1)(n− 2)

2!
qn−3p3 = N

n(n− 1)(n− 2)

2!
qn−3p3 + Nn(n− 1)p2(n− 2)qn−3p

= 3f3 + Nn(n− 1)p2(n− 2)qn−3p;

42f4 =

4N
n(n− 1)(n− 2)(n− 3)

3!
qn−4p4 = N

n(n− 1)(n− 2)(n− 3)

3!
qn−4p4+Nn(n−1)p2 (n− 2)(n− 3)

2!
qn−4p2

= 4f4 + Nn(n− 1)p2 (n− 2)(n− 3)

2!
qn−4p2;

and, in general, when r ≥ 2,

r2fr =

N
n(n− 1)(n− 2)....(n− r + 1)

(r − 1)!
+Nn(n−1)p2qn−rpr = rfr+Nn(n−1)p2 (n− 2)!

(n− r)!(r − 2)!
qn−rpr−2.

This result, together with those for 02.f0 and 12f1, shows that

n∑
r=0

r2fr =
n∑

r=0

rfr + Nn(n− 1)p2
n∑

r=2

(n− 2)!

(n− r)!(r − 2)!
qn−rpr−2.

4



That is,

n∑
r=0

r2fr = Nnp + Nn(n− 1)p2(q + p)n−2 = Nnp + Nn(n− 1)p2,

since q + p = 1.

It was also established, in Unit 18.3, that the standard deviation of a set, x1, x2, x3, . . . xm,
of m observations, with a mean value of x, is given by the formula

σ2 =
1

m

m∑
i=1

x2
i − x2,

which, in the present case, may be written

σ2 =
1

N

n∑
r=0

r2fr −
1

N2

(
n∑

r=0

rfr

)2

.

Hence,

σ2 =
1

N

(
Nnp + Nn(n− 1)p2

)
− 1

N2
(Nnp)2,

which gives

σ2 = np + n2p2 − np2 − n2p2 = np(1− p) = npq;

and so,

σ =
√

npq.

5



ILLUSTRATION

For direct calculation of the mean and the standard deviation for the data in the previous
coin-tossing problem, we may use the following table, in which xi denotes numbers of heads
and fi denotes the corresponding expected frequencies:

xi fi fixi fix
2
i

0 2 0 0
1 8 8 8
2 12 24 48
3 8 24 72
4 2 8 32

Totals 32 64 160

The mean is given by

x =
64

32
= 2 (obviously),

which agrees with np = 4× 1
2
.

The standard deviation is given by

σ =

√[
160

32
− 22

]
= 1,

which agrees with
√

npq =
√

4× 1
2
× 1

2
.

Note:
If the experiment were carried out N times instead of 32 times, all values in the last three
columns of the above table would be multiplied by a factor of N

32
, which would then cancel

out in the remaining calculations.

EXAMPLE

Three dice are rolled 216 times. Construct a binomial distribution and show the frequencies
of occurrence for 0,1,2 and 3 sixes.

Evaluate the mean and the standard deviation of the distribution.
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Solution

First of all, the probability of success in obtaining a six with a single throw of a die is 1
6
, and

the corresponding probability of failure is 5
6
.

For a single throw of three dice, we require the expansion

(
1

6
+

5

6

)3

≡
(

1

6

)3

+ 3
(

1

6

)2 (5

6

)
+ 3

(
1

6

)(
5

6

)2

+
(

5

6

)3

,

showing that the probabilities of 0,1,2 and 3 sixes are 125
216

, 75
216

, 15
216

and 1
216

, respectively.

Hence, in 216 throws of the three dice we may expect 0 sixes, 125 times; 1 six, 75 times; 2
sixes, 15 times and 3 sixes, once. The corresponding histogram is as follows:

-

125

75

15

6

0 1 2 3

No. of sixes in 216 throws of 3 dice

Freq.

From the previous Theorem, the mean value is

3× 1

6
=

1

2

and the standard deviation is

√
3× 1

6
× 5

6
=

√
15

6
.
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19.6.3 EXERCISES

1. Four dice are rolled 81 times. If less than 5 on a die is considered to be a success, and
everything else a failure,

(a) draw the corresponding histogram for the expected frequencies of success;

(b) determine the expected number of times of obtaining at least three successes among
the four dice;

(c) shade the area of the histogram which is a measure of the result in (c);

(d) calculate the mean and the standard deviation of the frequency distribution in (a).

2. In a seed-viability test, 450 seeds were placed on a filter-paper in 90 rows of 5. The
number of seeds that germinated in each row were counted, and the results were as
follows:

No. of seeds germinating per row 0 1 2 3 4 5
Observed Frequency of rows 0 1 11 30 38 10

If the germinating seeds were distributed, at random, among the rows, we would expect
a binomial distribution with an index of n = 5.

Determine

(a) the average number of seeds germinating per row;

(b) the probability of a single seed germinating;

(c) the expected frequencies of rows for each number of seeds germinating;

Draw the histogram for the expected frequencies and the histogram for the observed
frequencies.

8



19.6.4 ANSWERS TO EXERCISES

1. (a) The histogram is as follows:

-1

8

16

24

32
6

0 1 2 3 4

No. of “less than 5’s” in 81 throws of 4 dice

Freq.

(b) Expected frequency of 3 or 4 successes = 32 + 16 = 48;

(c) Shade the last two rectangles on the right of the histogram;

(d) Mean = 4× 2
3

= 8
3

and Standard Deviation =
√

4× 2
3
× 1

3
= 2

√
2

3
.

2. (a) Average number of seeds germinating per row is 325
90

= 3.50;

(b) Probability of a single seed germinating is 3.5
5

= 7
10

;

(c) Expected frequencies for 0,1,2,3,4,5 seeds are 0.2187, 2.5515, 11.9070, 27.7830,
32.4135, 15.1263 respectively.

(d) The histograms are as follows:

-

10

20

30

40 6

0 1 2 3 4

No. of seeds germinating

Estimated
no.
of
rows
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-

10

20

30

40 6

0 1 2 3 4

No. of seeds germinating

Observed
no.
of
rows
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UNIT 19.7 - PROBABILITY 7

THE POISSON DISTRIBUTION

19.7.1 THE THEORY

We recall that, in a binomial distribution of n trials, the probability, Pr, that an event occurs
exactly r times out of a possible n is given by

Pr =
n!

(n− r)!r!
prqn−r,

where p is the probability of success in a single trial and q = 1 − p is the probability of
failure.

Now suppose that n is very large compared with r and that p is very small compared with
1.

Then,

(a)
n!

(n− r)!
= n(n− 1)(n− 2).....(n− r + 1) ' nr.

ILLUSTRATION

If n = 120 and r = 3, then

n!

(n− r)!
=

120!

117!
= 120× 119× 118 ' 1203.

(b)
qr = (1− p)r ' 1,

so that

qn−r ' qn = (1− p)n.

1



We may deduce that

Pr '
nrpr(1− p)n

r!
=

(np)r(1− p)n

r!

or

Pr '
(np)r

r!

[
1− np +

n(n− 1)

2!
p2 − n(n− 1)(n− 2)

3!
p3 + . . . .

]

' (np)r

r!

[
1− np +

(np)2

2!
− (np)3

3!
+ . . . .

]
.

Hence,

Pr '
(np)r

r!
e−np.

The number, np, in this formula is of special significance, being the average number of
successes to be expected a single set of n trials.

If we denote np by µ, we obtain the “Poisson distribution” formula,

Pr '
µre−µ

r!
.

Notes:

(i) Although the formula has been derived from the binomial distribution, as an approx-
imation, it may also be used in its own right, in which case we drop the approximation
sign.

(ii) The Poisson distribution is more use than the binomial distribution when n is a very large
number, the binomial distribution requiring the tedious evaluation of its various coefficients.

(iii) The Poisson distribution is of particular use when the average frequency of occurrence
of an event is known, but not the number of trials.

2



EXAMPLES

1. The number of cars passing over a toll-bridge during the time interval from 10a.m. until
11a.m. is 1,200.

(a) Determine the probability that not more than 4 cars will pass during the time
interval from 10.45a.m. until 10.46a.m.

(b) Determine the probability that 5 or more cars pass during the same interval.

Solution

The number of cars which pass in 60 minutes is 1200, so that the average number of
cars passing, per minute, is 20 = µ.

(a) The probability that not more than 4 cars pass in a one-minute interval is the sum
of the probabilities for 0,1,2,3 and 4 cars.

That is,

4∑
r=0

(20)re−20

r!
=

[
(20)0

0!
+

(20)1

1!
+

(20)2

2!
+

(20)3

3!
+

(20)4

4!

]
e−20 =

8221e−20 ' 1.69× 10−5.

(b) The probability that 5 or more cars will pass in a one-minute interval is the proba-
bility of failure in (a). In other words,

1−
4∑

r=0

(20)re−20

r!
=

1− 8221e−20 ' 0.99998

2. A company finds that, on average, there is a claim for damages which it must pay 7
times in every 10 years. It has expensive insurance to cover this situation.

The premium has just been increased, and the firm is considering letting the insurance
lapse for 12 months as it can afford to meet a single claim.
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Assuming a Poisson distribution, what is the probability that there will be at least two
claims during the year ?

Solution

Using µ = 7
10

= 0.7, the probability that there will be at most one claim during the
year is given by

P0 + P1 = e−0.7 + e−0.70.7 = e0.7(1 + 0.7).

The probability that there will be at least two claims during the year is given by

1− e−0.7(1 + 0.7) ' 0.1558

3. There is a probability of 0.005 that a welding machine will produce a faulty joint when
it is operated. The machine is used to weld 1000 rivets. Determine the probability that
at least three of these are faulty.

Solution

First, we have µ = 0.005× 1000 = 5.

Hence, the probability that at most two will be faulty is given by

P0 + P1 + P2 = e−5

[
50

0!
+

51

1!
+

52

2!

]
.

That is,

e−5[1 + 5 + 12.5] ' 0.125

Hence, the probability that at least three will be faulty is approximately

1− 0.125 = 0.875

4



19.7.2 EXERCISES

1. The probability that a glass fibre will shatter during an experiment is believed to follow
a Poisson distribution.

In a certain apparatus, it was found that, on average, 7 glass fibres shattered.

Determine the probability that, during a single demonstration of the experiment,

(a) two glass fibres will shatter;

(b) at least one glass fibre will shatter.

2. A major airline operates 350 flights per day throughout the world. The probability that
a flight will be delayed for more than one hour, for any reason, is 0.7%. If more than
four flights suffer such delays in one day, the implications for route organisation and
crewing become serious. Calling such a day a “bad day”, determine the probabilities
that

(a) any particular day is a bad day;

(b) at most two bad days occur in one week;

(c) more than 50 bad days occur in a year of 365 days.

State your answers correct to three significant figures.

3. It is known that 3% of bolts made by a certain machine are defective. If the bolts
are packaged in boxes of 50, determine the probability that a given box will contain 4
defectives.

4. If 0.04% of cars break down while driving through a certain tunnel, determine the
probability that at most 2 break down out of 2000 cars entering the tunnel on a given
day. State your answer correct to three significant figures.

19.7.3 ANSWERS TO EXERCISES

1. (a) 2.28× 10−3; (b) 0.0676

2. (a) 0.102; (b) 0.128; (c) 0.011

3. 0.047 using µ = 1.5

4. 0.952 using µ = 0.8
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UNIT 19.8 - PROBABILITY 8

THE NORMAL DISTRIBUTION

19.8.1 LIMITING POSITION OF A FREQUENCY POLYGON

The distribution considered here is also appropriate to examples where the number of tri-
als is large and, hence, the calculation of frequencies and probabilities, using the binomial
distribution, would be inconvenient.

We shall introduce the “normal distribution” by considering the histograms of the bino-
mial distribution for a toss of 32 coins as the number of coins increases.

The probability of obtaining a head is 1
2

and the probability of obtaining a tail is also 1
2
.

(i) One Coin

32
(

1

2
+

1

2

)1

= 32
(

1

2
+

1

2

)
= 16 + 16.

-

16
6

0 1

No. of heads in 32 tosses of 1 coin

Freq.
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(ii) Two Coins

32
(

1

2
+

1

2

)2

= 32

([
1

2

]2
+ 2

[
1

2

] [
1

2

]
+
[
1

2

]2)
= 8 + 16 + 8.

-

16

12

6

0 1 2

No. of heads in 32 tosses of 2 coins

Freq.

(iii) Three Coins

32
(

1

2
+

1

2

)3

= 32

([
1

2

]3
+ 3

[
1

2

]2 [1
2

]
+ 3

[
1

2

] [
1

2

]2
+
[
1

2

]3)
= 4 + 12 + 12 + 4.

-

12

6

0 1 2 3

No. of heads in 32 tosses of 3 coins

Freq.
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(iv) Four Coins

32
(

1

2
+

1

2

)4

= 32

([
1

2

]4
+ 4

[
1

2

]3 [1
2

]
+ 6

[
1

2

]2[1
2

]2
+ 4

[
1

2

] [
1

2

]3
+
[
1

2

]4)
= 2+8+12+8+2.

-

2

12

8

6

0 1 2 3 4

No. of heads in 32 tosses of 4 coins

Freq.

It is apparent that, as the number of coins increases, the frequency polygon (consisting of the
straight lines joining the midpoints of the tops of each rectangle) approaches a symmetrical
bell-shaped curve.

This, of course, is true only when the histogram itself is either symmetrical or nearly sym-
metrical.

DEFINITION

As the number of trials increases indefinitely, the limiting position of the frequency polygon
is called the “normal frequency curve”.

THEOREM

In a binomial distribution for N samples of n trials each, where the probability of success in
a single trial is p, it may be shown that, as n increases indefinitely, the frequency polygon
approaches a smooth curve, called the “normal curve”, whose equation is

y =
N

σ
√

2π
e−

(x−x)2

2σ2 .
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In this equation

x is the mean of the binomial distribution = np;

σ is the standard deviation of the binomial distribution =
√

np(1− p);

y is the frequency of occurence of the value, x.

For example, the histogram for 32 tosses of 4 coins approximates to the following normal
curve:

-

y

x

2

12

8

6

0 1 2 3 4

Notes:

(i) We omit the proof of the Theorem since it is beyond the scope of the present text.

(ii) The larger the value of n, the better is the level of approximation.

(iii) The normal curve is symmetrical about the straight line x = x, since the value of y is
the same at x = x± h for any number, h.

(iv) If the relative frequency (or probability) with which the value, x, occurs is denoted by
P , then P = y/N and the above relationship can be written

P =
1

σ
√

2π
e−

(x−x)2

2σ2 ,

the graph of which is called the “normal probability curve”.
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(v) Symmetrical curves are easier to deal with if the vertical axes of co-ordinates is the line
of symmetry.
The normal probability curve can be simplified if we move the origin to the point (x, 0) and
plot Pσ on the vertical axis instead of P .

Letting Pσ = Y and x−x
σ

= X the equation of the normal probability curve becomes

Y =
1√
2π

e−
X2

2 ,

which represents the “standard normal probability curve”.

From any point on it, we may obtain the values of the original P and x values by using the
formulae

x = σX + x and P =
Y

σ
.

-

6

X

Y

O

(vi) If the probability of success, p, in a single trial is not equal to, or approximately equal
to, 1

2
, then the distribution given by the normal frequency curve and the two subsequent

curves will be a poor approximation and is seldom used for such cases.

19.8.2 AREA UNDER THE NORMAL CURVE

For the histogram of a binomial distribution, corresponding to values of x, suppose that
x = a and x = b are the values of x at the base-centres of two particular rectangles, where
b > a and all rectangles have width 1.
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Then, the area of the histogram from x = a− 1
2

to x = b + 1
2

represents the number of times
which we can expect values of x, between x = a and x = b inclusive, to occur.

Consequently, for a large number of trials, we may use the area under the normal curve
between x = a− 1

2
and x = b + 1

2
.

In a similar way, the probability that x will lie between x = a and x = b is represented by
the area under the normal probability curve from x = a − 1

2
and x = b + 1

2
. We note that

the total area under this curve must be 1, since it represents the probability that any value
of x will occur (a certainty).

In order to make use of a standard normal probabilty curve for the same purpose, the
conversion formulae from x to X and P to Y must be used.

Note:
Tables are commercially available for the area under a standard normal probability curve;
and, in using such tables, the above conversions will usually be necessary. A sample table is
given in an appendix at the end of this unit.

EXAMPLE

If 12 dice are thrown, determine the probability, using the normal probability curve approx-
imation, that 7 or more dice will show a 5.

Solution

For this example, we use p = 1
6
, q = 5

6
, n = 12 and we need the area under the normal

probability curve from x = 6.5 to x = 12.5.

The mean of the binomial distribution, in this case, is x = 12× 1
6

= 2.

The standard deviation is σ =
√

2× 1
6
× 5

6
'
√

1.67 ' 1.29.

The required area under the standard normal probability curve will be that lying between

X =
6.5− 2

1.29
' 3.49 and X =

12.5− 2

1.29
' 8.14

In practice, we take the whole area to the right of X = 3.49 since the area beyond X = 8.14
is negligible.

Also, the total area to the right of X = 0 is 0.5; and, hence, the required area is 0.5 minus
the area from X = 0 to X = 3.49.
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From tables, the required area is 0.5−0.4998 = 0.0002 and this is the probability that, when
12 dice are thrown, 7 or more will show a 5.

Note:
If we had required the probability that 7 or fewer dice show a 5, we would have needed the
area under the normal probability curve from x = −0.5 to x = 7.5. This is equivalent to
taking the whole of the area under the standard normal probability curve which lies to the
left of

X =
7.5− 2

1.29
' 4.26

19.8.3 NORMAL DISTRIBUTION FOR CONTINUOUS VARIABLES

So far, the variable, x, considered in a Normal distribution has been “discrete”; that is, x
has been able to take only the specific values 0,1,2,3.....etc.

Here, we consider the situation when x is a “continuous” variable; that is, it may take any
value within a certain range appropriate to the problem under consideration.

For a large number of observations of a continuous variable, the corresponding histogram
need not have rectangles of class-width 1 but of some other number, say c.

In this case, it may be shown that the normal curve approximation to the histogram has
equation

y =
Nc

σ
√

2π
e−

(x−x)2

2σ2 .

The smaller is the value of c, the larger is the number of rectangles and the better is the
approximation supplied by the curve.

If we wished to calculate the number of x-values lying between x = a and x = b (where
b > a), we would need to calculate the area of the histogram from x = a to x = b inclusive,
then divide by c, since the base-width is no longer 1.

We conclude that the number of these x-values approximates to the area under the normal
curve from x = a to x = b; and similarly, the area under the normal probability curve, from
x = a to x = b gives an estimate for the probability that values of x between x = a and
x = b will occur.
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EXAMPLE

Given a normal distribution of a continuous variable, x, with N = 2000, x = 20 and σ = 5,
determine

(a) the number of x-values lying between 12 and 22;

(b) the number of x-values larger than 30.

Solution

(a) The area under the normal probability curve between x = 12 and x = 22 is the area
under the standard normal probability curve from

X =
12− 20

5
= −1.6 to X =

22− 20

5
= 0.4

and, from tables, this is 0.4452 + 0.1554 = 0.6006

Hence, the required number of values is approximately 0.6006× 2000 ' 1201.

(b) The total area under the normal probability curve to the right of x = 30 is the area
under the standard normal probability curve to the right of

X =
30− 20

5
= 2

and, from tables, this is 0.0227

Hence, the required number of values is approximately 0.0227× 2000 ' 45.

19.8.4 EXERCISES

1. Use a normal probability curve approximation to determine the probability that, in a
toss of 9 coins, 3 to 6 heads are shown.

2. A coin is tossed 100 times. Use a normal probability curve approximation to determine
the probability of obtaining

(a) exactly 50 heads;

(b) 60 or more heads.
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3. Assume that one half of the people in a certain community are regular viewers of
television. Of 100 investigators, each interviewing 10 individuals, how many would you
expect to report that 3 people or fewer were regular viewers ? (Use a normal probability
curve approximation).

4. A manufacturer knows that, on average, 2% of his products are defective. Using a
normal probability curve approximation, determine the probability that a batch of 100
components will contain exactly 5 defectives.

5. If the average life of a certain make of storage battery is 30 months, with a standard
deviation of 6 months, what percentage can be expected to last from 24 to 36 months,
assuming that their lifetimes follow a normal distribution.

6. If the heights of 10,000 university students closely follow a normal distribution, with a
mean of 69.0 inches and a standard deviation of 2.5 inches, how many of these students
would you expect to be at least 6 feet in height ?

7. In a certain trade, the average wage is £7.20 per hour and the standard deviation is
90p. If the wages are assumed to follow a normal distribution, what percentage of the
workers receive wages between £6.00 and £7.00 per hour ?

19.8.5 ANSWERS TO EXERCISES

1. P ' 0.8614

2. (a) 0.0796

(b) 0.0287

3. 17.

4. 0.0305

5. 68.26

6. 1151.

7. 32.11
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APPENDIX
AREA UNDER THE STANDARD NORMAL PROBABILITY CURVE

The area given is that from X = 0 to a given value, X1

X1 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1046 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767

2.0 0.4773 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4983 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986

3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4989 0.4990
3.1 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993
3.2 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995
3.3 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4995 0.4996 0.4996 0.4997
3.4 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998 0.4988

3.5 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998 0.4998
3.6 0.4998 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.7 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999
3.8 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.4999 0.5000 0.5000 0.5000
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